Установка для проверки объектов посредством электромагнитных лучей, прежде всего рентгеновских лучей



Установка для проверки объектов посредством электромагнитных лучей, прежде всего рентгеновских лучей
Установка для проверки объектов посредством электромагнитных лучей, прежде всего рентгеновских лучей

 


Владельцы патента RU 2523609:

СМИТС ХАЙМАНН ГМБХ (DE)

Использование: для проверки объектов посредством проникающего излучения. Сущность: заключается в том, что установка для проверки объектов посредством электромагнитных лучей содержит по меньшей мере два расположенных рядом друг с другом проверочных блока, содержащих по меньшей мере один источник излучения для формирования электромагнитного излучения и по меньшей мере одно соотнесенное с источником излучения детекторное устройство, расположенные в переносном корпусе контейнерного типа, при этом проверочные блоки расположены так, что объект облучается с различных направлений. Технический результат: обеспечение возможности создания установки для проверки объектов, которая при высоком качестве проверки обеспечивает упрощенную адаптацию к различным целям применения. 2 н. и 15 з.п. ф-лы, 2 ил.

 

Изобретение относится к установке для проверки объектов посредством электромагнитных лучей по меньшей мере с одним проверочным блоком, который содержит по меньшей мере один расположенный в переносном корпусе (2.1) контейнерного типа источник излучения для формирования электромагнитного излучения (2.2) и по меньшей мере одно соотнесенное с источником излучения детекторное устройство

Просвечивание объектов большого объема, начиная с размера собранной европаллеты (Ш х Д х В: 0,8 м х 1,2 м х 1,8 м), приобретает все большее значение в рамках таможенного оформления и инженерно-технических инспекций. Прежде всего, это действительно для воздушных перевозок в зафрахтованных воздушных судах или в виде дополнительного груза в пассажирских воздушных судах, а также в небольших транспортных средствах.

Рентгеновские проверочные установки для объектов большого объема известны как самодвижущиеся устройства, которые перемещаются над объектом, или как стационарные рентгеновские установки, через которые направляется проверяемый объект (проверяемое изделие).

Так, например, DE 19532965 С2 описывает мобильную рентгеновскую проверочную установку для товаров большого объема, например контейнеров, грузовых и легковых транспортных средств, при этом проверочная установка как самоходное устройство перемещается над проверяемым объектом.

Из ЕР 0412190 В1 известна стационарная просвечивающая система для просвечивания контейнеров и/или транспортных средств, которая используется, например, в аэропортах для того, чтобы проверять содержимое на наличие взрывчатых веществ, оружия, наркотиков и контрабанды.

DE 11 2007 000011 T5 также описывает стационарную проверочную систему для проверки посредством излучения загрузки паллет, контейнеров для авиационных грузов и других грузов большого объема, при этом проверочные объекты посредством транспортного устройства подаются в излучающий сканирующий блок, который перекрывает транспортное устройство.

Задачей изобретения является создание установки для проверки объектов известного из уровня техники, которая при высоком качестве проверки обеспечивает упрощенную адаптацию к различным целям применения.

Данная задача согласно признакам п.1 формулы изобретения решена тем, что установка имеет по меньшей мере два расположенных рядом друг с другом проверочных блока по меньшей мере с одним расположенным в переносном корпусе контейнерного типа источником излучения, при этом источники излучения расположены так, что объект облучается с различных направлений.

При решении согласно п.2 формулы изобретения проверочная установка имеет по меньшей мере два источника излучения, которые расположены по меньшей мере в одном переносном корпусе контейнерного типа и излучают энергию в диапазоне от 150 до 500 кэВ, прежде всего примерно 300 кэВ, и в диапазоне от 1 МэВ до 7 МэВ, предпочтительно от 3 до 5 МэВ, прежде всего примерно от 3,5 до 5 МэВ.

Использование лучей в диапазоне от 150 до 500 кэВ и в диапазоне от 1 до 7 МэВ обеспечивает высокую детализацию распознавания при низком диапазоне энергий и одновременно высокую проникающую способность при высоком диапазоне энергий.

Если необходимо проверять объекты с очень высоким разрешением, то в соответствии с п.3 формулы изобретения признаки пп.1 и 2 формулы изобретения используются в комбинации.

