Комплексный утилизатор тепла сбросных газов

Изобретение относится к теплоэнергетике и может быть использовано для утилизации тепла дымовых газов котельных агрегатов, промышленных печей, вентиляционных выбросов при нагревании воздуха с одновременным получением электричества. Комплексный утилизатор тепла сбросных газов содержит корпус, снабженный газовыми и воздушными патрубками, внутри которого помещен пакет, состоящий из перфорированных пластин, образующих между собой газовые и воздушные каналы, причем перфорация пластин выполнена в виде горизонтальных щелей, размещенных в шахматном порядке относительно друг друга, в которых помещены термоэлектрические звенья, состоящие из овальных вставок, выполненных из упругого диэлектрического коррозионностойкого материала, внутри которых помещены зигзагообразные ряды, состоящие из термоэмиссионных преобразователей, каждый из которых представляет собой пару оголенных проволочных отрезков, выполненных из разных металлов M1 и М2, спаянных на концах между собой, причем сами зигзагообразные ряды соединены между собой последовательно соединительными проводами, образуя термоэлектрические секции, соединенные с коллекторами электрических зарядов и клеммами. Такое выполнение утилизатора повышает его надежность и эффективность. 5 ил.

.

 

Предлагаемое изобретение относится к теплоэнергетике и может быть использовано для комплексной утилизации тепла сбросных газов, а именно для утилизации тепла дымовых газов котельных агрегатов, промышленных печей, вентиляционных выбросов при нагревании воздуха с одновременным получением электричества.

Известен пластинчатый воздухоподогреватель, содержащий пакет из плоских пластин, покрытых антикоррозионным покрытием, с турбулизующими выступами, образующими между собой каналы для теплообменивающихся потоков газа и воздуха [А.с. СССР №1575062, Мкл. F28D 9/02, 1990].

Основными недостатками известного пластинчатого воздухоподогревателя являются невозможность осуществления в нем утилизации тепла дымовых газов для попутной очистки их от твердых примесей (частиц пыли, золы, сажи и т.д.) и получения электроэнергии, что снижает его эффективность.

Более близким по технической сущности к предлагаемому изобретению является полифункциональный воздухоподогреватель, включающий корпус, снабженный газовыми и воздушными патрубками, внутри которого помещен пакет из плоских сплошных и перфорированных пластин, размещенных поочередно, образующих между собой газовые и воздушные каналы, отверстия в перфорированных пластинах размещены попарно рядами друг против друга и снабжены шайбами, выполненными из диэлектрического материала, через которые пропущены также попарно, перпендикулярно и под углом относительно плоских пластин проволочные отрезки, выполненные из разных металлов и спаянные на копнах между собой, образуя зигзагообразные сетки (ряды), устроенные таким образом, что продольные половины каждого ряда зигзагообразной сетки находятся в газовом и воздушном каналах, образуя многорядные зигзагообразные сетки, размещенные одна над другой по ярусам, причем каждая многорядная зигзагообразная сетка соединена своими концами проволочными отрезками (соединительными проводами) с коллекторами электрических зарядов, соединенными в свою очередь с клеммами [Патент РФ №2422728, MПК F23L 15/04, 2011].

Основными недостатками известного полифункционального воздухоподогревателя являются сложная конструкция перфорированных перегородок, наличие сплошных перегородок, не являющихся источниками термоэлектричества, непосредственный контакт оголенных спаянных парных концов проволочных отрезков (термоэмиссионных преобразователей) с охлаждаемыми газами и нагреваемым воздухом, как правило, содержащими коррозионно-активные компоненты и влагу, влекущий за собой быстрый коррозионный износ этих термоэмиссионных преобразователей и возникновение короткого замыкания, что снижает его надежность и эффективность.

Техническим результатом предлагаемого изобретения является повышение надежности и эффективности комплексного утилизатора тепла сбросных газов.

