Композитный электродный материал для электрохимических устройств



Композитный электродный материал для электрохимических устройств
Композитный электродный материал для электрохимических устройств

 


Владельцы патента RU 2523550:

Федеральное государственное бюджетное учреждение науки Институт металлургии Уральского отделения Российской академии наук (ИМЕТ УрО РАН) (RU)
Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской академии наук (ИВТЭ УрО РАН) (RU)

Изобретение относится к области катализа, а именно каталитическим активным пористым композитным материалам, которые могут быть использованы в качестве несущих электродов электрохимических устройств для получения водорода и/или кислорода либо высоко- и среднетемпературных твердооксидных топливных элементов (ТОТЭ). Изобретение относится к композитному электродному материалу для электрохимических устройств, содержащему металлическую составляющую в виде двухкомпонентного сплава никеля с алюминием и керамическую оксидную составляющую, при этом в качестве двухкомпонентного сплава используют никель, плакированный алюминием, при содержании алюминия 3-15 мас.%, а в качестве оксидной составляющей - оксид алюминия, при этом состав материала характеризуется массовым отношением металлической составляющей к оксидной в соответствии с формулой yNixAl100-x-(100-y)Al2O3, где x=85÷97; y=30÷60. Техническим результатом изобретения является получение пористого несущего электрода для электрохимических устройств с улучшенной термодинамической и механической стабильностью, каталитической активностью, высокими электрическими характеристиками. 2 ил., 1 табл.

 

Изобретение относится к области катализа, а именно каталитическим активным пористым композитным материалам, которые могут быть использованы в качестве несущих электродов электрохимических устройств для получения водорода и/или кислорода либо высоко- и среднетемпературных твердооксидных топливных элементов (ТОТЭ).

Известно, что в качестве анодных материалов в ТОТЭ чаще всего используют никельсодержащие композиционные смеси. Дисперсный никель является сильным катализатором реакций разложения углеводородов. Кроме того, было доказано, что никель проявляет удовлетворительную электрохимическую активность в реакциях окисления как водорода, так и угарного газа. Однако металлический никель при высоких температурах обладает морфологической нестабильностью (ползучестью и укрупнением металлической составляющей во время эксплуатации) и несоответствием в значениях коэффициента термического расширения (КТР) с твердыми электролитами. Плохая адгезия никеля в аноде ТОТЭ приводит к агломерации частиц и снижению удельной поверхности границы раздела фаз. Поэтому большинство разработчиков сегодня используют Ni-YSZ кермет (где YSZ - иттрий-стабилизированный кубический ZrO2) [Т. Kawada and J. Mizusaki, Current electrolytes and catalysts, in: Handbook of Fuel Cells-Fundamentals, Technology and Application, Eds.: W. Vielstich et al., Vol.4: Fuel Cell Technology and Applications, Wiley and Sons, Chichester, England, 2003, p.987]. Композитный анод совместим по КТР с YSZ электролитом и электролитами на основе CeO2, LaGaO3 и BaCeO2, обладает хорошими электрокаталитическими свойствами.

Эффективность и долговечность анода существенно возрастают, если синтез анода проводить не напрямую из металлического никеля, а из смеси NiO+YSZ [S. Kim, H. Moon, S. Hyun, J. Moon, J. Kim, H. Lee. Ni-YSZ cermet anode fabricated from NiO-YSZ composite powder for high-performance and durability of solid oxide fuel cells // Solid State lonics 178 (2007), p.1304-1309]. В таком материале в процессе эксплуатации оксид никеля восстанавливается до металла, при этом подавляется спекаемость никелевых частиц, приводящая к морфологической нестабильности кермета, а термическое расширение анода становится близким таковому для электролита. Меньшие размеры никелевых и YSZ частиц в составе кермета позволяют создать стабильно работающий электрод.

Известен аналог пористого композитного материала анодной подложки для среднетемпературных твердооксидных топливных элементов [В.А. Садыков и др. Дизайн среднетемпературных твердооксидных топливных элементов на пористых подложках из деформационно упрочненного Ni-Al-сплава. Электрохимия, 2011, т.47, №4, с.517-523 - прототип]. На поверхность пеносплава методом детонационного напыления или из суспензий наносят тонкие (~1 мкм) слои композита NiO/YSZ (YSZ - (Y2O3)0.08(ZrO2)0.92) с последующей термообработкой в восстановительной атмосфере для увеличения прочности сцепления покрытия с носителем. Анодный композит готовят путем смешения и размола в энергонапряженной планетарной мельнице порошков NiO и YSZ. Из смеси оксидов прессуют таблетки и спекают на воздухе при 1200°C. Порошок анодного композита получают дроблением с последующим размолом на планетарной мельнице и далее разделяют его на фракции с использованием сит и седиментации из суспензий в изопропаноле. Слои NiO/YSZ наносят из суспензии, полученной ультразвуковым диспергированием в изопропаноле с добавлением поливинилбутираля. Подложка из данного анодного композита с градиентной пористостью на основе деформационно-упрочненного Ni-Al-пеносплава обладает высокой коррозионной устойчивостью и стабильностью в течение непродолжительных испытаний (~100 часов) в интервале температур 600-800°C. Электропроводность данного состава составляет 100-200 См/см2 после восстановления водородом в интервале температур 25-600°C.

