Устройство для формирования программных сигналов управления пространственным движением динамических объектов

Изобретение относится к вычислительной технике. Технический результат заключается в формировании контура автоматического выбора максимально возможной скорости движения динамического объекта вдоль заданной пространственной траектории и соответствующих программных сигналов этого движения (с использованием полученного значения максимально возможной скорости), при которых отклонение динамического объекта от указанной траектории не превышает допустимой величины. Устройство для формирования программных сигналов управления пространственным движением динамических объектов содержит сумматоры, блоки умножения и деления, блоки извлечения корня, квадраторы, функциональные преобразователи, задатчики сигнала, следящие системы, навигационную систему. 1 ил.

 

Изобретение относится к области автоматического управления динамическими объектами (ДО), которое обеспечивает их точное движение по заданной траектории, в частности летательными и/или подводными аппаратами.

Известно устройство для управления приводом робота, содержащее последовательно соединенные первый и второй сумматоры, первый блок умножения, третий сумматор, усилитель и двигатель, связанный с первым датчиком скорости непосредственно и через редуктор - с первым датчиком положения, выход которого соединен с первым положительным входом первого сумматора, подключенного вторым входом к входу устройства, последовательно соединенные релейный блок и четвертый сумматор, второй положительный вход которого соединен с выходом первого датчика скорости и входом релейного блока, последовательно соединенные первый задатчик сигнала и пятый сумматор, второй положительный вход которого подключен к выходу датчика массы, а выход - ко второму входу первого блока умножения, последовательно соединенные второй датчик скорости, установленный в третьей степени подвижности робота, второй блок умножения и третий блок умножения, второй вход которого соединен с выходом первого датчика скорости, а выход - с третьим отрицательным входом четвертого сумматора, а также второй датчик положения, установленный в третьей степени подвижности робота, причем второй отрицательный вход второго сумматора соединен с выходом первого датчика скорости, а выход четвертого сумматора подключен ко второму положительному входу третьего сумматора, последовательно соединенные второй задатчик сигнала, шестой сумматор, четвертый блок умножения, второй вход которого через первый косинусный функциональный преобразователь соединен с выходом второго датчика положения, седьмой сумматор, второй положительный вход которого соединен с выходом третьего задатчика сигнала, и пятый блок умножения, второй вход которого соединен с выходом первого датчика ускорения, установленного в третьей степени подвижности робота, а выход подключен к четвертому положительному входу четвертого сумматора, последовательно соединенные второй синусный функциональный преобразователь, вход которого соединен со входом первого косинусного функционального преобразователя, и шестой блок умножения, второй вход которого подключен к выходу шестого сумматора, а выход - ко второму входу второго блока умножения, пятый отрицательный вход четвертого сумматора подключен к выходу седьмого блока умножения, первый вход которого соединен с выходом второго датчика скорости, а второй вход - с выходом второго блока умножения, третий положительный вход пятого сумматора соединен с выходом четвертого блока умножения, третий положительный вход седьмого сумматора подключен к выходу датчика массы и второму положительному входу шестого сумматора, последовательно соединенные восьмой сумматор, первый положительный вход которого подключен к выходу второго датчика положения, а его второй положительный вход - к выходу первого датчика положения, третий синусный функциональный преобразователь, восьмой блок умножения, девятый сумматор и девятый блок умножения, выход которого подключен к шестому положительному входу четвертого сумматора, а также второй датчик ускорения, установленный в первой степени подвижности робота, и последовательно соединенные четвертый задатчик сигнала, десятый сумматор, десятый блок умножения, второй вход которого через четвертый синусный функциональный преобразователь подключен к выходу первого датчика положения, а его выход - ко второму положительному входу девятого сумматора, последовательно соединенные пятый задатчик сигнала и одиннадцатый сумматор, второй положительный вход которого подключен к выходу датчика массы и ко второму положительному входу десятого сумматора, а его выход - ко второму положительному входу восьмого блока умножения, последовательно соединенные третий датчик ускорения, механически связанный с выходным валом двигателя, и одиннадцатый блок умножения, второй вход которого соединен с выходом второго блока умножения, а выход - с первым отрицательным входом двенадцатого сумматора, второй положительный вход которого подключен к выходу третьего датчика ускорения, а выход - к третьему положительному входу третьего сумматора, последовательно соединенные первый дифференциатор и двенадцатый блок умножения, второй вход которого соединен с выходом седьмого сумматора, а также тринадцатый блок умножения, первый вход которого подключен к выходу шестого блока умножения, второй вход - к выходу первого датчика ускорения и входу первого дифференциатора, а выход - к первому отрицательному входу тринадцатого сумматора, выход которого подключен к входу четырнадцатого блока умножения, последовательно соединенные квадратор, пятнадцатый блок умножения, второй вход которого соединен с выходом четвертого блока умножения, и шестнадцатый блок умножения, последовательно соединенные четырнадцатый сумматор, семнадцатый блок умножения и восемнадцатый блок умножения, второй вход которого подключен к выходу одиннадцатого сумматора, последовательно соединенные пятый косинусный функциональный преобразователь, вход которого соединен с выходом первого датчика положения, девятнадцатый блок умножения, второй вход которого подключен к выходу десятого сумматора, двадцатый блок умножения и двадцать первый блок умножения, второй вход которого соединен с выходом первого датчика скорости, первым положительным входом четырнадцатого сумматора и вторым входом четырнадцатого блока умножения, последовательно соединенные шестой косинусный функциональный преобразователь, подключенный вводом к выходу восьмого сумматора, и двадцать второй блок умножения, выход которого соединен со вторым входом семнадцатого блока умножения, последовательно соединенные второй дифференциатор, подключенный входом к выходу второго датчика ускорения, и двадцать третий блок умножения, второй вход которого соединен с выходом восьмого блока умножения, а также двадцать четвертый блок умножения, первый вход которого соединен с выходом десятого блока умножения, а его второй вход - с выходом второго дифференциатора, а выход - с третьим положительным входом двенадцатого сумматора, четвертый положительный вход которого подключен к выходу двадцать третьего блока умножения, пятый положительный вход - к выходу восемнадцатого блока умножения, шестой положительный вход - к выходу двадцать первого блока умножения, седьмой положительный вход - к выходу четырнадцатого блока умножения, восьмой отрицательный вход - к выходу шестнадцатого блока умножения, девятый положительный вход - к выходу двенадцатого блока умножения, а десятый отрицательный - к выходу двадцать пятого блока умножения, первый вход которого соединен с выходом тринадцатого блока умножения, а второй вход - с выходом второго датчика скорости, входом квадратора, вторым входом шестнадцатого блока умножения и вторым положительным входом четырнадцатого сумматора, причем второй отрицательный вход тринадцатого сумматора подключен к выходу пятнадцатого блока умножения, отличающееся тем, что в него дополнительно введены последовательно соединенные шестой задатчик сигнала и пятнадцатый сумматор, второй положительный вход которого подключен к выходу второго датчика ускорения, а выход - ко вторым входам девятого, двадцатого и двадцать второго блоков умножения (пат. РФ №2312007, БИ №4, 2007 г.).

