Эхолот

Использование: изобретение относится к гидроакустическим системам определения глубины и к системам навигации и может быть использовано в эхолотах с автоматическим адаптивным обнаружением эхо-сигналов от дна и измерением глубины с привязкой к географическим координатам места измерения. Сущность: эхолот содержит ЭВМ 1, усилитель 2 мощности, приемник 3 акустических эхо-сигналов, приемник 4 сигналов спутниковых радионавигационных систем, переключатель 5 «прием-передача», электроакустический преобразователь 6, аналого-цифровой преобразователь 7 и дисплей 8. Первый вход ЭВМ 1 соединен с выходом преобразователя 7, а второй - с выходом приемника 4. Первый выход ЭВМ 1 соединен с входом дисплея 8, второй - с входом управления приемника 3, третий - с входом усилителя 2, а четвертый - с управляющим входом переключателя 5. Сигнальный вход переключателя 5 соединен с выходом усилителя 2, вход-выход - с входом-выходом преобразователя 6, а выход - с сигнальным входом приемника 3, выход которого соединен с входом преобразователя 7. Технический результат: повышение помехозащищенности и надежности эхолота, расширение его функциональных возможностей. 1 ил.

 

Предлагаемое изобретение относится к гидроакустическим системам определения глубины и к системам навигации и может быть использовано в эхолотах с автоматическим адаптивным обнаружением эхо-сигналов от дна и измерением глубины с привязкой к географическим координатам места измерения.

Известен эхолот, защищенный патентом РФ №2123191, G01S 15/00, 1998, содержащий генератор импульсов, электроакустический преобразователь, блок индикации, измеритель временных интервалов (ВАРУ), блок временной автоматической регулировки усиления, синхронизатор, усилитель, детектор и пороговое устройство.

Признаками, общими с заявляемым эхолотом и присутствующими в той или иной степени в этом аналоге, являются генератор импульсов, электроакустический преобразователь, измеритель временных интервалов и блок ВАРУ.

Работа этого аналога, как и большинства остальных эхолотов, основана на измерении промежутка времени между излучением зондирующего сигнала в направлении морского дна и поступлением отраженного от морского дна эхо-сигнала.

Причиной, препятствующей достижению в этом аналоге технического результата, обеспечиваемого изобретением, является крайне низкая точность измерения глубины, обусловленная неадаптивностью порогового устройства в условиях изменяющегося уровня шумов, затрудняющего обнаружение эхо-сигналов от дна.

Известна также акустическая система измерения расстояния, защищенная европейским патентом №0340953, G01S 7/52, G01S 15/88, 1989, содержащая ЭВМ, дисплей, аналого-цифровой преобразователь, приемник акустических эхо-сигналов электроакустический преобразователь, цифроаналоговый преобразователь, передатчик, блок памяти и ряд интерфейсов.

Признаками, общими с заявляемым устройством, в этом аналоге являются ЭВМ, дисплей, аналого-цифровой преобразователь, приемник акустических эхо-сигналов и электроакустический преобразователь.

В этой системе используется адаптивный порог обнаружения, поэтому точность измерения глубины в ней несколько выше, чем в указанном выше аналоге.

Причиной, препятствующей достижению в этом аналоге технического результата, обеспечиваемого изобретением, является относительно низкая точность измерения глубины, что обусловлено невозможностью добиться оптимального с точки зрения минимизации погрешности измерения соотношения сигнал/помеха для каждого значения глубины.

Наиболее близким по технической сущности к заявляемому (прототипом) является эхолот, защищенный патентом РФ №2241242, G01S 15/08, G01S 7/52, 2004, содержащий ЭВМ, дисплей, электроакустический преобразователь, приемник акустических эхо-сигналов, аналого-цифровой преобразователь, блок ВАРУ и передатчик.

Все перечисленные элементы этого эхолота-прототипа, кроме блока ВАРУ и передатчика, входят и в состав заявляемого эхолота.

В этом эхолоте периодически излучается сигнал, мощность которого вычисляется по определенному алгоритму. Коэффициент усиления приемника регулируется по двум входам управления, один из которых подключен к блоку ВАРУ, второй - к ЭВМ. Выходной сигнал приемника с помощью аналого-цифрового преобразователя оцифровывается и поступает на обработку в ЭВМ с целью обнаружения эхо-сигнала, отраженного от дна и измерения глубины по определенной формуле с последующим выводом полученного значения на дисплей.

