Универсальная установка для исследования рабочих процессов двс

Универсальная безмоторная установка может быть использована для определения параметров рабочего процесса ДВС и испытания кривошипно-шатунного механизма (КШМ), а также оценки механических потерь. Установка содержит вертикальный цилиндр с поршнем, датчик давления, регистратор давления, шатун, соединенный с КШМ горизонтального цилиндра с поршнем и рубашкой охлаждения, соединенного с источником высокого давления. Установка также содержит ресивер с нагревательным элементом, присоединенный к вертикальному цилиндру с поршнем, манометр, связанный с ресивером, свечу зажигания со стандартной батарейной системой зажигания, размещенную в вертикальном цилиндре с резьбовыми шпильками с регулировочными шайбами для изменения степени сжатия, датчик угла поворота кулисы, размещенный с возможностью определения положения поршня вертикального цилиндра, ресивер, пневмораспределитель и пневмодроссель, присоединенные к горизонтальному цилиндру. В состав установки включен электропривод, с возможностью шарнирного соединения с шатуном горизонтального цилиндра, вольтметр, амперметр, подключенные к электроприводу с возможностью обеспечения контроля его мощности, и тахометр, связанный с валом электродвигателя. Технический результат заключается в повышении точности определения параметров рабочего процесса и составляющих механических потерь в КШМ. 1 ил.

 

Изобретение относится к двигателестроению, а именно к установкам для исследования рабочих процессов в камере сгорания двигателей и аппаратуре для испытания кривошипно-шатунного механизма (КШМ) и цилиндропоршневой группы (ЦПГ).

Для выбора и расчета параметров двигателя внутреннего сгорания необходимо знать моторные свойства используемого топлива. Важнейшими показателями моторных свойств топлива для двигателей с искровым зажиганием являются октановое число и период индукции топлива.

Известны способ и устройство для измерения октанового числа [патент RU 2121668], в котором для его определения первое и второе эталонные топлива, имеющие различные октановые числа, и тестируемое топливо подаются в топливное впускное отверстие двигателя с несколькими последовательными значениями расхода, затем вычисляется расход, который даст максимальную интенсивность детонации. Недостатком такого способа определения октанового числа является большая погрешность измерения, так как необходимо иметь эталонные топлива, октановые числа которых определяются также с определенной погрешностью.

Эти недостатки устранены в способе и устройстве для измерения октанового числа [заявка на изобретение RU 96107199]. Точность измерения достигается за счет применения компьютера для управления процессом измерения и обработки полученных данных. Однако измерения проводятся на двигателе, и изменение степени сжатия связано с техническими трудностями.

Эти недостатки устранены в способе оценки детонационной стойкости автомобильных бензинов [патент RU 2339037] при испытаниях на одноцилиндровой установке с переменной степенью сжатия при работе ее в режимах исследовательского метода. Недостатками данного способа являются дороговизна оборудования, проведение оценки детонационной стойкости проводится по калибровочным таблицам, невозможность определения периода инжекции топлива.

Наиболее близким (прототипом) к заявленному изобретению является однотактная машина для определения периода индукции топлив [В.И. Сороко-Новицкий, «Динамика процесса сгорания и влияние его на мощность и экономичность двигателя»], которая состоит из цилиндра с поршнем, в котором происходит рабочий процесс, индикатора, который записывает давление в цилиндре на бумажном барабане, который вращается при помощи электромотора, приводом машины служит пневмоцилиндр с источником воздуха высокого давления. Недостатками такой машины являются отсутствие возможности построения диаграммы давления по углу поворота кривошипа, приспособленность к проведению только одного вида испытаний, отсутствие возможности исследования процесса сгорания при искровом зажигании.

Целью изобретения является разработка простой и эффективной установки для исследования параметров сгорания топлива и топливных композиций, определения моторных свойств топлива, а также для изучения составляющих механических потерь в КШМ и ЦПГ.

Технический результат, достигаемый изобретением, заключается в простоте, эффективности и точности определения параметров процесса сгорания топлива в цилиндре двигателя и составляющих механических потерь в КШМ и ЦПГ на одной универсальной установке, позволяющей исключить влияние различных факторов, искажающих результаты моторных (стендовых) испытаний, а также значительно уменьшить затраты денежных средств на ее изготовление благодаря использованию доступных деталей серийных двигателей.