Технический результат достигается комплексным утилизатором тепла сбросных газов, содержащим корпус, снабженный газовыми и воздушными патрубками, внутри которого помещен пакет, состоящий из перфорированных пластин, образующих между собой газовые и воздушные каналы, причем перфорация пластин выполнена в виде горизонтальных щелей, размещенных в шахматном порядке относительно одна другой, в которых помещены термоэлектрические звенья, состоящие из овальных вставок, выполненных из упругого диэлектрического коррозионностойкого материала, внутри которых помещены зигзагообразные ряды, состоящие из термоэмиссионных преобразователей, каждый из которых представляет собой пару оголенных проволочных отрезков, выполненных из разных металлов M1 и М2, спаянных на концах между собой, причем термоэлектрические звенья установлены в горизонтальных щелях таким образом, что продольные половины каждого термоэмиссионного преобразователя зигзагообразного ряда находятся в газовом и воздушном каналах, соответственно, сами зигзагообразные ряды каждого горизонтального ряда щелей на пластинах соединены между собой последовательно соединительными проводами, образуя термоэлектрические секции, каждая из которых также соединена соединительным проводом с коллекторами электрических зарядов, соединенными, в свою очередь, с клеммами.

На фиг.1-3 представлены общий вид и разрезы комплексного утилизатора тепла сбросных газов (КУТСГ), на фиг.4, 5 - термоэлектрическое звено и его стыковка с соединительными проводами и плоской перфорированной пластиной (перегородкой между газовым и воздушным каналом).

Предлагаемый КУТСГ содержит корпус 1, снабженный газовыми и воздушными патрубками (на фиг.1-5 не показаны), внутри которого помещен пакет, состоящий из перфорированных пластин 2, образующих между собой газовые и воздушные каналы 3 и 4, причем перфорация пластин 2 выполнена в виде горизонтальных щелей 5, размещенных в шахматном порядке относительно одна другой. В каждой горизонтальной щели 5 помещены термоэлектрические звенья (ТЭЗ) 6, состоящие из овальных вставок 7, выполненных из упругого диэлектрического коррозионностойкого материала (например, резины или пластмассы), внутри которых помещены зигзагообразные ряды 8, состоящие из термоэмиссионных преобразователей (ТЭП) 9, каждый из которых представляет собой пару оголенных проволочных отрезков 10 и 11, выполненных из разных металлов M1 и М2, спаянных на концах между собой, причем ТЭЗ 6 установлены в щелях 5 таким образом, что продольные половины каждого ТЭП 9 зигзагообразного ряда 8 находятся в газовом и воздушном каналах 3 и 4, соответственно, зигзагообразные ряды 8 ТЭЗ 6 каждого горизонтального ряда щелей 5 на пластинах 2 соединены между собой последовательно соединительными проводами 12, образуя термоэлектрические секции (ТЭС) 13, каждая из которых также соединена соединительным проводом 12 с коллекторами электрических зарядов 14 и 15, соединенными, в свою очередь, с клеммами 16 и 17, соответственно.

В основу работы КУТСГ положено увеличение скорости теплообмена при применении поверхностей теплообмена с искусственно созданными источниками турбулентности, что обеспечивает интенсификацию процессов теплопередачи путем турбулизации потока среды, разрушения ламинарного подслоя, увеличения поверхности нагрева и, в свою очередь, приводит к снижению размера теплообменной установки. Выполнение источников турбулентности в виде рядов ТЭЗ 6, внутри которых помещены зигзагообразные ряды 7, состоящие из ТЭП 9, изготовленных из проволочных отрезков 10 и 11, выполненных из металлов M1 и М2, спаянных на концах между собой, обеспечивает при нагреве одних спаянных концов горячими дымовыми газами и охлаждении других холодным воздухом появление в ТЭЗ 6 термоэлектричества [С.Г.Калашников. Электричество. - М.: «Наука», 1970, с.502-506).