Предпочтительно, рентгеновские лучи по меньшей мере от одного источника излучения излучаются веерообразно в одной плоскости излучения. Улучшенное разрешение достигается, если используются по меньшей мере два источника излучения с проходящими параллельно друг к другу плоскостями излучения.

Предпочтительно, проверочные блоки выполнены так, что они могут безотказно эксплуатироваться вне зданий. Так, установки пригодны для использования во внутренней зоне, в покрытых крышей зонах и для применения на открытом воздухе. В наружной зоне система обеспечивает двухмерное просвечивание тележек и малых транспортных средств.

Предпочтительно проверочные блоки могут быть выполнены так, что они являются интегрируемыми в существующую транспортную систему. Например, в аэропортах или терминалах они могут интегрироваться в существующие системы перевозки грузов.

Модульная конструкция проверочных блоков такого рода, что два или более блоков соединяются в общее устройство, обеспечивает большое преимущество в том, что установку можно экономно адаптировать под различные случаи применения. Если потребуется, то установку можно очень экономно расширить путем использования уже имеющихся проверочных блоков.

Возможными областями использования соответствующей изобретению проверочной установки являются, например, пограничные контрольно-пропускные пункты, морские и воздушные порты, таможенные посты, пункты оплаты дорожных сборов, центры грузоперевозок, общие зоны безопасности, промышленные и военные установки.

Дополнительные детали и преимущества изобретения становятся понятными из последующих, разъясненных с помощью фигур примеров выполнения. При этом показано:

Фигура 1А - перспективный вид спереди проверочной установки согласно предлагаемому изобретению, которая выполнена из двух проверочных блоков, и

Фигура 1Б - перспективный вид сзади на показанную на фигуре 1А проверочную установку.

Проверочная установка 1 включает в себя, по существу, два проверочных блока 2, 3 и транспортное устройство 5, в примере это роликовый транспортер, с помощью которого проверяемый объект 4 большого объема транспортируется для просвечивания через зону между источниками излучения и детекторными устройствами 2.3, 3.3 проверочных блоков 2, 3.

Каждый проверочный блок 2, 3 имеет переносной корпус 2.1, 3.1 контейнерного типа, в каждом из которых расположен по меньшей мере один источник рентгеновского излучения. Каждый источник излучения формирует рентгеновское излучение, которое излучается веерообразно в одной плоскости излучения и исходит из соответствующего корпуса 2.1, 3.1. Предпочтительно, имеются по меньшей мере два источника излучения, плоскости излучения которых проходят параллельно друг к другу, как показано на фигуре 1А, фигуре 1Б. В предлагаемом примере выполнения плоскости излучения веерных лучей 2.2, 3.2 ориентированы перпендикулярно направлению транспортировки транспортного устройства 5, так что проверяемый объект 4 посредством транспортного устройства 5 направляется перпендикулярно к плоскости излучения веерных лучей 2.2, 3.2 сквозь них.

Имеется два вертикально или горизонтально расположенных рядом друг с другом проверочных блока 2, 3, каждый из которых имеет источник излучения, которые расположены так, что проверяемый объект облучается с разных направлений.

При этом веерные лучи хотя и проходят в параллельных плоскостях, но они излучаются на проверяемый объект 4 с разных направлений. На первом, расположенном сверху проверочном блоке 3 веерный луч раскрывается слева сверху направо вниз, на втором, расположенном снизу проверочном блоке веерный луч, раскрывается справа снизу влево вверх.

С каждым веерным лучом 2.2, 3.2 соотнесено детекторное устройство 2.3, 3.3. Детекторные устройства 2.3, 3.3 имеют L-образную конфигурацию, при этом проходящая через полку соответствующего детекторного устройства 2.3, 3.3 плоскость находится в плоскости излучения соответствующего веерного луча 2.2, 3.2. Поперечная полка второго детекторного устройства 2.3 проходит над транспортным устройством 5 и перекрывает его на определенном вертикальном расстоянии, так что детекторное устройство 2.3 вместе с боковыми стенками корпуса 2.1, 3.1 образует ворота, сквозь которые подлежащий исследованию объект 4 транспортируется посредством транспортного устройства 5.