Универсальная безмоторная установка для определения параметров рабочего процесса двигателя внутреннего сгорания и испытания кривошипно-шатунного механизма содержит (фиг.1) ресивер с нагревательным элементом 1, вертикальный цилиндр 2, клапан 3, водяную рубашку 4, поршень 5, свечу зажигания 6, датчик давления 7, резьбовые шпильки с регулировочными шайбами 8, шатуны 9 и 10, кулису 11, датчик угла поворота кулисы 12, горизонтальный цилиндр 13 с поршнем 14, клапан 15, пневмораспределитель 16, водяную рубашку 17, клапан 18, вентиль 19, ресивер 20, манометр 21, вентиль 22, пневмодроссель 23, кривошип 24, электропривод 25, тахометр 26, секундомер 27, вольтметр 28, амперметр 29.

Универсальная безмоторная установка для определения параметров рабочего процесса двигателя внутреннего сгорания и испытания кривошипно-шатунного механизма работает следующим образом. При определении моторных свойств топлива горючая смесь заданного состава из воздуха и паров топлива (топливной композиции), нагретая до заданной начальной температуры в ресивере с нагревательным элементом 1, поступает в вертикальный цилиндр 2 через клапан 3. Температурный режим цилиндра 2 регулируется при помощи водяной рубашки 4. Сжатие смеси производится поршнем 5, воспламенение горючей смеси осуществляется принудительно от свечи зажигания 6, давление регистрируется датчиком давления 7, степень сжатия регулируется резьбовыми шпильками с регулировочными шайбами 8. Шатун 9 поршня 5 шарнирно соединен с шатуном 10 и кулисой 11. Положение поршня 5 определяется датчиком 12 угла поворота кулисы 11. Шарнирное соединение выполнено легкоразборным. Усилие сжатия возникает за счет избыточного давления в горизонтальном цилиндре 13 с поршнем 14. Сжатый воздух поступает в горизонтальный цилиндр 13 через клапан 15 и пневмораспределитель 16. Цилиндр 13 также снабжен водяной рубашкой 17 и соединен через клапан 18, вентиль 19 с ресивером 20, оборудованным манометром 21. Выпуск отработавших газов из цилиндра 2 осуществляется через вентиль 22. Сопротивление движению поршня 5 может регулироваться при помощи пневмодросселя 23. Для определения энергии активации топлива проводится опыт с самовоспламенением горючей смеси стехиометрического состава.

При исследовании составляющих мощности механических потерь, испытании новых конструкций кривошипно-шатунного механизма, деталей цилиндропоршневой группы используется горизонтальный цилиндр 13. В этом случае шатун 12 соединяется с кривошипом 24 электропривода 25, вертикальный цилиндр 2, шатун 10 и кулиса 11 не используются.

Испытания по определению величины механических потерь в КШМ проводят следующим образом. Запускают электропривод 25 и устанавливают по тахометру 26 заданный программой испытаний скоростной режим вращения кривошипа 24. Открывают вентиль 19 и нагружают из ресивера 20 поршень 14 горизонтального цилиндра 13 газовой нагрузкой соответствующей среднему индикаторному давлению реального работающего двигателя, что позволяет имитировать реальную газовую нагрузку поршневых колец на зеркало цилиндра 13. С помощью дросселя 23 поддерживают необходимое на выпуске противодавление. Включают секундомер 27 и по манометру 21 контролируют объемное количество воздуха, перекаченное в единицу времени установкой, что обеспечивает возможность контроля за работой кольцевых стыков поршня. По вольтметру 28 и амперметру 29 контролируют мощность электропривода, затрачиваемого на работу кривошипно-шатунного механизма горизонтального цилиндра 13, а по разности мощности, затраченной на работу электропривода, и мощности, затраченной на перекачивание воздуха из ресивера 20 в атмосферу, определяют величину механических потерь.

Таким образом, описываемая установка, являясь полным аналогом ДВС, позволяет без каких-либо ограничений снимать информацию о рабочих процессах в цилиндрах в большом объеме при длительной работе двигателя.