Причинами, препятствующими достижению в эхолоте-прототипе технического результата, достигаемого в изобретении, являются следующие.

Во-первых, это аппаратурная реализация блока ВАРУ. Она делает закон ВАРУ недостаточно эффективным в условиях разнообразия акватории, времен года, степени солености и температуры воды. Желательно иметь набор законов ВАРУ и возможность оперативного выбора нужного закона, что в условиях аппаратурной реализации блока ВАРУ крайне затруднительно.

Во-вторых, низкая помехозащищенность, обусловленная наличием большого количества входов управления, по которым помехи могут поступать в эхолот-прототип (два входа управления в приемнике и один в передатчике). Кроме того, отсутствие развязки между выходом передатчика и входом приемника создает условия для просачивания мощного импульса с выхода передатчика непосредственно на вход приемника. Это существенно снижает надежность эхолота-прототипа.

В-третьих, существенно ограничены выполняемые эхолотом-прототипом функции. Дело в том, что зачастую возникает необходимость не просто измерить глубину, но и привязать результат измерения к тому месту, где осуществляются измерения. Эту функцию устройство-прототип реализовать не позволяет.

Технической задачей, на решение которой направлено изобретение, является обеспечение универсальности закона ВАРУ, а также повышение помехозащищенности и надежности эхолота и расширение его функциональных возможностей за счет возможности привязки результатов измерения к географическим координатам места его проведения.

Технический результат достигается тем, что в известный эхолот введены приемник сигналов спутниковых радионавигационных систем, выход которого соединен с третьим входом ЭВМ, усилитель мощности, вход которого соединен с третьим выходом ЭВМ, и переключатель «прием-передача», вход которого соединен с выходом усилителя мощности, вход-выход - с входом-выходом электроакустического преобразователя, управляющий вход - с четвертым выходом ЭВМ, а выход - с сигнальным входом приемника акустических эхо-сигналов, при этом приемник акустических эхо-сигналов выполнен с одним входом управления.

Для технического результата в известный эхолот, содержащий электронно-вычислительную машину (ЭВМ), устройство отображения информации (дисплей), вход которого соединен с первым выходом ЭВМ, электроакустический преобразователь, приемник акустических эхо-сигналов, вход управления которого соединен со вторым выходом ЭВМ, и аналого-цифровой преобразователь, вход которого соединен с выходом приемника акустических эхо-сигналов, а выход соединен с первым входом ЭВМ, введены приемник сигналов спутниковых радионавигационных систем, выход которого соединен со вторым входом ЭВМ, усилитель мощности, вход которого соединен с третьим выходом ЭВМ, и переключатель «прием-передача», вход которого соединен с выходом усилителя мощности, вход-выход - с входом-выходом электроакустического преобразователя, управляющий вход - с четвертым выходом ЭВМ, а выход - с сигнальным входом приемника акустических эхо-сигналов, при этом приемник акустических эхо-сигналов выполнен с одним входом управления.

Совокупность вновь введенных элементов и связей и особенности выполнения приемника неизвестна из имеющихся в распоряжении заявителя источников информации. Поэтому заявляемый эхолот следует считать новым и соответствующим изобретательскому уровню.

Сущность изобретения поясняется фиг.1, на которой приведена структурная схема заявляемого эхолота.

Эхолот содержит ЭВМ 1, усилитель 2 мощности, приемник 3 акустических эхо-сигналов, приемник 4 сигналов спутниковых радионавигационных систем, переключатель 5 «прием-передача», электроакустический преобразователь 6, аналого-цифровой преобразователь 7 и дисплей 8.

Первый вход ЭВМ 1 соединен с выходом преобразователя 7, а второй - с выходом приемника 4. Первый выход ЭВМ 1 соединен с входом дисплея 8, второй - с входом управления приемника 3, третий - с входом усилителя 2, а четвертый - с управляющим входом переключателя 5. Сигнальный вход переключателя 5, вход которого соединен с выходом усилителя 2, вход-выход - с входом-выходом преобразователя 6, а выход - с сигнальным входом приемника 3, выход которого соединен с входом преобразователя 7.