Недостатком этого устройства является то, что оно не может обеспечить автоматический выбор максимально возможной скорости работы привода, а следовательно, и максимальную производительность этого устройства при сохранении заданной динамической точности его движения.

Известен также электропривод с автоматической подстройкой частоты входного гармонического сигнала, содержащий последовательно соединенные первый сумматор, корректирующее устройство, усилитель, двигатель, редуктор, датчик положения, выход которого соединен с первым входом первого сумматора, отличающийся тем, что в него дополнительно введены последовательно соединенные блок вычисления модуля, вход которого соединен с выходом первого сумматора, второй сумматор, релейный элемент, запоминающее устройство, информационный вход которого соединен с выходом блока вычисления модуля и через устройство задержки со вторым входом второго сумматора, третий сумматор, второй вход которого соединен с выходом первого задатчика сигнала, первый интегратор, фильтр низких частот второго порядка, четвертый сумматор, второй вход которого соединен с выходом второго задатчика сигнала, второй интегратор, синусный функциональный преобразователь, блок умножения, второй вход которого соединен с третьим задатчиком сигнала, а выход со вторым входом первого сумматора (пат. РФ №2399079, БИ №25, 2010 г.).

Недостатком этого устройства является то, что оно позволяет формировать только гармонический программный сигнал, обеспечивающий максимально возможную скорость движения ДО при сохранении допустимого значения динамической ошибки управления. Формирование другого вида программных сигналов в указанном устройстве невозможно. Кроме того, это устройство позволяет формировать программный сигнал только для одной степени свободы ДО, что не позволяет использовать его для управления движением этого ДО по пространственной траектории.

Задачей, на решение которой направлено заявленное техническое решение, является обеспечение максимально возможной скорости движения ДО по заданной пространственной траектории при сохранении допустимой величины отклонения от этой траектории.

Технический результат заявляемого решения выражается в формировании специального контура автоматического выбора максимально возможной скорости движения ДО вдоль заданной пространственной траектории и соответствующих программных сигналов этого движения (с использованием полученного значения максимально возможной скорости), при которых отклонение ДО от указанной траектории не превышает допустимой величины.