Комплексный утилизатор тепла сбросных газов (КУТСГ), представленный на фиг.1-5, работает следующим образом. Горячие сбросные газы из входного газового патрубка поступают в газовые каналы 3, а из входного воздушного патрубка противотоком в воздушные каналы 4 КУТСГ подается холодный воздух, который при прохождении через каналы 4 в результате процесса теплообмена, заключающегося в передаче тепла теплопроводностью через смежные перфорированные пластины 2 газовых и воздушных каналов 3 и 4, соответственно, конвекции в газовой и воздушной средах, нагревается до требуемой температуры и удаляется через выходной воздушный патрубок, а горячие сбросные газы охлаждаются и также удаляются через выходной газовый патрубок (на фиг.1-5 газовые и воздушные патрубки не показаны). При этом большое количество источников турбулентности в виде рядов ТЭЗ 6, расположенных в шахматном порядке, обеспечивает турбулизацию газовых и воздушных потоков в газовых и воздушных каналах 3 и 4 и, таким образом, повышает скорость теплопередачи между дымовыми газами и воздухом. Одновременно с процессом теплопередачи КУТСГ выполняет функцию электрогенератора в результате нагрева спаенных концов проволочных отрезков 10 и 11 ТЭП 9 в зигзагообразных рядах 8 ТЭЗ 6, расположенных в газовых каналах 3, горячими дымовыми газами и охлаждения других спаянных концов ТЭП 9, расположенных в воздушных каналах 4, холодным воздухом, что обеспечивает появление в зигзагообразных рядах 8 ТЭЗ 6 каждой ТЭС 13 термоэлектричества, которое поступает в коллекторы 14 и 15, а оттуда через клеммы 16 и 17 подается потребителю. При этом проволочные отрезки 10, 11 ТЭП 9 зигзагообразных рядов 8 изолированы от непосредственного контакта с дымовыми газами и воздухом слоем диэлектрического коррозионностойкого материала овальных вставок 7, что предохраняет металлы M1 и М2 пар 10 и 11 ТЭП 9 от коррозии и появления между ними короткого замыкания. Кроме того, в конструкции КУТСГ все пластины 2, образующие перегородки между газовыми и воздушными каналами 3 и 4, снабжены источниками термоэлектричества - ТЭЗ 6, что при одной и той же величине поверхности теплообмена по сравнению с известным изобретением обеспечивает двукратное увеличение получаемого количества термоэлектричества.

Очистку поверхности ТЭЗ 6 ТЭС 13 КУТСГ от налипших частиц механических примесей проводят периодически путем их обдувания сжатым воздухом. Интервал между обдувками устанавливают на основании опытных данных.

Величина разности электрического потенциала на клеммах 16 и 17 КУТСГ зависит от характеристик пар металлов M1 и М2, из которых изготовлены проволочные отрезки 10 и 11 ТЭП 9, числа их в ТЭЗ 6 и числа ТЭС 13. Полученный электрический ток можно использовать для внутрицеховых нужд, например, для освещения.

Таким образом, предлагаемый комплексный утилизатор тепла сбросных газов позволяет проводить одновременно нагрев влажного воздуха сбросными газами, имеющими в своем составе агрессивные примеси, и значительно увеличить количество получаемого термоэлектричества, что повышает его надежность и эффективность.

Комплексный утилизатор тепла сбросных газов, содержащий корпус, снабженный газовыми и воздушными патрубками, внутри которого помещен пакет, состоящий из перфорированных пластин, образующих между собой газовые и воздушные каналы, зигзагообразные ряды, состоящие из термоэмиссионных преобразователей, каждый из которых представляет собой пару оголенных проволочных отрезков, выполненных из разных металлов M1 и М2, спаянных на концах между собой, продольные половины каждого термоэмиссионного преобразователя зигзагообразного ряда находятся в газовом и воздушном каналах, зигзагообразные ряды соединены между собой коллекторами электрических зарядов и клеммами, отличающийся тем, что все пластины выполнены перфорированными горизонтальными щелями, размещенными в шахматном порядке относительно одна другой, в которых помещены термоэлектрические звенья, состоящие из овальных вставок, выполненных из упругого диэлектрического коррозионностойкого материала, зигзагообразные ряды, состоящие из термоэмиссионных преобразователей, помещены внутри овальных вставок, причем термоэлектрические звенья установлены в горизонтальных щелях таким образом, что продольные половины каждого термоэмиссионного преобразователя зигзагообразного ряда находятся в газовом и воздушном каналах соответственно, сами зигзагообразные ряды каждого горизонтального ряда щелей на пластинах соединены между собой последовательно соединительными проводами, образуя термоэлектрические секции, каждая из которых также соединена соединительным проводом с коллекторами электрических зарядов и клеммами.



 

Похожие патенты:

Изобретение относится к энергетике и может быть использовано в прямоточных парогенераторах. Парогенератор содержит теплообменник, жидкостный и паровой коллекторы.