Работа эхолота заключается в следующем.

Функцию передатчика выполняет ЭВМ 1 совместно с усилителем 2. ЭВМ 1 формирует на своем третьем выходе последовательность прямоугольных импульсов с заданными длительностью τ и периодом Т повторения и регулируемой амплитудой. Параметры τ и Т заранее устанавливаются в ЭВМ. Амплитуда этих импульсов с помощью ЭВМ 1 может изменяться примерно в 15 раз в зависимости от измеряемой глубины. Эти импульсы поступают на вход усилителя 2 мощности с постоянным коэффициентом усиления, а усилитель 2 работает в линейном режиме. В нем поступающие на его вход импульсы усиливаются до уровня мощности примерно 200 Вт при максимальной амплитуде входного импульса.

С выхода усилителя 2 мощный импульс поступает на сигнальный вход переключателя 5 и через него на преобразователь 6. К началу действия этого импульса переключатель 5 под действием управляющего сигнала с третьего выхода ЭВМ 1 подключает свой сигнальный вход к входу-выходу и отключает сигнальный вход приемника 3 от своего выхода, предотвращая тем самым попадание мощного импульса с выхода усилителя 2 на вход приемника 3.

Преобразователь 6 преобразует поступивший на его вход мощный импульс в звуковой сигнал и излучает его в направлении дна.

После окончания цикла излучения переключатель 5 под действием управляющего сигнала с четвертого выхода ЭВМ 1 подключает сигнальный вход приемника 3 к преобразователю 6, и начинается цикл приема эхо-сигнала.

Принятый приемником 3 эхо-сигнал с его выхода поступает на вход преобразователя 7, где оцифровывается и уже в цифровом виде поступает на первый вход ЭВМ 1.

В ЭВМ 1 поступивший на его вход в виде массива последовательных отсчетов эхо-сигнал обрабатывается в соответствии с заданным алгоритмом выделения донного сигнала, описанным, например, в эхолоте-прототипе.

Реализация требуемого закона ВАРУ приемника в предлагаемом эхолоте осуществляется алгоритмически с помощью ЭВМ 1. Для реализации этого закона используется тот же оцифрованный эхо-сигнал на первом входе ЭВМ 1. В качестве такового закона используется обобщенная функция управления усилением приемника, изменяющая коэффициент его усиления в пределах порядка 120 дБ. ЭВМ позволяет реализовать практически любое нелинейное преобразование сигнала, каковым является закон ВАРУ. При этом легко могут быть реализованы несколько разных законов и обеспечен оперативный выбор требуемого в соответствии с реальными условиями работы эхолота.

Обобщенный сигнал управления усилением приемника поступает со второго выхода на вход управления приемника 3. В результате изменения коэффициента усиления приемника 3 диапазон изменения эхо-сигнала на его выходе поддерживается в диапазоне, обеспечивающем максимум отношения «сигнал/помеха».

В результате обработки в ЭВМ 1 эхо-сигнала определяется задержка донного сигнала относительно излученного, которая пересчитывается в подлежащую измерению глубину.

Приемник 4 принимает сигналы спутниковых радионавигационных систем, по которым определяет координаты объекта-носителя эхолота. Эти координаты поступают на второй вход ЭВМ 1. В ЭВМ 1 они объединяются с результатами определения глубины в отдельный формуляр, который заносится в память ЭВМ и с первого выхода ЭВМ 1 выводится на дисплей 8.

Таким образом, в предлагаемом эхолоте осуществляется не только измерение глубины, но и привязка результата измерения к географическим координатам места измерения. Эхолот позволяет реализовать практически любой закон ВАРУ в приемнике, так как его реализация не требует аппаратурных затрат, а осуществляется чисто программным путем.

В эхолоте существенно сокращено число входов управления, по которым могут поступать помехи. Кроме того здесь отсутствует какая-либо связь между выходом передатчика и входом приемника. Это существенно повышает помехозащищенность и надежность работы эхолота по сравнению с прототипом.

Предлагаемый эхолот значительно проще, чем прототип. Здесь исключена аппаратурная реализация блока ВАРУ, а передатчик заменен простым усилителем. Это дополнительно повышает надежность эхолота по сравнению с прототипом.