Поставленная задача решается тем, что в устройство для формирования программных сигналов управления пространственным движением динамических объектов, содержащее последовательно соединенные первый задатчик сигнала, первый сумматор, первый интегратор, дополнительно введены последовательно соединенные первый квадратор, второй сумматор, второй и третий входы которого подключены соответственно к выходам второго и третьего квадраторов, и первый блок извлечения квадратного корня, выход которого подключен ко второму входу первого сумматора, последовательно соединенные нелинейный элемент, первый блок умножения, второй вход которого подключен к выходу второго задатчика сигнала, первый блок деления, второй интегратор, первый функциональный преобразователь, вход которого подключен также к входам второго функционального преобразователя и первой следящей системы, к первому входу третьего сумматора, второй вход которого соединен с первым выходом навигационной системы, через третий функциональный преобразователь - к входу второй следящей системы и первому входу четвертого сумматора, второй вход которого соединен со вторым выходом навигационной системы, через четвертый функциональный преобразователь - к входу третьей следящей системы и к первому входу пятого сумматора, второй вход которого подключен к третьему выходу навигационной системы, четвертый квадратор, шестой сумматор, второй вход которого через пятый квадратор подключен к выходу второго функционального преобразователя, второй блок извлечения квадратного корня, второй блок деления, второй вход которого подключен к выходу третьего задатчика сигнала и третьему входу шестого сумматора, второй блок умножения, второй вход которого подключен к выходу первого функционального преобразователя, пятый функциональный преобразователь, вход которого подключен также к первым входам третьего, четвертого и пятого блоков умножения, а также к входу шестого квадратора, седьмой сумматор, третий блок деления, шестой блок умножения, восьмой сумматор, выход которого подключен к входу второго квадратора, причем выход второго блока извлечения квадратного корня подключен ко второму входу первого блока деления, последовательно соединенные седьмой блок умножения, первый вход которого подключен к выходу второго функционального преобразователя, шестой функциональный преобразователь, вход которого подключен также ко второму входу четвертого блока умножения, к первым входам восьмого и девятого блоков умножения, а также к входу седьмого квадратора, девятый сумматор, второй вход которого подключен к выходу пятого блока умножения, четвертый блок деления, второй вход которого подключен к третьему входу девятого сумматора, к вторым входам седьмого сумматора, третьего блока деления, третьего, седьмого и восьмого блоков умножения, а также к выходу второго блока деления, десятый блок умножения и десятый сумматор, выход которого подключен к входу третьего квадратора, последовательно соединенные одиннадцатый сумматор, одиннадцатый блок умножения, второй вход которого подключен к выходу третьего сумматора, а также к вторым входам шестого и десятого блоков умножения, двенадцатый сумматор, второй вход которого через двенадцатый блок умножения подключен к выходу восьмого блока умножения, его третий вход через тринадцатый блок умножения - к выходу третьего блока умножения, а выход - к входу второго квадратора, последовательно соединенные тринадцатый сумматор, первый вход которого подключен к выходу седьмого квадратора и первому входу одиннадцатого сумматора, а его второй вход - к выходу третьего задатчика сигнала и первому входу четырнадцатого сумматора, подключенного вторым входом к выходу шестого квадратора и к второму входу одиннадцатого сумматора, а выходом - к первому входу четырнадцатого блока умножения, выход которого соединен со вторым входом восьмого сумматора, третий вход которого через пятнадцатый блок умножения подключен к выходу пятого сумматора, к второму входу двенадцатого блока умножения и к первому входу шестнадцатого блока умножения, второй вход которого соединен с выходом тринадцатого сумматора, а выход - с вторым входом десятого сумматора, третий вход которого через семнадцатый блок умножения подключен к вторым входам тринадцатого и четырнадцатого блоков умножения, а также к выходу четвертого сумматора, причем второй вход семнадцатого блока умножения соединен со вторыми входами пятого, девятого и пятнадцатого блоков умножения, а также с выходом четвертого блока умножения, вход нелинейного элемента подключен к выходу первого интегратора, а третий вход седьмого сумматора - к выходу девятого блока умножения, а также последовательно соединенные восьмой квадратор, первый вход которого подключен к выходу четвертого сумматора, пятнадцатый сумматор, второй и третий входы которого через девятый и десятый квадраторы подключены, соответственно, к выходам третьего и пятого сумматоров, и третий блок извлечения квадратного корня, выход которого подключен к третьему входу первого сумматора.

Сопоставительный анализ существенных признаков предлагаемого технического решения с существенными признаками аналога и прототипа свидетельствуют о его соответствии критерию «новизна».

При этом отличительные признаки формулы изобретения позволяют обеспечить максимально возможную скорость движения ДО по заданной пространственной траектории без превышения предельно допустимой величины его отклонения от указанной траектории.

Блок-схема предлагаемого устройства для формирования программных сигналов управления пространственным движением динамических объектов представлена на фиг.1.