Изобретение относится к энергетике и может быть использовано в теплообменниках отработавшего газа, в частности охладителях отработавшего газа для рециркуляции отработавших газов в автомобилях, с приспособленными для протекания отработавшего газа и обтекаемыми охлаждающим средством каналами теплообменника, которые оканчиваются в распределительной и/или собирающей камере, с расположенным в распределительной и/или собирающей камере устройством с направляющими каналами, причем устройство с направляющими каналами имеет входную область для отработавшего газа, выходную область для отработавшего газа и множество проходящих от входной области для отработавшего газа до выходной области для отработавшего газа проточных каналов, которые наклонены друг относительно друга.

Изобретение относится к области судового котлостроения и может быть использовано в стационарных утилизационных котлах, работающих вместе с дизелями или газовыми турбинами.

Изобретение относится к котлу-утилизатору, характеризующемуся наличием реактора, к нижней части которого примыкают две горелки, а к боковой поверхности реактора примыкает боров подвода дымовых газов, при этом дымовые газы, которые отходят из борова подвода дымовых газов, поступают в зону активного горения реактора, которая расположена в нижней его части, системы утилизации тепла дымовых газов, которые поступают в реактор котла-утилизатора, патрубка отвода дымовых газов из реактора, который содержит дополнительную систему утилизации тепла дымовых газов и, по меньшей мере, один дымосос.

Изобретение относится к области теплоэнергетики и может быть использовано в энергетических парогазовых установках с газотурбинными двигателями, паровыми турбинами и котлами-утилизаторами, снабженными блоками дожигающих устройств.

Изобретение относится к энергетике и может быть использовано в котлах-утилизаторах башенного типа, предназначенных для получения перегретого пара за счет охлаждения продуктов сгорания после газовой турбины.

Изобретение относится к процессу метанирования, в частности к рекуперации тепла в процессе, включающем реакцию метанирования и объединенном с процессом газификации угля.

Изобретение относится к двигателестроению и может быть использовано в качестве источника парогазовой смеси при предпусковом подогреве как двигателей внутреннего сгорания, так и автомобилей.

Изобретение относится к теплоэнергетике и может найти применение на любом предприятии, эксплуатирующем котлы на углеводородном топливе. .

Изобретение относится к устройствам для получения пара и может быть использовано в нефтегазодобывающем производстве при проектировании технологического оборудования, а также для передвижного отопления.

Настоящее изобретение относится к теплообменнику для охлаждения горячих газов посредством охлаждающей текучей среды, причем указанный теплообменник содержит: по меньшей мере, одну вертикально ориентированную емкость, содержащую ванну охлаждающей текучей среды и имеющую пространство для сбора паровой фазы, генерированной над указанной ванной охлаждающей текучей среды, один вертикальный трубчатый элемент, вставленный внутрь указанной емкости, открытый на концах и коаксиальный с указанной емкостью, один спиральный канал, который оборачивается вокруг оси емкости, вставленный в указанный коаксиальный трубчатый элемент, один выпуск для паровой фазы, генерированной в верхней части указанной емкости, причем, по меньшей мере, одна транспортная линия вставлена в нижнюю часть вертикальной емкости, открыта с двух концов, из которых один соединен с вертикальной емкостью и другой является свободным и находится снаружи указанной емкости, причем указанная транспортная линия является трубчатой и выступает вбок снаружи указанного теплообменника, содержит, по меньшей мере, один центральный внутренний канал, который находится в сообщении по текучей среде со спиральным каналом и проходит вертикально вдоль трубчатого элемента, вставленного в вертикальную емкость, при этом канал имеет наружную рубашку, в которой циркулирует охлаждающая текучая среда. Технический результат - повышение безопасности и работоспособности теплообменной системы. 3 н. и 17 з.п. ф-лы, 1 ил.

Изобретение относится к промышленной теплоэнергетике и может быть использовано в котельных ТЭЦ, работающих на твердом малосернистом топливе повышенной влажности, например торфе. В теплоутилизаторе для глубокой утилизации тепла дымовых газов согласно изобретению перед дымовой трубой размещен изолированный резервуар с проточной водой, имеющий с торцевых сторон рубашки, разделенные горизонтальными полками на секции. Внутри резервуара расположены горизонтальные параллельные ряды труб и объединяющие объемы рубашек, состоящие из отдельных пучков, в которых дымовые газы перемещаются в одном направлении. Пучки труб чередуются между собой большими объемами секций рубашек, изменяющих направление движения дымовых газов в соседних пучках, образуя таким образом змеевик переменного сечения для перемещения дымовых газов навстречу проточной воде. Горячие дымовые газы перемещаются по змеевику, трубы которого погружены в резервуар с проточной охлаждающей водой. Серная и сернистая кислоты конденсируются из дымовых газов в первую очередь в нижней части змеевика и вымываются из него с помощью части конденсата влаги топлива в конденсатосборник кислот. Изобретение позволит улучшить экономические показатели работы ТЭЦ и увеличить КПД . 2 н. и 1 з.п. ф-лы, 2 ил.