Эхолот достаточно легко реализуем.

Эхолот, содержащий электронно-вычислительную машину (ЭВМ), устройство отображения информации (дисплей), вход которого соединен с первым выходом ЭВМ, электроакустический преобразователь, приемник акустических эхо-сигналов, вход управления которого соединен со вторым выходом ЭВМ, и аналого-цифровой преобразователь, вход которого соединен с выходом приемника акустических эхо-сигналов, а выход соединен с первым входом ЭВМ, отличающийся тем, что в него введены приемник сигналов спутниковых радионавигационных систем, выход которого соединен со вторым входом ЭВМ, усилитель мощности, вход которого соединен с третьим выходом ЭВМ, и переключатель «прием-передача», вход которого соединен с выходом усилителя мощности, вход-выход - с входом-выходом электроакустического преобразователя, управляющий вход - с четвертым выходом ЭВМ, а выход - с сигнальным входом приемника акустических эхо-сигналов, при этом приемник акустических эхо-сигналов выполнен с одним входом управления.



 

Похожие патенты:

Использование: изобретение относится к области гидроакустики и может быть использовано при разработке гидроакустических навигационных систем повышенной точности, работающих при наличии отражающих границ раздела.

Изобретение относится к области гидроакустических навигационных систем и может быть использовано для навигационного обеспечения подводных аппаратов, работающих в ледовых условиях, затрудняющих доступ к ним обеспечивающего судна, и также может быть использовано при проведении сейсмических и геологоразведочных работ на морском дне с использованием буксируемых или телеуправляемых подводных аппаратов.

Изобретение относится к области навигации, а именно к определению координат подводных объектов. .

Изобретение относится к гидроакустике, а именно к гидроакустическим навигационным средствам, и может быть использовано для обеспечения навигации подводных объектов.

Изобретение относится к области гидроакустических навигационных систем и может быть использовано для навигационного обеспечения подводных аппаратов повышенной дальности действия, например, работающих в ледовых условиях, затрудняющих доступ к ним обеспечивающего судна, и также может быть использовано при проведении сейсмических и геологоразведочных работ на морском дне.

Изобретение относится к области гидроакустики. .

Изобретение относится к гидроакустике и может быть использовано при разработке гидроакустических дальномерных систем, предназначенных для работы в мелком море с большими дисперсионными искажениями акустического сигнала.

Изобретение относится к гидроакустике и может быть использовано при разработке гидроакустических дальномерных систем с повышенной точностью и дальностью действия, предназначенных для работы в мелком море с большими дисперсионными искажениями акустического сигнала.

Изобретение относится к гидроакустике и может быть использовано при разработке гидроакустических дальномерных систем с повышенной точностью и дальностью действия, предназначенных для работы в мелком море с большими дисперсионными искажениями акустического сигнала.

Изобретение относится к гидроакустике и может быть использовано при разработке гидроакустических дальномерных систем с повышенной точностью и дальностью действия, предназначенных для работы в мелком море с большими дисперсионными искажениями акустического сигнала.

Использование: изобретение относится к области подводной навигации и может быть применено в системах определения и контроля местоположения подвижных подводных объектов, преимущественно маломерных. Сущность: система содержит группировку расположенных на водной поверхности радиогидроакустических буев, связанных радиоканалами со станцией контроля и гидроакустическими каналами - с подводным объектом. Каждый из буев группировки содержит приемник сигналов внешней навигационной системы, обеспечивающий возможность определения текущих координат своего местоположения и формирования временных меток бортовой шкалы времени в соответствии со шкалой времени внешней навигационной системы, гидроакустическую аппаратуру, обеспечивающую возможность приема информационных гидроакустических сигналов, поступающих с подводного объекта, а также средства, обеспечивающие возможность определения задержек распространения принимаемых информационных гидроакустических сигналов, и средства радиосвязи со станцией контроля, обеспечивающие возможность передачи на нее данных об указанных задержках и данных о текущем местоположении буя. Станция контроля содержит средства, обеспечивающие возможность определения координат подводного объекта на основании данных о задержках распространения информационных гидроакустических сигналов и данных о текущем местоположении буев. В отличие от прототипа, каждый из буев группировки выполнен с обеспечением возможности работы в активном режиме ведущего в группировке, при котором его гидроакустическая аппаратура излучает на подводный объект общий для всей группировки запросный гидроакустический сигнал, а аппаратура подводного объекта выполнена с обеспечением возможности приема запросного гидроакустического сигнала и его переизлучения на все буи группировки. Технический результат: создание системы определения и контроля местоположения подводного объекта, характеризующейся экономией ресурса батарей буев и отсутствием на подводном объекте средств формирования шкалы времени, синхронизированной с единой шкалой времени группировки буев. 2 ил.