Универсальная установка для исследования рабочих процессов ДВС и испытания кривошипно-шатунного механизма (КШМ), содержащая вертикальный цилиндр с поршнем, датчик давления, регистратор давления, шатун, соединенный с КШМ горизонтального цилиндра с поршнем и рубашкой охлаждения, соединенного с источником высокого давления, отличающаяся тем, что дополнительно содержит ресивер с нагревательным элементом, присоединенный к вертикальному цилиндру с поршнем, манометр, связанный с ресивером, свечу зажигания со стандартной батарейной системой зажигания, размещенную в вертикальном цилиндре с резьбовыми шпильками с регулировочными шайбами для изменения степени сжатия, датчик угла поворота кулисы, размещенный с возможностью определения положения поршня вертикального цилиндра, ресивер, пневмораспределитель и пневмодроссель, присоединенные к горизонтальному цилиндру, электропривод, с возможностью шарнирного соединения с шатуном горизонтального цилиндра, вольтметр, амперметр, подключенные к электроприводу с возможностью обеспечения контроля его мощности, и тахометр, связанный с валом электродвигателя.



 

Похожие патенты:

Изобретение относится к контролю технического состояния сложных энергетических объектов, например авиационных газотурбинных двигателей (ГТД), и может быть использовано для диагностики ГТД в процессе их эксплуатации в реальном времени, при техническом обслуживании и/или после ремонта.

Группа изобретений относится к компрессоростроению и установкам для испытаний компрессора, в частности, предназначена для использования при испытании осевых, центробежных и диагональных компрессоров, а также их комбинаций, при использовании регулируемого привода двигателя.

Цех подготовки авиационных двигателей к транспортировке содержит участок (10) монтажа измерительных и испытательных средств на двигатель, средства (14) для перемещения двигателя в испытательное помещение (16) и возврата двигателя в цех, участок (18) демонтажа измерительных и испытательных средств, участок (20) эндоскопического контроля, участок (22) доводки и участок (24) транспортировки.

Изобретение относится к области авиации, в частности к системам диагностики технического состояния летательных аппаратов. Система сбора данных, контроля и диагностики технического состояния агрегатов привода винтов вертолета включает пьезоэлектрические датчики вибрации, которые установлены на корпусе, по меньшей мере, одного из агрегатов привода винтов вертолета и расположены так, что получают данные с полнотой, достаточной для диагностики технического состояния деталей, узлов, по меньшей мере, одного агрегата привода винтов работающего вертолета, и бортовой электронный блок.

Изобретение относится к устройствам для отбора проб отработавших газов двигателя, позволяющего производить отбор проб на движущемся транспортном средстве, и может быть использовано при контроле технического состояния транспортных средств и для оценки опасности воздействия транспортного средства на окружающую среду.

Изобретение может быть использовано при испытаниях малогабаритных многоцелевых двигателей (Д), работающих при знакопеременных нагрузках. Стенд содержит амортизирующую знакопеременную передачу (АЗП), соединяющую выходной вал испытываемого Д с нагрузочным устройством через присоединительные фланцы (ПФ) АЗП.

Изобретение может быть использовано при диагностировании двигателей внутреннего сгорания. Способ заключается в измерении расход масла через подшипник и определении степени износа коренных подшипников.

Способ предназначен для испытания, доводки, диагностики и эксплуатации турбореактивных реактивных двигателей, а конкретно для диагностики технического состояния ГТД по акустическим и газодинамическим параметрам потока.

Изобретение относится к области транспорта и может быть использовано в устройстве для диагностики неисправностей расходомера (11) воздуха в двигателе внутреннего сгорания.

Изобретение может быть использовано при диагностировании технического состояния двигателей внутреннего сгорания. Диагностирование проводят в процессе эксплуатации дизеля.

Изобретение может быть использовано в двигателях внутреннего сгорания. Способ диагностирования газораспределительного механизма карбюраторного двигателя внутреннего сгорания заключается в измерении углового перемещения коленчатого вала двигателя от момента открытия впускного клапана первого опорного цилиндра до момента положения вала, соответствующего верхней мертвой точке поршня опорного цилиндра. Измерение углового перемещения коленчатого вала осуществляют на работающем двигателе через измерение угла перемещения распределительного вала, числовые значения которого определяют с помощью электрического устройства и установленных датчика (11) верхней мертвой точки и датчика (12) положения клапана (17). Полученное удвоенное числовое значение измеренного угла, соответствующее углу перемещения коленчатого вала, сравнивают с требованиями технической документации и судят о состоянии газораспределительного механизма. Раскрыто устройство измерения углового перемещения распределительного вала. Технический результат заключается в повышении достоверности измерения угла фаз газораспределения. 2 н. и 1 з.п. ф-лы, 3 ил.