Изобретение относится к теплоэнергетике, в частности к устройствам для использования тепла уходящих газов устройств, использующих в качестве топлива природный или сжиженный газ. Устройство утилизации тепла дымовых газов содержит систему газоводяных поверхностных теплообменников, выполненных из оребренных коррозионно-стойких биметаллических труб, при этом один теплообменник устройства выполнен выносным. Нагреваемыми теплоносителями является вода, водосодержащая незамерзающая жидкость, наружный холодный воздух приточной вентиляции. Выносной теплообменник установлен на входе (по ходу воздуха) калорифера приточной вентиляции помещений и по контуру циркуляции водосодержащей незамерзающей жидкости он работает в паре с последним теплообменником устройства, при этих условиях последний теплообменник устройства работает как конденсатор водяных паров дымовых газов. После прохождения теплообменников поток газов разделяется на два потока: большой и малый. На малом потоке в целях увеличения его динамического напора установлен напорный вентилятор, после прохождения которого два потока газов смешиваются в щелевом эжекторе, в котором также увеличивается динамический напор и большого потока, в результате компенсируются аэродинамические потери теплоутилизатора. Изобретение позволяет повысить эффективность использования низкопотенциального тепла конденсации водяных паров, содержащихся в дымовых газах. 2 н. и 5з.п. ф-лы, 2 ил.

Изобретение предлагает систему и способ парогазовой конверсии. Способ парогазовой когенерации на основе газификации и метанирования биомассы включает: 1) газификацию биомассы путем смешивания кислорода и водяного пара, полученных из воздухоразделительной установки, с биомассой, транспортировку образующейся в результате смеси через сопло в газификатор, газификацию биомассы при температуре 1500-1800°С и давлении 1-3 МПа с получением неочищенного газифицированного газа и транспортировку перегретого пара, имеющего давление 5-6 МПа, полученного в результате целесообразной утилизации тепла, к паровой турбине; 2) конверсию и очистку: в соответствии с требованиями реакции метанирования корректировку отношения водород/углерод неочищенного газифицированного газа, образованного на стадии 1), до 3:1 с использованием реакции конверсии и извлечение при низкой температуре неочищенного газифицированного газа с использованием метанола для десульфуризации и декарбонизации, в результате чего получают очищенный сингаз; 3) проведение метанирования: введение очищенного сингаза стадии 2) в секцию метанирования, состоящую из секции первичного метанирования и секции вторичного метанирования, причем секция первичного метанирования содержит первый реактор первичного метанирования и второй реактор первичного метанирования, соединенные последовательно; предоставление возможности части технологического газа из второго реактора первичного метанирования вернуться к входу первого реактора первичного метанирования для смешивания со свежим подаваемым газом и далее возможности войти в первый реактор первичного метанирования, так что концентрация реагентов на входе первого реактора первичного метанирования уменьшается и температура слоя катализатора регулируется технологическим газом; введение сингаза после первичного метанирования в секцию вторичного метанирования, содержащую первый реактор вторичного метанирования и второй реактор вторичного метанирования, соединенные последовательно, где небольшое количество непрореагировавшего СО и большое количество CO2 превращается в CH4, и транспортировку перегретого пара промежуточного давления, образованного в секции метанирования, к паровой турбине; и 4) концентрирование метана: концентрирование метана синтетического природного газа, содержащего следовые количества азота и водяного пара, полученного на стадии 3), с помощью адсорбции при переменном давлении, так что молярная концентрация метана достигает 96% и теплотворная способность синтетического природного газа достигает 8256 ккал/Nм3. Технический результат - энергия биомассы превращается в чистый и удобный для использования природный газ с высокой теплотворной способностью, большое количество тепла, высвободившееся в результате реакций газификации и метанирования биомассы, эффективно утилизируется для образования высококачественного перегретого пара. 2 н. и 8 з.п. ф-лы, 3 табл., 3 ил., 2 пр.
Наверх