Способ экстракции цинка из донных осадков ионной жидкостью



Способ экстракции цинка из донных осадков ионной жидкостью
G01N1/10 - Исследование или анализ материалов путем определения их химических или физических свойств (разделение материалов вообще B01D,B01J,B03,B07; аппараты, полностью охватываемые каким-либо подклассом, см. в соответствующем подклассе, например B01L; измерение или испытание с помощью ферментов или микроорганизмов C12M,C12Q; исследование грунта основания на стройплощадке E02D 1/00;мониторинговые или диагностические устройства для оборудования для обработки выхлопных газов F01N 11/00; определение изменений влажности при компенсационных измерениях других переменных величин или для коррекции показаний приборов при изменении влажности, см. G01D или соответствующий подкласс, относящийся к измеряемой величине; испытание

Владельцы патента RU 2523469:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Алтайский государственный университет" (RU)

Изобретение относится к области аналитической химии объектов окружающей среды и направлено на разработку средств аналитического контроля параметров экосистем и полиэлементного фонового мониторинга природных вод и водных экосистем. Способ экстракции цинка из донных осадков ионной жидкостью включает подготовку аналитического образца. Экстракцию цинка из твердого образца осуществляют с использованием ионной жидкости 1-бутил-3-метилимидазолия гексафторфосфата с добавками тиоцианата аммония и иодида калия с последующим количественным определением ионов цинка (II) в концентрате органической фазы ионной жидкости. Достигаемый при этом технический результат заключается в обеспечении степени извлечения элемента близкой к 100%. 1 ил., 2 пр., 2 табл.

 

Изобретение относится к области аналитической химии объектов окружающей среды и направлено на разработку средств аналитического контроля параметров экосистем и фонового мониторинга природных вод и водных экосистем.

Известны способы сухого и мокрого озоления твердых частиц образцов природных объектов с целью извлечения (десорбции) токсичных элементов с поверхности и из объема частиц в смесь минеральных кислот [Кингстон Г.М., Джерси Л.Б. Пробоподготовка в микроволновых печах. - М.: Мир. 1991. - 333 с.].

Сухое озоление требует тщательного контроля за температурой озоления. Так, при увеличении температуры более 550°С необратимо теряются висмут, мышьяк, ртуть, свинец, цинк, олово и легко летучие металлы. Дополнительно необходима тугоплавкая дорогостоящая кварцевая посуда.

Способ мокрой минерализации основан на полном окислении органических веществ сильными окислителями при температуре 150-200°С. Данные способы не требуют высоких температур, поэтому не сопряжены с большими потерями летучих веществ; это их преимущество. Мокрое озоление частично устраняет потери металлов при «вскрытии» твердых образцов. Метод мокрого озоления - смесь серной, азотной и хлороводородной концентрированных кислот требует особой осторожности (вытяжной шкаф, индивидуальные защитные средства), дополнительных временных и трудовых затрат квалифицированного персонала. Серная, азотная кислота действуют на твердую компоненту образца как деструктурирующий, окисляющий и комплексующий реагенты, разрушая, окисляя природные соединения органического и неорганического состава. Хлороводородная кислота действует в кислотной смеси как комплексующий ионы тяжелых металлов агент, связывающий ионы ТМ в хлоридные комплексы.

Недостатки способа мокрого озоления: использование агрессивных минеральных кислот (серной, азотной, хлороводородной); длительный (более 90 мин) нагрев аналитической пробы [Логинов Ю.М., Похлебкина Л.Л., Соколова Н.В. Автоклавный способ пробоподготовки почв для определения в них тяжелых металлов / Агрохимия. 1994. №7-8. С.114-118].

Преимущества заявляемого способа пробоподготовки:

- устраняет недостатки прототипа,

- обеспечивает требуемую степень извлечения элемента, близкую к 100%,

- соответствует требованиям «зеленой» химии.

- не требуется длительное нагревание, которое может вызвать необратимые потери элементов;

- обеспечивается необходимое извлечение элемента за 30 минут;

- экстракция металла из твердого образца в ионную жидкость с последующей реэкстракцией и количественным определением элемента методом атомной абсорбции.