Основным недостатком данного материала является технологическая сложность его получения, многоступенчатость, ограниченная применимость только для планарных конструкций.

В настоящее время за рубежом основное внимание уделяется тонкопленочным технологиям изготовления электрохимических устройств, позволяющим увеличить их мощность благодаря снижению омического сопротивления пленочного электролита. Метод изготовления пористых электродных подложек из Ni-кермета для подобных устройств выбирается в зависимости от их формы. Для использования в планарных конструкциях пористый электрод получают методом литья с последующим ламинированием слоем электролита и последующим обжигом при температуре 1350-1400°C. Получение электродов для трубчатых конструкций осуществляется методом экструзии с последующим утильным обжигом для удаления органических добавок и высокотемпературным обжигом. Задача получения пористого электрода произвольной формы может быть решена с использованием плазменного напыления, позволяющего получить пористую электродную подложку достаточно быстро (время изготовления от 50 секунд) и без применения высокотемпературных обжигов.

Задача настоящего изобретения состоит в разработке коммерчески доступного состава пористого каталитического композитного электродного материала с высокой термодинамической стабильностью, электропроводностью и механической прочностью, который может быть получен методом плазменного напыления, без применения высокотемпературных обжигов, для применения в электрохимических устройствах получения водорода и/или кислорода либо высоко- и среднетемпературных твердооксидных топливных элементах.

Технический результат, достигаемый при реализации заявляемого изобретения, заключается в разработке композитного электродного материала, обладающего повышенной устойчивостью в восстановительной атмосфере при сохранении или повышении механической прочности и уровня общей электропроводности и меньшей стоимостью по сравнению с керметом на основе Ni-YSZ.

Для достижения указанного технического результата предложен композитный электродный материал (кермет) для электрохимических устройств, характеризующийся массовым отношением металлической фазы к оксидной фазе в соответствии с формулой yNixAl100-x-(100-y)YSZ и/или yNixAl100-x-(100-y)Al2O3, где х=85÷100; у=30÷60.

При этом в качестве металлической фазы используют порошок никеля, плакированного алюминием, при содержании Al 3-15(мас.%).

Это позволяет защитить Ni при напылении в окислительной атмосфере за счет образования тонкой окисной либо шпинельной пленки, которая в свою очередь в восстановительной атмосфере переходит в Al2O3. Причем частицы Al2O3 могут более эффективно подавлять ползучесть и укрупнение никеля во время службы, чем YSZ частицы. Данный состав кермета обладает большей термостабильностью, лучшим соответствием по КТР с материалами электролита.

Используемые в изобретении порошки металлического Ni и NiAl сплава, свойства которых описаны в работе [С.М. Пикалов, В.А. Полухин, И.А. Кузнецов. Корреляция электромагнитных и механических характеристик функциональных плазменных покрытий и критерий неразрушающего контроля их качества // М.: Известия Академии наук, Металлы №6, 1995. С.146-152], широко применяются в практике газоплазменного порошкового напыления особопрочных и термостойких покрытий с добавлением соответствующих оксидов, выпускаются отечественной промышленностью и относительно недороги. Образцы электродных композитных материалов №(Al)-Al2O3 и Ni(Al)-YSZ были получены плазменным напылением на воздухе на вращающуюся металлическую оправку с антиадгезионным покрытием из соответствующих комбинаций металлических и оксидных порошков, предварительно смешанных в необходимых пропорциях.

После напыления, а также после восстановления в аргоне и водороде при 1350°C в течение 2 часов (DMAX-2500 в CuKα излучении в интервале 10°≤2θ≤120°) проводили рентгенофазовый анализ полученных материалов. Обнаружено, что после напыления Ni присутствует в образцах в металлической фазе (Таблица 1).