Изобретение относится к испытательной технике и, в частности, к испытаниям камер сгорания и газогенераторов жидкостных ракетных двигателей (ЖРД) с целью оценки высокочастотной устойчивости процесса горения. Генератор содержит корпус с подсоединительным патрубком и форкамерой, в котором размещена втулка из диэлектрика, в которой размещены электроды. При этом один из электродов установлен по оси форкамеры и является общим, а остальные электроды расположены по окружности с одинаковым зазором между собой. Причем осевой электрод соединен с остальными электродами, размещенными по окружности, металлическими проволочками диаметром 0,02…0,5 мм. Другие концы электродов предназначены для подключения к источнику высокого напряжения, а концы электродов, размещенных внутри форкамеры, выполнены с утолщением, причем к форкамере подсоединен штуцер для подачи азота продувки. При размещении по окружности четного числа электродов на конце осевого электрода в радиальном направлении к электродам, расположенным по окружности, могут быть выполнены сквозные радиальные пересекающиеся каналы, в которых размещены металлические проволочки. При этом концы каждой из них соединены с соответствующей парой противолежащих электродов, расположенных по окружности, причем в торце осевого электрода выполнено глухое отверстие с резьбой, пересекающее сквозные радиальные каналы, в котором установлен винт, прижимающий металлические проволочки к внутренним кромкам сквозных каналов осевого электрода. Изобретение обеспечивает создание нескольких импульсов во время одного испытания камер сгорания и газогенераторов ЖРД на устойчивость при высокой стабильности величины импульса. 4 з.п. ф-лы, 3 ил.

Изобретение может быть использовано для определения замеров параметров отработавших газов (ОГ) ДВС. Способ заключается в отборе газов в пробоотборник и последующем анализе материала пробы. Пробоотборник изолируют от окружающей среды и размещают в нем порцию дистиллированной воды, при этом формируют суспензию твердых частиц ОГ, для чего их выпускают в названную порцию воды. Формирование суспензии начинают после удаления из выхлопной трубы посторонних частиц пыли и сажи, осевших туда за время простоя ДВС. В процессе отбора пробы суспензию перемешивают и стерильным шприцем отбирают объем жидкости около 40 мл, который исследуют на лазерном анализаторе частиц для определения распределения в нем частиц по размерам и по форме. Проводят также вещественный анализ взвесей на световом микроскопе и электронном микроскопе с энергодисперсионным спектрометром для определения вещественного состава твердых частиц и распределения этих частиц по размерам и по форме. Технический результат заключается в выявлении содержания нанодисперсных и микродисперсных твердых частиц в ОГ. 3 ил.

Изобретение относится к авиации, в частности к способу определения настроечного значения температуры газа для выключения охлаждения турбины при испытаниях и эксплуатации газотурбинного двигателя. При реализации заявленного способа испытаний газотурбинного двигателя повышается точность подсчета температуры газа выключения охлаждения турбины за счет учета поправки на угол установки направляющего аппарата компрессора высокого давления, что обеспечит синхронное выключение охлаждения.

Изобретение относится к энергомашиностроению и представляет собой способ диагностики флаттера лопаток рабочего колеса в составе осевой турбомашины на заданном рабочем режиме. Изобретение основано на том, что увеличение длины лопатки при флаттере вследствие высоких амплитуд колебаний приводит не только к уменьшению радиального зазора, но и к касанию лопаток о внутреннюю поверхность корпуса турбомашины. Нанесение истираемого покрытия на внутренний корпус турбомашины и контроль характерных особенностей его износа позволит диагностировать наличие или отсутствие флаттера лопаток на данном режиме, а также определить диаметральную форму колебаний, по которой реализовался флаттер. Технический результат заключается в повышении надежности и снижении трудоемкости процесса диагностики флаттера рабочих лопаток турбомашин.1з.п.ф-лы, 2ил.