Способ экстракции цинка из донных осадков ионной жидкостью, заключающийся в том, что для экстракции цинка из твердого образца используют ионную жидкость 1-бутил-3-метилимидазолия гексафторфосфат с добавками 0,08 г тиоцианата аммония и 0,08 г иодида калия, с последующим количественным определением ионов цинка (II) в концентрате органической фазы ионной жидкости.

Осуществление изобретения:

Способ экстракционного извлечения цинка из донных осадков ионной жидкостью осуществляют следующим образом: берут образцы массой 0,100 г и обрабатывают 1 мл ионной жидкости (1-бутил-3-метилимидазолия гексафторфосфат, [ВМIm][РF6], производство Merk) с добавлением 0,08 г тиоцианата аммония и 0,08 г иодида калия, с последующим атомно-абсорбционным определением цинка в концентрате органической фазы ионной жидкости (ИЖ).

Общий объем органической фазы ИЖ составляет в каждом опыте 1 мл.

Общий объем раствора (водной фазы) поддерживают 1 мл.

Пример 1

Извлечение ионов цинка (II) и определение в модельных системах (1 мл ИЖ+1 мл водного раствора цинка)

Образцы массой 0,100 г обрабатывают 1 мл ионной жидкости (1-бутил-3-метилимидазолия гексафторфосфат, [ВМIm][РF6], производство Merk) с добавлением 0,08 г тиоцианата аммония и 0,08 г иодида калия, с последующим атомно-абсорбционным определением цинка в концентрате органической фазы ионной жидкости (ИЖ). Без ионных добавок тиоцианата (SCN-) и иодида (I-) эффективность ионной жидкости (1-бутил-3-метилимидазолия гексафторфосфат, [ВМIm][РF6]) невысокая, как следует из таблицы 1. Путем введения соответствующих солей: роданида аммония и иодида калия удается увеличить эффективность извлечения ионов Zn(II) в органическую фазу ионной жидкости.

Представленные концентрации добавок Моль/л тождественны ммоль/мл. Совместное влияние анионных добавок далее проверяют на реальных образцах.

Пример 2

Экстракции цинка(П) из донных осадков с последующим атомно-абсорбционным определением в водной фазе после реэкстракции

Берут реальные образцы из экстракционной системы донных отложений озера Б. Яровое, подготавливают, исследуют образцы донных отложений методом «мокрого» кислотного озоления и методом экстракционного концентрирования ионной жидкостью для сравнительного анализа с последующим атомно-абсорбционным определением цинка. Три образца массой в пределах 1,00 г обрабатывают смесью кислот (серной, азотной и хлороводородной). Параллельно взятые три образца массой по 0,100 г обрабатывают 1 мл ионной жидкостью (1-бутил-3-метилимидазолия гексафторфосфат, [ВМIm][РFб6], производство Merk) с добавлением 0,08 г тиоцианата аммония и 0,08 г иодида калия для извлечения и последующего определения цинка в концентрате органической фазы ионной жидкости (ИЖ). Образец с осадком, с добавками 1 мл дистиллированной воды и добавками солей помещают в пробирку с пробкой и энергично встряхивают в течение 5 минут.

Подготовленные мокрым озолением пробы элементов, десорбированных в смеси кислот, и реэкстракты (водная фаза после реэкстракции аммиачным буферным раствором рН=9,2) анализируют атомно-абсорбционной спектрометрией в пламенном варианте атомизации (ААС) по максимумам поглощения в области аналитической линии цинка. В качестве источника монохроматического излучения 213,8 нм применяют лампу с полым катодом.

Для каждого металла готовят из ГСО (государственный стандартный образец) серии стандартных растворов в областях линейности градуировочных графиков. В качестве фонового электролита применяют «контрольный» раствор хлороводородной кислоты. По полученным данным строят градуировочный график в координатах высота пика абсорбционного поглощения (мм) - концентрация металла (мкг/мл) (рис.1).

Для оценки эффективности извлечения цинка в ионную жидкость применяют атомно-абсорбционный (ААС) как метод регистрации аналитического сигнала. Методом «введено - найдено» определяют степень извлечения ионов цинка.

Результаты анализа одних и тех же образцов донных осадков после «кислотного озоления» (навеска массой в пределах 1,00 г) и экстракции в ИЖ с добавками 0,08 г тиоцианата аммония и 0,08 г иодида калия к навеске осадка (в пределах 0,100 г+1,0 мл дистиллированной воды). Результаты таблицы 2 рассчитаны с учетом влажности исследуемых образцов донных осадков, то есть нормированы на воздушно сухую навеску осадка.