Общую электропроводность образцов измеряли четырехзондовым методом в водороде в интервале температур 600-900°C. Установлено, что при массовом соотношении Ni/Al электропроводность композитного материала увеличивается в ряду Ni-Ni85Al15-Ni95Al5. В зависимости от оксидного компонента электропроводность увеличивается в ряду YSZ-Al2O3. По сравнению с электропроводностью аналога электропроводность материала увеличивается более чем в 6 раз (при 600°C 200 См/см2 (аналог) и 1364 См/см2 (Таблица 1, электропроводность Al2O3+Ni95Al2).

На Рис.1 представлены микрофотографии поверхности напыленных покрытий составов YSZ+Ni и Al2O3+Ni95Al2 (Auriga Crossbeam Workstation, Carl Zeiss). Установлено, что в керамической матрице Al2O3 металлический компонент более мелкодисперсный и распределен равномерно, что приводит к улучшению контакта между частицами и увеличению электропроводности.

Измерения термического расширения образцов проводили с помощью кварцевой дилатометрической ячейки и дилатометра Tesatronic TT60 в аргоне. На Рис.2 представлена зависимость относительного термического расширения от температуры составов YSZ+Ni и Al2O3+Ni95Al5. Из данных по температурному расширению был рассчитан КТР материала. Расширение Al2O3+Ni95Al5 в температурном интервале 25-900°C равномерное, и КТР составляет 10,6×10-6 К-1, что близко по значению к КТР материалов твердых электролитов (10-12×10-6 К-1). Расширение YSZ+Ni неравномерное, и КТР составляет соответственно 8,4×10-6 К-1 (25-630°C); 31,3×10-6 К-1 (630-730°C); 58,6×10-6 К-1 (730-900°C).

Таким образом, разработан композиционный материал, обладающий повышенной устойчивостью в восстановительной атмосфере, с высоким уровнем общей электропроводности и механической прочности, пригодный для использования в качестве несущих подложек для электрохимических устройств, в частности высоко- и среднетемпературных ТОТЭ, электролизерах и электрохимических преобразователях.

Таблица 1
Электрические и структурные свойства керметов, полученных методом плазменного напыления
Состав кермета Электропров-ть, См/см2 Фазовые изменения, вес.%
После напыления После отжига в аргоне при 1350°C После отжига в водороде при 1350°C
600°C 900°C
Al2O3+Ni85Al15 126 101 58,3 Ni; 0,7 NiO; 41,0 Al2O3 34,7 Ni; 16,7 NiAl2O4; 48,7 Al2O3 35,4 Ni; 40,7 Al2O3
Al2O3+Ni95Al5 1364 1134 56,5 Ni; 8,3 NiO; 35,1 Al2O3 39,7 Ni; 23,0 NiAl2O4; 37,3 Al2O3 46,2 Ni; 53,8 Al2O3
YSZ+Ni85Al15 119 104 43,1 Ni; 6,9 NiO; 29,6 YSZ; 20,4 Al2O3,2 61,7 Ni; 3,7 NiO; 34,5 YSZ 64,0 Ni; 3,5 NiO; 32,5 YSZ
YSZ+Ni95Al5 644 536 54,0 Ni; 5,6 NiO; 40,5 YSZ 57,3 Ni; 6,9 NiO; 35,8 YSZ 54,7 Ni; 45,3 YSZ
Al2O3+Ni 105 85 11,2 Ni; 0,5 NiO; 88,3 (Al2O3)1.333 28,9 Ni; 71,1 Al2O3 13,1 Ni; 86,9 Al2O3
YSZ+Ni 156 127 55,4 Ni; 1,9 NiO; 42,8 YSZ 45,8 Ni; 54,2 YSZ 43,4 Ni; 56,6 YSZ

Композитный электродный материал для электрохимических устройств, содержащий металлическую составляющую в виде двухкомпонентного сплава никеля с алюминием и керамическую оксидную составляющую, отличающийся тем, что в качестве двухкомпонентного сплава используют никель, плакированный алюминием, при содержании алюминия 3-15 мас.%, а в качестве оксидной составляющей - оксид алюминия, при этом состав материала характеризуется массовым отношением металлической составляющей к оксидной в соответствии с формулой yNixAl100-x-(100-y)Al2O3, где x=85÷97; y=30÷60.



 

Похожие патенты:

Заявленное изобретение относится к твердым окисным топливным элементам (ТЭ), полученным в соответствии со способом, в котором имеют место стадии: - нанесения слоя топливного электрода: слоя электролита, содержащего стабилизированный цирконий, на слой топливного электрода для получения системы из основы топливного электрода и электролита; - спекания системы из основы топливного электрода и электролита друг с другом для получения полуэлемента; - нанесения на слой электролита предварительно спеченного полуэлемента одного или более слоев кислородного электрода, причем, по меньшей мере, один из слоев содержит композит из лантан-стронций-манганита и стабилизированного циркония для получения полного твердого окисного элемента; - спекания одного или более слоев кислородного электрода с предварительно спеченным полуэлементом; а также пропитки марганцем одного или более слоев кислородного электрода полного твердого окисного элемента для получения пропитанного марганцем ТЭ.