Устройство для формирования программных сигналов управления пространственным движением динамических объектов содержит последовательно соединенные первый квадратор 4, второй сумматор 5, второй и третий входы которого подключены, соответственно, к выходам второго 6 и третьего 7 квадраторов, и первый блок 8 извлечения квадратного корня, выход которого подключен ко второму входу первого сумматора 3, последовательно соединенные нелинейный элемент 9, первый блок 10 умножения, второй вход которого подключен к выходу второго задатчика 11 сигнала, первый блок 12 деления, второй интегратор 13, первый функциональный преобразователь 14, вход которого подключен также к входам второго функционального преобразователя 15 и первой следящей системы 16, к первому входу третьего сумматора 17, второй вход которого соединен с первым выходом навигационной системы 18, через третий функциональный преобразователь 19 - к входу второй следящей системы 20 и первому входу четвертого сумматора 21, второй вход которого соединен со вторым выходом навигационной системы 18, через четвертый функциональный преобразователь 22 - к входу третьей следящей системы 23 и к первому входу пятого сумматора 24, второй вход которого подключен к третьему выходу навигационной системы 18, четвертый квадратор 25, шестой сумматор 26, второй вход которого через пятый квадратор 27 подключен к выходу второго функционального преобразователя 15, второй блок 28 извлечения квадратного корня, второй блок 29 деления, второй вход которого подключен к выходу третьего задатчика 30 сигнала и третьему входу шестого сумматора 26, второй блок 31 умножения, второй вход которого подключен к выходу первого функционального преобразователя 14, пятый функциональный преобразователь 32, вход которого подключен также к первым входам третьего 33, четвертого 34 и пятого 35 блоков умножения, а также к входу шестого квадратора 36, седьмой сумматор 37, третий блок 38 деления, шестой блок 39 умножения, восьмой сумматор 40, выход которого подключен к входу второго квадратора 6, причем выход второго блока 28 извлечения квадратного корня подключен ко второму входу первого блока 12 деления, последовательно соединенные седьмой блок 41 умножения, первый вход которого подключен к выходу второго функционального преобразователя 15, шестой функциональный преобразователь 42, вход которого подключен также ко второму входу четвертого блока 34 умножения, к первым входам восьмого 43 и девятого 44 блоков умножения, а также к входу седьмого квадратора 45, девятый сумматор 46, второй вход которого подключен к выходу пятого блока 35 умножения, четвертый блок 47 деления, второй вход которого подключен к третьему входу девятого сумматора 46, к вторым входам седьмого сумматора 37, третьего блока 38 деления, третьего 33, седьмого 41 и восьмого 43 блоков умножения, а также - к выходу второго блока 29 деления, десятый блок 48 умножения и десятый сумматор 49, выход которого подключен к входу третьего квадратора 7, последовательно соединенные одиннадцатый сумматор 50, одиннадцатый блок 51 умножения, второй вход которого подключен к выходу третьего сумматора 17, а также к вторым входам шестого 39 и десятого 48 блоков умножения, двенадцатый сумматор 52, второй вход которого через двенадцатый блок 53 умножения подключен к выходу восьмого блока 43 умножения, его третий вход через тринадцатый блок 54 умножения - к выходу третьего блока 33 умножения, а выход - к входу второго квадратора 6, последовательно соединенные тринадцатый сумматор 55, первый вход которого подключен к выходу седьмого квадратора 45 и первому входу одиннадцатого сумматора 50, а его второй вход - к выходу третьего задатчика 30 сигнала и первому входу четырнадцатого сумматора 56, подключенного вторым входом к выходу шестого квадратора 36 и к второму входу одиннадцатого сумматора 50, а выходом - к первому входу четырнадцатого блока 57 умножения, выход которого соединен со вторым входом восьмого сумматора 40, третий вход которого через пятнадцатый блок 58 умножения подключен к выходу пятого сумматора 24, к второму входу двенадцатого блока 53 умножения и к первому входу шестнадцатого блока 59 умножения, второй вход которого соединен с выходом тринадцатого сумматора 55, а выход - с вторым входом десятого сумматора 49, третий вход которого через семнадцатый блок 60 умножения подключен к вторым входам тринадцатого 54 и четырнадцатого 57 блоков умножения, а также к выходу четвертого сумматора 21, причем второй вход семнадцатого блока 60 умножения соединен со вторыми входами пятого 35, девятого 44 и пятнадцатого 58 блоков умножения, а также с выходом четвертого блока 34 умножения, вход нелинейного элемента 9 подключен к выходу первого интегратора 3, а третий вход седьмого сумматора 37 - к выходу девятого блока 44 умножения, а также последовательно соединенные восьмой квадратор 61, первый вход которого подключен к выходу четвертого сумматора 21, пятнадцатый сумматор 62, второй и третий входы которого через девятый 63 и десятый 64 квадраторы подключены, соответственно, к выходам третьего 17 и пятого 24 сумматоров, и третий блок 65 извлечения квадратного корня, выход которого подключен к третьему входу первого сумматора 2.

На фиг.1 введены следующие обозначения: εon - величина допустимого отклонения ДО от заданной траектории его движения; ε ^ n - величина отклонения ДО от заданной пространственной траектории; ν* - желаемая скорость движения ДО вдоль заданной траектории; x, y, z - текущие значения пространственных координат ДО в абсолютной системе координат, формируемые его навигационной системой; x*, y*, z* - программные сигналы управления по соответствующим степеням свободы ДО; S - командный сигнал начала или прекращения работы системы; εx=x*-x, εy=y*-y, εz=z*-z - сигналы ошибок движения ДО по соответствующим осям абсолютной системы координат; εm - расстояние от ДО до целевой точки, находящейся на заданной траектории; Ф, f1, f2, f3 - промежуточные переменные.

Устройство работает следующим образом. Сигнал x* формируется на выходе интегратора 13. Желаемая траектория движения ДО в пространстве задается с помощью гладких функциональных зависимостей y*(t)=gy(x*(t)) и z*(t)=gz(x*(t)), которые реализуются функциональными преобразователями 19 и 22 соответственно. Функциональные преобразователи 14 и 15 реализуют функции g y ' ( x ) = d g y ( x ) / d x и g z ' ( x ) = d g z ( x ) / d x . В качестве блоков 14, 15, 19 и 22 используются диодные функциональные преобразователи, позволяющие осуществлять кусочно-линейную аппроксимацию гладких функций. При этом количество диодных ячеек, входящих в состав этих преобразователей, определяется требуемой точностью аппроксимации соответствующих функций. Настройка этих функциональных преобразователей производится при задании желаемой траектории движения ДО.

Все входы сумматора 26 имеют единичные коэффициенты усиления. На выходе задатчика 30 формируется единичный сигнал. В результате на выходе блока 28 формируется сигнал Ф = 1 + g y ' ( x ) 2 + g z ' ( x ) 2 , а на выходе блока 12 - сигнал х*=ν*/Ф. Сигналы x*(t), y*(t) и z*(t), поступающие на входы соответствующих следящих систем отдельных степеней свободы ДО, обеспечивают его перемещение вблизи заданной пространственной траектории.

При увеличении ν* будут возрастать эффекты взаимовлияния между степенями свободы ДО и силы сопротивления внешней среды. Это приводит к увеличению нагрузки на исполнительные приводы некоторых следящих систем и, как следствие, к снижению точности управления указанным ДО и к входу его исполнительных устройств в насыщение. В результате на отдельных участках траектории движения этого ДО (особенно с большой кривизной) могут возникать недопустимо большие его отклонения от заданной траектории. Для уменьшения указанных отклонений там, где это необходимо, следует снижать величину ν*. Это, соответственно, приведет к снижению нагрузки на исполнительные приводы и обеспечит их работу вне зоны насыщения.