Данные таблицы 2 свидетельствуют о совпадении в пределах случайных погрешностей результатов анализа.

Заявляемый способ не требует особых условий подготовки образца к анализу, а именно вытяжного шкафа, специального автоклава с минерализаторами из специального материала. Способ экстракционного извлечения цинка из донных осадков ионной жидкостью с последующим количественным определением ионов цинка (II) в концентрате органической фазы ионной жидкости обеспечивает требуемую степень извлечения элементов, близкую к 100%, соответствует требованиям «зеленой» химии.

Таблица 1
Добавки тиоцианата аммония
Моль/л 0,00 0,10 0,25 0,50 1,00 2,00 4,00 6,00 8,00
R,% <0,1 1,0 10,0 28,0 71,0 88,0 90,0 86,0 80,0
Добавки иодида калия
Моль/л 0,00 0,025 0,05 0,10 0,50 1,00 2,00 - -
R,% <0,1 3,0 3,0 9,0 19,0 24,0 84,0 - -

Степень извлечения ионов цинка (II) в органическую фазу ИЖ R(%) при экстракции в различных растворах с солевыми добавками.

Таблица 2
Экстракционное концентрированно Кислотное разложение
Шифр пробы mнавески, Г Н, мм C ¯ z n ± δ , МКГ/МЛ Содерж. в пробе, m ¯ ± δ , мкг/г mнавески, г Н, мм C ¯ z n ± δ , МКГ/МЛ Содерж. в пробе, m ¯ ± δ , мкг/г
1Д1 0,1161 17,3 1,4±0,5 24±8 0,9716 54,3 6,2±0,3 32±2
6Д2 0,1191 21,7 2,2±0,5 37±8 0,9298 48,7 6,7±0,5 36±3
7Д3 0,1014 17,4 1,0±0,2 19±4 0,9486 34,0 4,3±0,4 23±2

Атомно-абсорбционное определение цинка в донных отложениях озера Б.Яровое.

Способ экстракции цинка из донных осадков ионной жидкостью, включающий в себя подготовку аналитического образца, отличающийся тем, что для экстракции цинка из твердого образца используют ионную жидкость 1-бутил-3-метилимидазолия гексафторфосфат с добавками тиоцианата аммония и иодида калия, с последующим количественным определением ионов цинка (II) в концентрате органической фазы ионной жидкости.



 

Похожие патенты:

Изобретение относится к картриджу для биоаналитического реакционного устройства. Картридж содержит по меньшей мере одну камеру для пробы, имеющую стенку, через которую эта проба может быть обработана или проанализирована биоаналитическим реакционным устройством.

Изобретение относится к системе отбора проб и контроля уровня текучего продукта и может быть использовано в качестве технологического оборудования для средств перевозки текучих продуктов, например химических грузов, как наливных, так и сыпучих.

Изобретение относится к устройствам для отбора проб отработавших газов двигателя, позволяющего производить отбор проб на движущемся транспортном средстве, и может быть использовано при контроле технического состояния транспортных средств и для оценки опасности воздействия транспортного средства на окружающую среду.
Изобретение относится к области медицины и может быть использовано для взятия, хранения и транспортировки проб биологических жидкостей с целью последующего проведения анализа материала на содержание биологически активных веществ.

Группа изобретений относится к области технологии циклического отбора растительных проб из буртов, ям, траншей, скирд, стогов и других хранилищ в сельском хозяйстве при определении качественных показателей корма и может быть также использована при отборе проб других трудносыпучих материалов, например, торфа, грунта и снега.

Изобретение относится к области медицины. Для патоморфологического определения давности наступления инфаркта миокарда фиксируют образец ткани и помещают его в парафин.
Изобретение относится к области анализа биологической ценности объектов пищевого и медицинского назначения, в частности животного сырья и продукции на его основе, и может быть использовано в медицине, пищевой и парфюмерной промышленности, а также сельском хозяйстве.

Изобретение относится к погружному зонду для расплавов железа или стали с несущей трубкой с погружным концом и окружной боковой поверхностью, причем зонд может быть выполнен в качестве пробоотборника для шлака, находящегося на расплаве железа или стали.