Изобретение относится к области гидроакустики и может быть использовано для построения систем обнаружения сигнала гидролокатора и, в частности, для повышения точности измерения дистанции при использовании зондирующих сигналов большой длительности. Использование предлагаемой процедуры измерений и вычислений обеспечивает более высокую достоверность определения дистанции, оценка которой учитывает изменение дистанции за счет собственного движения и движения цели. Способ определения дистанции гидролокатором содержит излучение зондирующего сигнала в момент времени Тиз, прием эхосигнала, спектральный анализ эхосигналов, определение дистанции Добн в момент превышения порога амплитудой эхосигнала Тпр, определение радиальной скорости Vр.ц. по смещению спектрального эхосигнала относительно частоты излученного сигнала, измерение собственной скорости Vсоб, измерение курсового угла объекта Q0, определение радиальной скорости сближения с объектом Vр.соб=VсобcosQ0, измерение дистанции перемещения гидролокатора к объекту за время распространения Дгл=(Тпр-Тиз)VсобcosQ0, определение дистанции перемещения объекта за время распространения эхосигнала от объекта до гидролокатора Доб=0,5(Тпр-Тиз)Vр.об, а текущую дистанцию до объекта определяют как Дтек=Добн-Дгл±Доб. 1 ил.

Изобретение относится к гидроакустическим навигационным системам, конкретно к системам, использующим импульсные методы определения дистанций между объектами навигации и приемоответчиками акустических сигналов. Система состоит из навигационной базы, стационарно размещенной на дне или по глубине акватории в точках с известными и не изменяющимися в процессе цикла навигации объекта координатами, блока формирования и излучения кодоимпульсных сигналов, блока приема и первичной обработки сигналов, включающего один многоканальный приемник и вычислительный блок, в котором определяются параметры всех/нескольких принимаемых на объекте навигации кодоимпульсных сигналов от каждого приемоответчика, а также производятся идентификации приходов импульсов по лучевым траекториям, путем выполнения расчетов структурных функций приходов для всех приемоответчиков и определения точных дистанций до каждого маяка на основании всех/нескольких приходов. Технический результат - повышение точности и надежности измерения дистанций и подводного позиционирования ПО в условиях многолучевого распространения навигационных сигналов в мелководных акваториях при одновременном снижении технической сложности и энергопотребления системы. 1 з.п. ф-лы, 3 ил.

Использование: изобретение относится к гидроакустическим системам определения глубины и к системам навигации и может быть использовано в эхолотах с автоматическим адаптивным обнаружением эхо-сигналов от дна и измерением глубины с привязкой к географическим координатам места измерения. Сущность: эхолот содержит ЭВМ 1, усилитель 2 мощности, приемник 3 акустических эхо-сигналов, приемник 4 сигналов спутниковых радионавигационных систем, переключатель 5 «прием-передача», электроакустический преобразователь 6, аналого-цифровой преобразователь 7 и дисплей 8. Первый вход ЭВМ 1 соединен с выходом преобразователя 7, а второй - с выходом приемника 4. Первый выход ЭВМ 1 соединен с входом дисплея 8, второй - с входом управления приемника 3, третий - с входом усилителя 2, а четвертый - с управляющим входом переключателя 5. Сигнальный вход переключателя 5 соединен с выходом усилителя 2, вход-выход - с входом-выходом преобразователя 6, а выход - с сигнальным входом приемника 3, выход которого соединен с входом преобразователя 7. Технический результат: повышение помехозащищенности и надежности эхолота, расширение его функциональных возможностей. 1 ил.

Наверх