Настоящее изобретение относится к материалу для изготовления протонообменной мембраны для электрохимического устройства, в частности топливного элемента, электролизера или аккумулятора.

Система топливного элемента содержит топливный элемент (10), первую камеру (20) сгорания, первый обратный канал (17) для обогревающего газа и систему (50) подачи газа. Топливный элемент (10) включает в себя элемент с твердым электролитом с анодом (12) и катодом (13).

Предложенное изобретение относится к способу изготовления электрохимического преобразователя энергии с твердым электролитом, который включает нанесение металлокерамического материала (2А), (2В) на обе стороны центральной керамической пластины (1), причем на обеих сторонах этой пластины в металлокерамическом материале (2А), (2В) проделывают каналы (3А), (3В), затем каналы (3А), (3В) по обе стороны пластины покрывают слоями металлокерамического материала (4А), (4В).

Изобретение относится к способу оптимизации проводимости, который обеспечен вытеснением Н+ протонов и/или ОН- ионов в проводящей мембране. Способ содержит стадии, на которых используют проводящую мембрану, изготовленную из материала, позволяющего введение пара, используют рабочую температуру в зависимости от указанного материала, вводят под давлением газообразный поток, содержащий пар в указанной мембране для нагнетания указанного пара в указанную мембрану при определенном парциальном давлении с тем, чтобы получить желаемую проводимость при данной температуре, причем указанное парциальное давление выше или равно 1 бар.

Изобретение относится к области электрохимии, к реверсивному твердооксидному топливному элементу. .

Изобретение относится к области твердотельных электрохимических устройств. .

Изобретение относится к устройствам для прямого преобразования химической энергии топлива в электрическую с использованием твердооксидных топливных элементов (ТОТЭ).

Изобретение относится к области нанесения электропроводного защитного металлического покрытия. .

Изобретение относится к области химических источников тока, а именно к способу изготовления и материалу каталитического электрода - элемента мембранно-электродного блока для водородных и спиртовых топливных элементов.

Изобретение относится к области электротехники, а именно к несущим катодам на основе манганита лантана стронция. Способ получения двухслойного катода для твердооксидных топливных элементов, включает формование электродного и коллекторного слоев катода и их спекание, при этом коллекторный слой катода формуют из порошка манганита лантана стронция, а электродный слой - из смеси порошков манганита лантана стронция и оксида циркония, стабилизированного оксидом иттрия.

Предложенное изобретение относится к области электротехники, а именно, к способу изготовления из листового материала сепаратора для топливного элемента, содержащего формованные или профилированные выпуклости и вогнутости, и устройству для изготовления указанного сепаратора.
Изобретение относится к области мембранной техники. На поверхность гетерогенных ионообменных мембран, выполненных из полиэтилена и диспергированного в нем ионполимера, наносят раствор сульфированного политетрафторэтилена в органическом растворителе.

Изобретение относится к области электрохимической энергетики. Топливный элемент (1) включает мембранно-электродную сборку (2), к аноду которой примыкает упругая пластинчатая диэлектрическая прокладка из химически инертного материала (12), первая и вторая герметизирующие прокладки (5), (8).

Изобретение относится к области электрохимии. .

Изобретение относится к неорганической химии, а именно к твердым электролитам с проводимостью по ионам кислорода. .
Изобретение относится к способам получения протонпроводящих мембран, которые могут быть использованы в электрохимических источниках тока, например в среднетемпературных твердополимерных топливных элементах.

Изобретение относится к улучшению характеристик дренирования газодиффузионного слоя для топливного элемента. .

Изобретение относится к области электротехники. Предложен литиевый аккумулятор, включающий, по крайней мере, два объемных электрода, разделенных сепаратором и помещенных вместе с электролитом, содержащим безводный раствор литиевой соли в органическом полярном растворителе, в корпус аккумулятора, каждый электрод имеет минимальную толщину 0,5 мм, и хотя бы один из этих электродов содержит гомогенный спрессованный раствор электропроводного компонента и активного материала, способного поглощать и выделять литий в присутствии электролита, при этом пористость спрессованных электродов составляет от 25% до 90%, активный материал имеет структуру полых сфер с максимальной толщиной стенки 10 микрометров или структуру агрегатов или агломератов с максимальным размером 30 микрометров, при этом сепаратор содержит высокопористый электроизоляционный керамический материал с открытыми порами и пористостью от 30% до 95%.
Наверх