Если проверочная установка используется на открытом воздухе, то возможно просвечивание малых транспортных средств, например, развозных автомобилей (VAN) или тележек. Предпочтительно, при такой цели использования приемные модули детекторных устройств частично расположены в транспортной системе для малых транспортных средств и/или в перекрытой смотровой канаве.

Предпочтительно, в проверочной установке 1 в качестве источника излучения применяются рентгеновские излучатели, которые излучают рентгеновское излучение в диапазоне от 150 до 500 кэВ, прежде всего примерно 300 кэВ, и в диапазоне от 1 до 7 МэВ, предпочтительно от 3 до 5 МэВ, прежде всего примерно 3 МэВ. В предлагаемом примере выполнения применяются экономичные рентгеновские излучатели с энергией примерно 300 кэВ и примерно 3,5 МэВ. Для формирования рентгеновского излучения в более высоком диапазоне примерно 3,5 МэВ применяются, предпочтительно, циклические ускорители элементарных частиц, для формирования более низкого энергетического диапазона примерно в 300 кэВ - известные рентгеновские трубки. Интенсивность проникающего через проверяемый объект 4 излучения измеряется соответствующими детекторными устройствами 2.3, 3.3 и анализируется отдельно по обоим энергетическим диапазонам. Использование обоих диапазонов, с одной стороны, обеспечивает высокое распознавание деталей, например распознавание проволоки и других тонких структур внутри проверяемого объекта 4, а, с другой стороны, рентгеновское излучение повышенного энергетического диапазона обладает высокой проникающей способностью, так что можно проверять толстые и/или особенно плотные проверяемые объекты 4.

Как показано на фигурах, каждый проверочный блок 2, 3 выполнен по модульному типу так, что два или более блока объединяются в общее устройство. С одной стороны, как описано выше, это делает возможной комбинацию двух проверочных блоков 2, 3, которые работают с разной энергией, например комбинацию одного просвечивающего блока на 300 кэВ и одного просвечивающего блока на 3,5 МэВ.

Точно также возможно просвечивание посредством рентгеновских лучей с двух направлений, как показано на фигурах. При этом просвечивание в обоих направлениях может производиться как в одном энергетическом диапазоне, так и в различных энергетических диапазонах. Проверочные блоки 2, 3 выполнены так, что они являются интегрируемыми в существующую транспортную систему, прежде всего транспортную систему перевозки грузов.

Проверочная установка 1 также содержит аналитический блок, который принимает электрические сигналы от детекторных устройств 2.3, 3.3 и обрабатывает их для анализа на искомые предметы или субстанции. Результат может отображаться в форме графического отображения на соответствующем индикаторном блоке и проверяться обслуживающим персоналом. При этом возможно, что каждый проверочный блок 2, 3 содержит аналитический блок, или вся проверочная установка 1 содержит единственный аналитический блок, в котором анализируются определенные отдельными проверочными блоками 2, 3 данные. В последнем случае проверочные блоки имеют соответствующие интерфейсы, которые обеспечивают канал передачи данных в аналитический блок в другом корпусе.

1 Проверочная установка
2 Первый просвечивающий блок
2.1 Выполненный в форме контейнера резервуар
2.2 Электромагнитные лучи
2.3 Детекторное устройство
3 Второй просвечивающий блок
3.1 Выполненный в форме контейнера резервуар
3.2 Электромагнитные лучи
3.3 Детекторное устройство
4 Проверяемый объект
5 Подающее устройство

1. Установка для проверки объектов посредством электромагнитных лучей по меньшей мере с одним проверочным блоком (2, 3), который содержит по меньшей мере один расположенный в переносном корпусе (2.1) контейнерного типа источник излучения для формирования электромагнитного излучения (2.2) и по меньшей мере одно соотнесенное с источником излучения детекторное устройство (2.3),
отличающаяся тем, что
проверочная установка (1) содержит по меньшей мере два расположенных рядом друг с другом проверочных блока (2, 3) соответственно по меньшей мере с одним источником излучения, которые расположены так, что объект облучается с различных направлений.

2. Установка по п.1, отличающаяся тем, что рентгеновская установка (1) имеет по меньшей мере два источника излучения, которые излучают рентгеновское излучение с энергией в диапазоне от 150 до 500 кэВ, прежде всего примерно 300 кэВ, и в диапазоне от 1 до 7 МэВ, предпочтительно от 3 до 5 МэВ, прежде всего примерно 3,5 МэВ.