При движении по участкам траектории, близким к прямолинейным, эффекты взаимовлияний между степенями свободы ДО минимальны. Поэтому на указанных участках без уменьшения точности можно значительно повышать скорости движения по этим участкам.

Предлагаемое устройство обеспечивает автоматическую настройку скорости движения ДО в зависимости от величины его текущего отклонения от заданной траектории. Если это отклонение начинает превышать некоторое заданное значение, то скорость движения ДО уменьшается, а при малых отклонениях - увеличивается. В результате движение этого ДО по заданной траектории осуществляется с максимально возможной скоростью, при которой его отклонение от этой траектории не превышает допустимого значения независимо от вида траектории и типа используемых следящих систем.

На выходах блоков 31 и 41 соответственно формируются сигналы f1-1, f 2 = g y ' ( x ) / Ф , f 3 = g z ' ( x ) / Ф , а на выходах сумматоров 17, 21 и 24, первые положительные, а вторые отрицательные входы которых имеют единичные коэффициенты усиления, - сигналы εx, εy, εz соответственно.

Положительные входы сумматора 50 имеют единичные коэффициенты усиления. Поэтому на его выходе формируется сигнал f 2 2 + f 3 2 , а на выходах блоков 51, 53, 54 соответственно - сигналы ( f 2 2 + f 3 2 ) ε x , f1f3εz, и f1f2εy. В результате на выходе сумматора 52, первый (со стороны блока 51) положительный, а второй и третий отрицательный входы которого имеют единичные коэффициенты усиления, появляется сигнал

ε n x = ( f 2 2 + f 3 2 ) ε x f 1 f 2 ε y f 1 f 3 ε z ,

который является проекцией вектора отклонения ДО от заданной траектории на ось x абсолютной системы координат.

Функциональный преобразователь 32 реализует кубическую зависимость, поэтому на его выходе формируется сигнал f 2 3 . Первый и третий положительные и второй (со стороны блока 29) отрицательный входы сумматора 37 имеют единичные коэффициенты усиления. Поэтому на выходе сумматора 37 формируется сигнал f 2 3 + f 2 f 3 2 f 1 . Первый положительный и второй отрицательный (со стороны квадратора 36) входы сумматора 56 имеют единичные коэффициенты усиления, поэтому на выходе этого сумматора формируется сигнал 1 f 2 2 , а на выходе сумматора 40, первый и второй положительные, а третий (со стороны блока 58) отрицательный входы которого имеют единичные коэффициенты усиления, формируется сигнал

ε n y = ( f 2 3 + f 2 f 3 2 f 1 ) / f 1 ε x + ( 1 f 2 2 ) ε y f 2 f 3 ε z ,

который является проекцией на ось у абсолютной системы координат вектора отклонения ДО от заданной траектории.

Функциональный преобразователь 42 реализует кубическую зависимость, поэтому на его выходе формируется сигнал f 3 3 . Первый и второй положительные, а третий (со стороны блока 29) отрицательный входы сумматора 46 имеют единичные коэффициенты усиления. Поэтому на выходе этого сумматора формируется сигнал f 3 3 + f 2 2 f 3 f 1 . Первый положительный и второй отрицательный (со стороны квадратора 45) входы сумматора 55 имеют единичные коэффициенты усиления. В результате на выходе сумматора 55 формируется сигнал 1 f 3 2 .

Первый и второй положительные, а третий (со стороны блока 60) отрицательный входы сумматора 49 имеют единичные коэффициенты усиления. Поэтому на выходе этого сумматора формируется сигнал

ε n z = ( f 3 3 + f 2 2 f 3 f 1 ) / f 1 ε x f 2 f 3 ε y + ( 1 f 3 2 ) ε z ,

который является проекцией на ось z абсолютной системы координат вектора отклонения ДО от заданной траектории.

Поскольку все положительные входы сумматора 5 имеют единичные коэффициенты усиления, то на выходе блока 8 формируется сигнал

ε ^ n = ε n x 2 + ε n y 2 + ε n z 2 , отклонения ДО от заданной пространственной траектории.

Все положительные входы сумматора 62 имеют единичные коэффициенты усиления, поэтому на выходе блока 65 формируется сигнал

ε m = ε x 2 + ε y 2 + ε z 2 .

Первый положительный (со стороны задатчика 1) и второй отрицательный входы сумматора 2 имеют единичные коэффициенты усиления, а его третий отрицательный вход (со стороны блока 65) коэффициент усиления kε>0. На выходе задатчика 1 формируется постоянный сигнал εon, а на выходе сумматора 2 - сигнал ξ = ε o n ( ε ^ + k ε ε m ) . Интегратор 3 вырабатывает сигнал желаемой скорости ν* движения ДО по заданной пространственной траектории.

Если ξ>0, то ν* начинает увеличиваться, а в противном случае уменьшаться. Сигнал kεεm позволяет более точно управлять движением ДО, не давая целевой точке сильно удаляться от ДО на прямолинейных участках траектории. Использование нелинейного элемента 9 с характеристикой

u в ы х 9 = { u max , е с л и u в х 9 > u max , u в х 9 , е с л и u max u в х 9 > 0 0, е с л и u в х 9 0, ,

также ограничивает нарастание ν* на прямолинейных участках траектории движения ДО, когда его отклонение от этой траектории близко к нулю, устраняя появление последующих больших ошибок движения, когда эта траектория начнет изгибаться. Кроме того, нелинейный элемент 9 обеспечивает перемещение ДО по заданной траектории только в нужном направлении независимо от знака ξ. Это особенно важно на начальном этапе движения ДО, когда его отклонение от начальной точки траектории может быть велико и иметь произвольное направление (в том числе и в противоположную от предстоящего движения ДО сторону).