Изобретение относится к области транспорта и может быть использовано для оценки массы Ма свежего воздуха, поступающего внутрь камеры сгорания цилиндра двигателя. Технический результат - повышение точности оценки массы свежего воздуха, поступающего внутрь камеры сгорания цилиндра двигателя. Согласно изобретению в процессе цикла двигателя оценку (128) общей массы Mtot газа, содержащегося в камере сгорания, осуществляют в конце впуска свежего воздуха, оценку (120, 124) массы выхлопных газов, содержащихся в камере сгорания, - в конце выпуска выхлопных газов и оценку (128) массы Ма свежего воздуха осуществляют исходя из разности между оцененными общей массой Mtot и массой Mb выхлопных газов. 5 н. и 8 з.п. ф-лы, 3 ил.

Изобретение может быть использовано для определения общего технического состояния их смазочной системы. Перед определением общего технического состояния смазочной системы двигателя внутреннего сгорания, очищают масляный фильтр. Двигатель прогревают, устанавливают номинальную частоту вращения. Фиксируют значение давления масла перед фильтром и по истечении времени межконтрольной наработки вновь фиксируют значение давления масла перед фильтром. По полученным данным находят скорость повышения давления, сравнивают вычисленное значение с допускаемой скоростью повышения давления. По результатам сравнения определяют общее техническое состояние смазочной системы двигателя. Технический результат заключается в уменьшении затрат времени на техническое обслуживание двигателя. 2 ил.

Изобретение относится к технике, связанной с испытанием сопл, и может быть использовано при проведении модельных испытаний. Устройство содержит подводящий трубопровод, соединенный с ресивером, выполненным с возможностью разъемного соединения с испытываемым соплом в двух взаимно перпендикулярных плоскостях посредством съемных фланцевых накладок и с возможностью опирания измерительными средствами на корпус ресивера, в котором подводящий трубопровод снабжен упругой вставкой. Кроме того, ресивер снабжен отверстиями, одно из которых выполнено в его торце, а другое на его боковой поверхности, причем горловины отверстий имеют одинаковые сечения и снабжены съемными фланцевыми накладками, выполненными с возможностью крепления в них испытываемого сопла в двух взаимно перпендикулярных направлениях. При этом в качестве измерительных средств используют однокомпонентные датчики силы, закрепленные на корпусе ресивера, измерительные штанги которых размещены в трех взаимно перпендикулярных направлениях, а их концы уперты в корпус ресивера с возможностью его удержания. Технический результат заключается в повышении точности измерения и эффективности испытаний сопла, а также снижении трудоемкости изготовления и эксплуатации устройства. 4 ил.

Изобретение относится к ракетной технике и может быть использовано при создании деталей из углерод-углеродного композиционного материала (УУКМ), работающих в условиях воздействия высокотемпературной окислительной среды на поверхности деталей ракетной техники. Установка для определения окислительной стойкости углерод-углеродного композиционного материала, в том числе с защитным покрытием, включающая камеру из огнеупорного материала для размещения образца испытуемого материала и сопло для подачи газового потока в камеру, выполненное в передней стенке установки, снабжена набором съемных передних стенок различной толщины, в которых сопло расположено под разными углами к продольной оси камеры установки, при этом камера установки размещена в металлическом корпусе с теплозащитным кожухом, причем, теплозащитный кожух и камера выполнены разъемными. Изобретение обеспечивает имитацию воздействия высокотемпературного газового потока на детали ракетной техники в условиях, приближенных к реальным, и определение окислительной стойкости УУКМ при воздействии высокотемпературного газового потока под разными углами и на различном расстоянии. 6 ил.

Устройство для диагностики технического состояния механизмов относится к измерительной технике и может быть использовано для диагностики технического состояния возвратно-поступательных механизмов и других механизмов циклического действия по их вибрационным характеристикам как в автомобильном, железнодорожном, авиационном, морском, речном и других видах транспорта, так и в различной механической технике. Достигаемый технический результат - повышение точности измерений и уменьшение времени, затрачиваемого на процесс диагностики технического состояния механизмов. Устройство содержит вибропреобразователь (1), фильтр (2), дискретизатор (3), трехвходовые умножители (4), анализатор (5) спектра, преобразователь (6) перемещений диагностируемого механизма, синхронизатор (7), 2n-канальный генератор (8) функций Уолша (где 2n - число функций Уолша, формируемых одновременно на его выходах), 2n-1-разрядный циклический регистр (9) сдвига, первый управляемый инвертор (10), второй управляемый инвертор (11), двухвходовый коммутатор (12) и элемент (13) односторонней проводимости. 1 табл., 8 ил.
Наверх