3. Установка по п.1, отличающаяся тем, что рентгеновское излучение (2.2) излучается по меньшей мере одним источником излучения веерообразно в одной плоскости излучения.

4. Установка по п.3, отличающаяся тем, что имеется по меньшей мере два источника излучения, плоскости излучения которых проходят параллельно друг к другу.

5. Установка по п.1, отличающаяся тем, что детекторное устройство (2.3, 3.3) проверочного блока (2, 3) выполнено L-образно.

6. Установка по п.1, отличающаяся тем, что она содержит транспортное устройство, посредством которого объекты для проверки транспортируются через проверочные блоки (2, 3).

7. Установка по п.1, отличающаяся тем, что проверочный(-ые) блок(-и) (2, 3) выполнен(-ы) так, что он(они) может(могут) безотказно эксплуатироваться вне зданий.

8. Установка по п.1, отличающаяся тем, что проверочный(-ые) блок(-и) (2, 3) выполнен(-ы) так, что он(они) является интегрируемым(-и) в существующую транспортную систему, прежде всего системы транспортировки грузов.

9. Установка по п.1, отличающаяся тем, что каждый проверочный блок выполнен по модульному типу так, что два или более блока могут быть собраны в общее устройство.

10. Установка для проверки объектов посредством электромагнитных лучей по меньшей мере с одним проверочным блоком (2, 3), который содержит по меньшей мере один расположенный в переносном корпусе (2.1) контейнерного типа источник излучения для формирования электромагнитного излучения (2.2) и по меньшей мере одно соотнесенное с источником излучения детекторное устройство (2.3),
отличающаяся тем, что
рентгеновская установка (1) имеет по меньшей мере два источника излучения, которые излучают рентгеновское излучение с энергией в диапазоне от 150 до 500 кэВ, прежде всего примерно 300 кэВ, и в диапазоне от 1 до 7 МэВ, предпочтительно от 3 до 5 МэВ, прежде всего примерно 3,5 МэВ.

11. Установка по п.10, отличающаяся тем, что рентгеновское излучение (2.2) излучается по меньшей мере одним источником излучения веерообразно в одной плоскости излучения.

12. Установка по п.11, отличающаяся тем, что имеется по меньшей мере два источника излучения, плоскости излучения которых проходят параллельно друг к другу.

13. Установка по п.10, отличающаяся тем, что детекторное устройство (2.3, 3.3) проверочного блока (2, 3) выполнено L-образно.

14. Установка по п.10, отличающаяся тем, что она содержит транспортное устройство, посредством которого объекты для проверки транспортируются через проверочные блоки (2, 3).

15. Установка по п.10, отличающаяся тем, что проверочный(-ые) блок(-и) (2, 3) выполнен(-ы) так, что он(они) может(могут) безотказно эксплуатироваться вне зданий.

16. Установка по п.10, отличающаяся тем, что проверочный(-ые) блок(-и) (2, 3) выполнен(-ы) так, что он(они) является интегрируемым(-и) в существующую транспортную систему, прежде всего системы транспортировки грузов.

17. Установка по п.10, отличающаяся тем, что каждый проверочный блок выполнен по модульному типу так, что два или более блока могут быть собраны в общее устройство.



 

Похожие патенты:

Использование: для формирования рентгеновских изображений. Сущность изобретения заключается в том, что устройство формирования рентгеновских изображений согласно настоящему изобретению включает фазовую решетку 130, поглощательную решетку 150, детектор 170 и арифметический блок 180.

Использование: для рентгеновской томографии. Сущность способа: заключается в том, что облучают и воспринимают массив изображения энергетического спектра рентгеновского излучения, проходящего через объект, при этом восстанавливают изображения по теневым проекциям объекта, затем формируют, сравнивают и анализируют текущие и эталонные интегральные характеристики изображения объекта, определяют дефекты объекта и отображают результаты анализа объекта.