Сигнал S с выхода задатчика 11 определяет начало и окончание работы системы. Если S=1, то ν*≥0 и целевая точка начинает движение по траектории. Если S=0, то ν*=0 и целевая точка останавливается (например, при достижении конечной точки траектории). Сигнал S может использоваться и для аварийного прекращения движения ДО по заданной траектории.

Таким образом, предлагаемое устройство настройки желаемой скорости движения ДО по заданной пространственной траектории автоматически формирует такие программные сигналы движения, поступающие на входы всех следящих систем ДО, которые обеспечивают его движение по указанной траектории с максимально возможной скоростью, при которой отклонение этого ДО от траектории не превышает допустимого значения.

Устройство для формирования программных сигналов управления пространственным движением динамических объектов, содержащее последовательно соединенные первый задатчик сигнала, первый сумматор, первый интегратор, отличающееся тем, что в него дополнительно введены последовательно соединенные первый квадратор, второй сумматор, второй и третий входы которого подключены соответственно к выходам второго и третьего квадраторов, и первый блок извлечения квадратного корня, выход которого подключен ко второму входу первого сумматора, последовательно соединенные нелинейный элемент, первый блок умножения, второй вход которого подключен к выходу второго задатчика сигнала, первый блок деления, второй интегратор, первый функциональный преобразователь, вход которого подключен также к входам второго функционального преобразователя и первой следящей системы, к первому входу третьего сумматора, второй вход которого соединен с первым выходом навигационной системы, через третий функциональный преобразователь - к входу второй следящей системы и первому входу четвертого сумматора, второй вход которого соединен со вторым выходом навигационной системы, через четвертый функциональный преобразователь - к входу третьей следящей системы и к первому входу пятого сумматора, второй вход которого подключен к третьему выходу навигационной системы, четвертый квадратор, шестой сумматор, второй вход которого через пятый квадратор подключен к выходу второго функционального преобразователя, второй блок извлечения квадратного корня, второй блок деления, второй вход которого подключен к выходу третьего задатчика сигнала и третьему входу шестого сумматора, второй блок умножения, второй вход которого подключен к выходу первого функционального преобразователя, пятый функциональный преобразователь, вход которого подключен также к первым входам третьего, четвертого и пятого блоков умножения, а также к входу шестого квадратора, седьмой сумматор, третий блок деления, шестой блок умножения, восьмой сумматор, выход которого подключен к входу второго квадратора, причем выход второго блока извлечения квадратного корня подключен ко второму входу первого блока деления, последовательно соединенные седьмой блок умножения, первый вход которого подключен к выходу второго функционального преобразователя, шестой функциональный преобразователь, вход которого подключен также ко второму входу четвертого блока умножения, к первым входам восьмого и девятого блоков умножения, а также к входу седьмого квадратора, девятый сумматор, второй вход которого подключен к выходу пятого блока умножения, четвертый блок деления, второй вход которого подключен к третьему входу девятого сумматора, к вторым входам седьмого сумматора, третьего блока деления, третьего, седьмого и восьмого блоков умножения, а также - к выходу второго блока деления, десятый блок умножения и десятый сумматор, выход которого подключен к входу третьего квадратора, последовательно соединенные одиннадцатый сумматор, одиннадцатый блок умножения, второй вход которого подключен к выходу третьего сумматора, а также к вторым входам шестого и десятого блоков умножения, двенадцатый сумматор, второй вход которого через двенадцатый блок умножения подключен к выходу восьмого блока умножения, его третий вход через тринадцатый блок умножения - к выходу третьего блока умножения, а выход - к входу второго квадратора, последовательно соединенные тринадцатый сумматор, первый вход которого подключен к выходу седьмого квадратора и первому входу одиннадцатого сумматора, а его второй вход - к выходу третьего задатчика сигнала и первому входу четырнадцатого сумматора, подключенного вторым входом к выходу шестого квадратора и к второму входу одиннадцатого сумматора, а выходом - к первому входу четырнадцатого блока умножения, выход которого соединен со вторым входом восьмого сумматора, третий вход которого через пятнадцатый блок умножения подключен к выходу пятого сумматора, к второму входу двенадцатого блока умножения и к первому входу шестнадцатого блока умножения, второй вход которого соединен с выходом тринадцатого сумматора, а выход - с вторым входом десятого сумматора, третий вход которого через семнадцатый блок умножения подключен к вторым входам тринадцатого и четырнадцатого блоков умножения, а также к выходу четвертого сумматора, причем второй вход семнадцатого блока умножения соединен со вторыми входами пятого, девятого и пятнадцатого блоков умножения, а также с выходом четвертого блока умножения, вход нелинейного элемента подключен к выходу первого интегратора, а третий вход седьмого сумматора - к выходу девятого блока умножения, а также последовательно соединенные восьмой квадратор, первый вход которого подключен к выходу четвертого сумматора, пятнадцатый сумматор, второй и третий входы которого через девятый и десятый квадраторы подключены соответственно к выходам третьего и пятого сумматоров, и третий блок извлечения квадратного корня, выход которого подключен к третьему входу первого сумматора.