Изобретение относится к области охраны труда и техники безопасности в угольной и других областях промышленности, связанных с загрязнением атмосферы (газа) твердыми частицами, и, в частности, к пылеизмерительным приборам - аспираторам воздуха.

Изобретение относится к испытательной технике. Призматический образец имеет форму призмы, продольную и поперечную плоскости симметрии, два боковых выступа, расположенных продольно, по концам призмы - опорные поверхности, а в центральной ее части - поверхность нагружения поперечной испытательной нагрузкой.

Изобретение может быть использовано для очистки природных поверхностных и подземных вод при получении питьевой воды. Для осуществления способа проводят осветление пропусканием воды через слой пенопластовых кубиков или вспененный полистирол, фильтруют через кварцевый песок с крупностью зерен 0,3-1,5 мм и гравий от 2 до 32 мм.
Изобретение относится к очистке бытовых и промышленных сточных вод, водоемов и морских акваторий от загрязнений. Флокулянт для очистки воды получают путем сополимеризации смеси мономеров - итаконой кислоты или ее ангидрида, алкилового эфира итаконовой кислоты и амида акриловой или метакриловой кислот, при содержании каждого компонента в смеси, равном 10-80% мол.

Изобретение относится к устройствам для очистки воды от взвешенных частиц и может быть использовано при обработке природных, техногенных и бытовых сточных вод. Отстойник состоит из резервуара с нижним подводом очищаемой воды через центральную трубу, снабженную водораспределителем, обеспечивающим подачу воды в объем резервуара в виде струй в горизонтальных плоскостях под разными углами направлений струй к радиальному направлению.

Изобретение относится к области очистки техногенных вод и может быть использовано на предприятиях горной и металлургической промышленности. Способ очистки техногенных вод включает растворение полиэтиленгликольтерефталата в органическом растворителе, подачу полученной смеси в очищаемую воду и последующую флотацию обработанной воды при pH 7-8 с отделением ионов тяжелых металлов.
Изобретение относится к водоподготовке и может быть использовано как в домашних, так и в производственных условиях для умягчения воды, содержащей большое количество солей жесткости, а также для осветления и очистки оборотных и сточных вод сельского хозяйства, пищевой и химической промышленности.

Изобретение относится к области получения обессоленной воды и может быть использовано для деминерализации природных и сточных вод методом электродиализа в атомной энергетике, в электронной, медицинской, фармацевтической, химической, пищевой отраслях промышленности.

Изобретение относится к биоцидам. Осуществляют стабилизацию водной композиции фосфониевого соединения, содержащего мышьяк в качестве примеси путем добавления эффективного для стабилизации мышьяка количества соединения, выбранного из группы, состоящей из аммиака, аммониевой соли, органической аминокислоты, пептида и полипептида.

Изобретение может быть использовано для биологической обработки сточных вод. Реактор (1) с восходящим потоком содержит бак (2) реактора, трубопроводы (31-34), распределитель (3) сточных вод, флотационные разделители (10, 20) для разделения воды (7) реактора, биомассы (8) и биогаза (9), сборное устройство (4) и газоотделитель (6) для разделения биомассы (8) и биогаза (90).
Средство для стабилизации рН-показателя и окрашивания воды содержит растворенные в водном растворе глицерина краситель, трис (гидроксиметил) аминометан и трис гидрохлорид или соляную кислоту.

Изобретение относится к способу получения биологически активной питьевой воды с пониженным содержанием в ней дейтерия путем ее изотопного разделения на обедненную и обогащенную дейтерием фракции.
Изобретение относится к химико-фармацевтической промышленности, а именно к получению меланина чаги. Способ получения меланина из чаги, включающий добавление к водному экстракту чаги 25% раствора хлористоводородной кислоты, отделение полученного осадка меланина, добавление к осадку петролейного эфира, перемешивание до получения смеси однородной консистенции, полученную смесь замораживают, после размораживания смеси слой органического экстракта удаляют, а из водного слоя отделяют осадок меланина и высушивают, при определенных условиях.Предлагаемый способ позволяет снизить количество зольных веществ в меланине без изменения его биологической активности. 1 табл., 4 пр. .
Наверх