Использование: для определения теплопроводности керна. Сущность: заключается в том, что подготавливают образец керна и рентгеновский микрокомпьютерный томограф для сканирования указанного образца керна и получения изображения для каждого сканирования, сканируют указанный образец керна, передают для обработки трехмерное сканированное изображение с томографа на компьютер, предназначенный для анализа изображений, задают толщину слоя внутри полученного трехмерного сканированного изображения для анализа, определяют слой с максимальной теплостойкостью внутри полученного трехмерного сканированного изображения и определяют эффективную теплопроводность образца керна.

Использование: для томографии целевого объекта. Сущность изобретения заключается в том, что измеряют потерю энергии заряженных частиц, которые входят и проникают сквозь объем или останавливаются внутри объема без проникновения сквозь объем; на основании измеряемой потери энергии определяют пространственное распределение заряженных частиц, которые входят и проникают сквозь объем или останавливаются внутри объема без проникновения сквозь объем; и используют пространственное распределение потери энергии заряженных частиц для восстановления трехмерного распределения материалов в досматриваемом объеме.

Использование: для осмотра объектов путем их одновременного обследования в проходящем и рассеянном свете. Сущность заключается в том, что выполняют облучение объекта первым лучом проникающего излучения, генерирование сигнала пропускания на основе проникающего излучения, пропущенного через объект и зарегистрированного датчиком регистрации пропускания, сканирование объекта вторым лучом проникающего излучения, генерирование сигнала рассеивания на основе проникающего излучения, рассеянного объектом и зарегистрированного датчиком регистрации рассеивания, корректирование любой помехи в сигнале рассеивания, возникающей вследствие первого луча проникающего излучения при наличии объекта, и отображение изображения, видимого оператору и включающего информацию по меньшей мере от сигнала рассеивания.

Использование: для бесконтактного рентгеновского контроля. Сущность: заключается в том, что в досмотровом комплексе применяется один источник рентгеновского веерообразного пучка лучей, который может перемещаться по дуге, длиной, равной четверти окружности, с изменяющимся шагом в диапазоне 0°…90°.
Использование: для получения трехмерного образа пробы планктона. Сущность: заключается в том, что выполняют проведение рентгеновской микрокомпьютерной томографии пробы, причем процессу томографии одновременно подвергается вся совокупность объектов, содержащихся в пробе, в которой к фиксирующему раствору добавляется рентгеноконтрастная жидкость.

Изобретение относится к области исследования образцов неконсолидированных пористых сред и может быть использовано для изучения открытой или закрытой пористости, распределения пор по размерам, удельной поверхности, пространственного распределения и концентрации ледяных и/или газогидратных включений в поровом пространстве образцов, определения размера включений и т.д.
Изобретение относится к медицине и может быть использовано для диагностики туберкулеза внутригрудных лимфатических узлов (ТВГЛУ) бронхопульмональной группы у детей.

Использование: для контроля сварных швов трубопровода посредством проникающего излучения с внешней стороны трубопровода. Сущность изобретения заключается в том, что устройство для внешнего осмотра кольцевого сварного шва трубопровода включает источник излучения (5) и детектор излучения (3). Оба блока контролируемо движутся вокруг приводной полосы или направляющей (7), которая установлена вокруг кольцевого сварного шва. Для выравнивания источника с детектором их перемещают по отношению друг к другу по часовой стрелке и против часовой стрелки около исходного положения, делая выборку данных по излучению, детектируемому в нескольких положениях. Затем определяют положение максимальной силы детектируемого сигнала излучения, соответствующее месту центральной точки источника излучения. После чего источник и детектор, выровненные относительно друг друга, перемещают по окружности вокруг сварного шва, при этом они остаются в сущности в соосных положениях. Технический результат: обеспечение возможности контроля сварных швов трубопровода посредством проникающего излучения с внешней стороны трубопровода через обе его стенки при сохранении чувствительности, сопоставимой с чувствительностью, получаемой при просвечивании сварного шва на пленку через одну стенку трубопровода. 12 з.п. ф-лы, 3 ил.

Использование: для рентгеноскопического контроля кольцевого сварного шва трубопровода. Сущность изобретения заключается в том, что устройство для рентгеноскопического контроля кольцевого сварного шва трубопровода включает направленный источник рентгеновского излучения, который вводят в секцию трубопровода и который может вращаться в трубопроводе, средство для выравнивания направленного источника рентгеновского излучения с внешним детектором рентгеновского излучения таким образом, чтобы они оба могли вращаться на 360°, в сущности, соосно секции трубопровода, а также средство для выборки данных, детектируемых детектором рентгеновского излучения, для последующего анализа. Технический результат: повышение качества рентгеноскопического контроля кольцевого сварного шва трубопровода. 6 з.п. ф-лы, 4 ил.