 

Похожие патенты:

Изобретение относится к электроприводам и может быть использовано при создании их систем управления. Технический результат заключается в обеспечении максимально возможной скорости работы электропривода при одновременном изменении и амплитуды задающего гармонического сигнала, и его суммарного момента инерции без снижения заданной динамической точности.

Изобретение относится к электроприводам и может быть использовано при создании их систем управления. Технический результат, который может быть получен при реализации заявляемого технического решения, выражается в формировании дополнительного контура самонастройки, в котором формируется максимально возможное значение частоты задающего сигнала и максимально возможная скорость работы электропривода без превышения допустимого значения динамической ошибки управления при текущем значении амплитуды гармонического входного сигнала.

Устройство относится к вычислительной технике, а именно к области автоматического управления динамическими объектами. Техническим результатом является обеспечение максимально возможной скорости движения динамических объектов по заданной пространственной траектории без превышения предельно допустимой величины его отклонения от указанной траектории.

Изобретение относится к способу и устройству автоматической регулировки составляющей прямой связи для подавления избыточного отклика. Технический результат - упрощение реализации, расширение области применения.

Изобретение относится к способу и устройству автоматической регулировки составляющей прямой связи для подавления избыточного отклика на ступенчатое воздействие во время ступенчатого слежения.

Изобретение относится к автоматике и может быть использовано в системах управления астатическими объектами с запаздыванием, параметры которых - неизвестные постоянные или медленно меняющиеся во времени величины, а измерению доступен только выходной сигнал объекта, а не его производные.

Устройство относится к области средств автоматизации и может использоваться в системах управления технологическими процессами и объектами в химической промышленности, теплотехнике, энергетике.

Изобретение относится к интеллектуальным контроллерам, использующим принцип обучения с подкреплением и нечеткую логику, и может быть использовано для создания систем управления объектами, работающими в недетерминированной среде.

Изобретение относится к области автоматического управления. Технический результат - повышение устойчивости работы системы управления.

Изобретение относится к автоматическому регулированию. Технический результат заключается в повышении быстродействия и точности системы при сохранении модульного оптимума при любых значениях ошибки системы.

Изобретение относится к вычислительной технике. Технический результат заключается в формировании двух специальных контуров - контура автоматического выбора максимально возможной скорости движения динамического объекта вдоль заданной пространственной траектории и контура коррекции программных сигналов движения, обеспечивающего заданную точность движения динамического объекта вдоль указанной траектории. Устройство для формирования программных сигналов управления пространственным движением динамических объектов содержит сумматоры, блоки умножения и деления, блоки извлечения корня, квадраторы, функциональные преобразователи, задатчики сигнала, следящие системы, навигационную систему. 1 ил.

Изобретение относится к технической кибернетике и может быть использовано в системах управления априорно неопределенными нестационарными динамическими объектами периодического действия с недоступными непосредственному измерению переменными состояния. Технический результат - обеспечение устойчивости при управлении априорно неопределенными неустойчивыми скалярными объектами с непериодическими внешними возмущениями. Система содержит наблюдатель состояния, блок задания коэффициентов, первый блок суммирования, первый умножитель, второй блок суммирования, блок задержки, последовательно соединенные второй умножитель и объект регулирования, третий блок суммирования. 2 ил.

Изобретение относится к технической кибернетике и может быть использовано в системах управления априорно-неопределенными нестационарными динамическими объектами с запаздыванием по состоянию в периодических режимах. Технический результат - обеспечение устойчивости системы при управлении неустойчивыми динамическими объектами, содержащими периодические коэффициенты и известное временное запаздывание по состоянию. Система содержит два блока задания коэффициентов, блок запаздывания, шесть блоков суммирования, четыре умножителя, два блока задержки, объект регулирования и интегратор. 1 ил.

Изобретение относится к технической кибернетике и может быть использовано в системах управления априорно неопределенными нестационарными динамическими объектами периодического действия с запаздыванием. Технический результат - обеспечение устойчивости при управлении неустойчивыми объектами с непериодическими внешними возмущениями и запаздыванием по состоянию. Система содержит два блока здания коэффициентов, блок запаздывания, шесть блоков суммирования, четыре умножителя, два блока задержки и объект регулирования. 1 ил.

Изобретение относится к области средств автоматизации и может использоваться в системах управления технологическими процессами в химической промышленности, теплотехнике, энергетике. Технический результат - обеспечение автоматической стабилизации амплитуды автоколебаний регулируемой координаты на заданном уровне в условиях неопределенности параметров объекта и среды. Устройство относится к классу релейных регуляторов с переменным гистерезисом. Оно содержит индикатор экстремумов, нуль-орган, релейный блок, сумматоры, блок вычисления среднего значения сигнала, два интегратора, блок вычисления модуля и задатчик. 3 ил.

Изобретение относится к области электроизмерительной техники, управления коммутацией и сигнализации состояния трехфазной электрической сети, а именно к многофункциональным многотарифным приборам учета электрической энергии. Техническим результатом является повышение надежности коммуникационного аппарата. В интеллектуальном устройстве управления коммутационными аппаратами электрической сети к микроконтроллеру дополнительно подключен блок реле, запитанный от блока питания и резервного источника питания и подающий команды клеммам управления коммутационным аппаратом, позволяющим производить, используя дополнительное оборудование (электропривод, электромагнитную катушку), управление контактами коммутационного аппарата, и к независимым клеммам управления резерва, позволяющим произвести включение резерва или запуск генератора, а к аналого-цифровому преобразователю подключен дополнительный блок датчиков напряжения, снимающий параметры после контактов коммутационного аппарата, в энергонезависимой памяти содержится второй дополнительный регистр памяти, содержащий параметры работы блока реле в случае нештатной ситуации. 1 ил.