Изобретение относится к обработке медицинских изображений. Техническим результатом является повышение точности оценки движения интересующей ткани. Способ содержит: задание набора опорных местоположений около интересующей области субъекта или объекта, которую идентифицируют на, по меньшей мере, одном изображении из временной последовательности изображений; применение модели движения к опорному местоположению упомянутого набора, причем модель движения указывает траекторию через последовательность изображений; формирование набора записанных изображений из временной последовательности изображений, посредством одновременной записи временной последовательности изображений на основе модели, примененной к опорному местоположению упомянутого набора. 2 н. и 13 з.п. ф-лы, 2 ил.

Использование: для неразрушающего контроля материалов и изделий методом рентгеновской компьютерной томографии. Сущность изобретения заключается в том, что промышленный томограф содержит источник жесткого тормозного излучения, расположенный от объекта на расстоянии, обеспечивающем перекрытие веерным пучком излучения части сечения объекта, сканер, обеспечивающий только вращательное движение, неподвижный детекторный блок, управляющий компьютер, программное обеспечение, при этом источник излучения выполнен с возможностью поворота вокруг оси, перпендикулярной плоскости томограммы и проходящей через фокус пучка излучения, и расположен от объекта на расстоянии, обеспечивающем перекрытие веерным пучком излучения менее половины сечения объекта и перекрытие веерными пучками половины сечения объекта за цикл поворотов. Технический результат: обеспечение возможности сканирования крупногабаритных изделий при высоком качестве получаемой томограммы за достаточно короткий промежуток времени без увеличения габаритов томографа. 3 ил.

Настоящее изобретение относится к формированию фазово-контрастного изображения, которым визуализируют фазовую информацию когерентного излучения, проходящего через сканируемый объект. Указанное изображение формируется при помощи фокусирующей дифракционной решётки, канавки которой имеют гладкие стенки и наклонены по отношению друг к другу. Для создания указанных канавок фокусирующих дифракционных решеток используют электромагнитное излучение лазера, которое направляется под углом к поверхности обрабатываемой решётки. После обработки лазером канавки подвергаются травлению для сглаживания их поверхностей. Технический результат - уменьшение образование трапециевидного профиля при проецировании под конкретным углом к оптической оси. 3 н. и 12 з.п. ф-лы, 17 ил.

Использование: для определения геометрических смещений сенсоров в плоскопанельном детекторе рентгеновского изображения. Сущность изобретения заключается в том, что на рабочей поверхности детектора размещают тест-объект, включающий по меньшей мере два объекта «острый край», соответствующих положению технологического зазора между указанными сенсорами, поток рентгеновского излучения направляют на тест-объект, получают его рентгеновское изображение, на полученном изображении идентифицируют пиксели, соответствующие изображению острого края каждого объекта «острый край», по которым определяют геометрические смещения сенсоров из условия минимума целевого функционала с ограничениями на указанные смещения, причем ограничения включают линейные ограничения, соответствующие геометрическим смещениям сенсоров, расположенных рядом друг с другом по горизонтали или вертикали, и нелинейные ограничения, соответствующие геометрическим смещениям сенсоров, расположенных рядом друг с другом по диагонали. Технический результат: расширение арсенала технических средств определения геометрических смещений сенсоров в плоскопанельном детекторе рентгеновского излучения и возможность определения смещения сенсоров с высокой точностью. 3 з.п. ф-лы, 11 ил.

Изобретение относится к устройствам для компьютерной томографии без гентри. Установка КТ содержит туннель сканирования, стационарный источник рентгеновских лучей, расположенный вокруг туннеля сканирования и содержащий множество фокусных пятен, испускающих излучение, и множество стационарных модулей детектора, расположенных вокруг туннеля сканирования напротив источника рентгеновского излучения. Одна часть модулей из множества модулей детектора расположена в первом направлении, а вторая часть модулей из множества модулей детектора расположена во втором направлении, и схема расположения этих частей модулей детектора имеет L-образную форму. Первое направление образует прямую линию, формируемую путем соединения центральных точек поверхностей приема пучков излучения одной части модулей детектора. Второе направление образует вторую прямую линию, формируемую путем соединения центральных точек поверхностей приема пучков излучения другой части модулей детектора, которые пересекаются в некоторой точке, если рассматривать в плоскости, пересекающей туннель сканирования. Поверхности приема пучков излучения одной части модулей детектора наклонены относительно первого направления и обращены в сторону источника рентгеновского излучения, а поверхности приема пучков излучения другой части модулей детектора наклонены относительно второго направления и обращены в сторону источника рентгеновского излучения. Стационарная установка КТ без гентри по настоящему изобретению имеет небольшие размеры и высокую точность идентификации данных. 17 з.п. ф-лы, 3 ил.

Использование: для осмотра тела человека на основе обратного рассеяния излучения. Сущность изобретения заключается в том, что используют блок формирования бегущих пятен, имеющий распределенные по спирали бегущие пятна, с чередованием пиков и спадов рентгеновского излучения на облучаемой поверхности. Таким образом, можно точно управлять временем начала сканирования, чтобы побуждать два устройства иметь время начала сканирования, которое отличается на половину цикла. То есть лучи, выводимые из одного устройства, находятся на максимуме, когда лучи, выводимые из другого устройства, находятся на минимуме. Другими словами, даже если источник излучения одного устройства излучает лучи, он не будет существенно влиять на результат визуализации другого устройства. Таким образом, два устройства могут излучать лучи и выполнять сканирование одновременно. Технический результат: сокращение времени сканирования при сохранении высокого качества результатов сканирования. 4 н. и 6 з.п. ф-лы, 5 ил.

Использование: для радиографического неразрушающего контроля. Сущность изобретения заключается в том, что производят ряд снимков при разных значениях анодного напряжения, разные значения анодного напряжения достигаются путем регистрации снимков в разные моменты времени действия переменного или пульсирующего анодного напряжения, питающего рентгеновскую трубку, при этом также производят ряд снимков при разных значениях анодного тока, разные значения анодного тока достигаются путем регистрации снимков в разные моменты времени действия переменного или пульсирующего анодного тока, протекающего через рентгеновскую трубку, обработкой снимков получают изображение, на котором для всех функциональных элементов (узлов) изделия микроэлектроники с неоднородной структурой обеспечен заданный контраст. Технический результат: обеспечение возможности создания способа мультиэнергетической рентгенографии, позволяющего расширить возможности цифровой рентгенографии на изделия микроэлектроники с неоднородной структурой, повысив достоверность и оперативность радиографического неразрушающего контроля. 4 ил.

Изобретение относится к медицинской технике, а именно к рентгеновским комплексам для проведения широкого спектра различных рентгеновских исследований пациентов. Комплекс содержит стол пациента, установленный на неподвижном основании, и колонну, установленную с возможностью перемещения вдоль стола пациента, стол пациента включает в себя раму, соединенную с одной стороны с неподвижным основанием, а с противоположной стороны имеет две параллельные опоры, на которых установлена рентгенопрозрачная дека. На колонне с возможностью вертикального перемещения по ней и вращения вокруг нее смонтирована каретка, на которой установлен кронштейн с возможностью вращения вокруг оси, перпендикулярной оси колонны. Кронштейн содержит на одном конце рентгеновский излучатель, а на другом - рентгеновский детектор, установленные напротив друг друга. В столе пациента имеется проем между рамой стола и рентгенопрозрачной декой, выполненный с возможностью захода и выхода рентгеновского детектора при повороте каретки вокруг колонны, границами проема служат параллельные опоры. Колонна установлена на независимой от основания стола пациента направляющей, кронштейн выполнен в виде U-дуги, рентгенопрозрачная дека выполнена с возможностью перемещения перпендикулярно направлению перемещения колонны, вдоль параллельных опор, а рама стола соединена с неподвижным основанием посредством подъемно-поворотного механизма и выполнена с возможностью поворота на заданный угол относительно плоскости основания стола. Использование изобретения обеспечивает свободный доступ к пациенту и выполнение всех основных видов рентгеновских исследований. 7 з.п. ф-лы, 13 ил.
Наверх