Изобретение относится к области систем автоматического управления. Технический результат заключается в повышении быстродействия системы управления. Это достигается тем, что предложена система управления наведением инерционного объекта, содержащая последовательно соединенные задатчик, измеритель рассогласования, сумматор, последовательно соединенные усилитель мощности, исполнительный элемент, выход которого механически связан с объектом управления, датчик скорости, вход которого механически связан с исполнительным элементом, датчик положения, вход которого механически связан с объектом управления, а выход - со вторым входом измерителя рассогласования, нуль-орган, вход которого соединен с выходом измерителя рассогласования, пороговое устройство, элемент ИЛИ, первый и второй входы которого соединены соответственно с выходом нуль-органа и выходом порогового устройства, первый блок коммутации, первый вход которого соединен с выходом измерителя рассогласования, третий управляющий вход соединен с выходом элемента ИЛИ, интегратор, вход которого соединен с выходом первого блока коммутации, а выход соединен со вторым входом первого блока коммутации и третьим входом сумматора, при этом в нее введены второй блок коммутации, первый вход которого соединен с выходом сумматора, второй управляющий вход соединен с выходом нуль-органа, а выход соединен с входом усилителя мощности, нелинейное корректирующее звено с переменной крутизной, вход которого соединен с выходом датчика скорости, а выход соединен со вторым входом сумматора и входом порогового устройства. 4 ил.

Изобретение относится к системам управления. Технический результат заключается в обеспечении асимптотической устойчивости системы. Для этого предложена адаптивная система управления с самонастройкой динамического корректора для априорно неопределенных объектов с запаздыванием по состоянию, включающая первый умножитель, интегратор, второй умножитель, функциональный блок, последовательный динамический корректор и объект регулирования, выход которого соединен с первым и вторым входами первого умножителя, с вторым входом второго умножителя, выход первого умножителя подключен к входу первого интегратора, выход которого соединен с первым входом второго умножителя и входом функционального блока, выход функционального блока подключен ко второму входу последовательного динамического корректора, выход которого соединен с входом объекта регулирования, при этом в систему дополнительно введены блок задержки, третий и четвертый умножители, второй интегратор и блок суммирования, при этом вход блока задержки подключен к выходу объекта регулирования, а выход блока задержки подключен к обоим входам третьего умножителя и второму входу четвертого умножителя, выход третьего умножителя соединен с входом второго интегратора, выход которого подключен к первому входу четвертого умножителя, выход четвертого умножителя соединен с вторым входом блока суммирования, первый вход которого подключен к выходу второго умножителя, выход блока суммирования соединен с первым входом последовательного динамического корректора. 3 ил.

Изобретение относится к электронной технике и автоматике и может использоваться в цифровых и аналоговых автоматических системах управления, регулирования и стабилизации различных физических величин (температуры, давления, производительности, скорости и т.д.) с обратной связью, применяемых в различных отраслях промышленности и в научных исследованиях для управления объектами управления, склонными к колебаниям. Система с обратной связью содержит последовательно включенные объект управления, вычитающее устройство по отрицательному входу, регулятор и компенсирующее звено. Причем положительный вход вычитающего устройства является входом системы, выход объекта управления является выходом системы, при этом в нее введены дополнительный регулятор, коммутирующее устройство и анализатор входного сигнала. Первый вход коммутирующего устройства соединен с выходом компенсирующего звена, второй его вход соединен через дополнительный регулятор с выходом вычитающего устройства, третий его вход является управляющим и соединен через анализатор входного сигнала с входом системы, а выход коммутирующего устройства соединен со входом объекта управления. Коммутирующее устройство содержит формирователь единичного сигнала, вычитающее устройство, два умножителя сигналов и сумматор, причем, выход вычитающего устройства соединен с входом первого умножителя сигналов, положительный вход вычитающего устройства соединен с выходом формирователя единичного сигнала, отрицательный вход вычитающего устройства соединен выходом второго умножителя сигналов и является управляющим входом этого коммутирующего устройства, вторые входы умножителей сигналов являются входами этого коммутирующего устройства, выходы этих умножителей сигналов соединены с входами сумматора, а выход сумматора является выходом коммутирующего устройства. Технический результат заключается в повышении статической и динамической точности при управлении объектами управления, склонными к колебаниям. 1 з.п. ф-лы, 5 ил.

Изобретение относится к системе с двойным шестеренчатым приводом и способу управления, связанному с ней, и, в частности, изобретение относится к упреждающему демпфированию колебаний в системе с двойным шестеренчатым приводом с переменной скоростью. Технический результат - уменьшение нежелательных крутильных колебаний вдоль валов двигателей. Система управления для управления электрической машиной содержит компонент регулятора, принимающий два сигнала, из которых получают первый сигнал управления; первый компонент фильтра, принимающий первый сигнал, из которого получают второй сигнал управления; второй компонент фильтра, принимающий третий сигнал; первый выходной компонент, объединяющий первый и второй сигналы управления для получения первого выходного сигнала управления для подачи в первую электрическую машину и второй выходной компонент, принимающий первый и третий сигналы управления для получения второго выходного сигнала управления с целью подачи во вторую электрическую машину. 2 н. и 13 з.п. ф-лы, 8 ил.
Наверх