Способ дистанционного управления полетом беспилотного летательного аппарата и беспилотная авиационная система



Способ дистанционного управления полетом беспилотного летательного аппарата и беспилотная авиационная система
Способ дистанционного управления полетом беспилотного летательного аппарата и беспилотная авиационная система
Способ дистанционного управления полетом беспилотного летательного аппарата и беспилотная авиационная система

 


Владельцы патента RU 2523613:

Лернер Илья Израйлевич (RU)
Сатовский Борис Львович (RU)

Группа изобретений относится к средствам измерения и управления для широкого класса беспилотных систем, и в частности для беспилотных авиационных систем. Способ дистанционного управления полетом БПЛА заключается в передаче данных через радиоканал. На БПЛА от пункта управления передаются данные о давлении атмосферы на посадочной позиции БПЛА. С учетом переданных данных на борту БПЛА определяют барометрическую высоту полета относительно посадочной позиции, по которой осуществляют управление высотой полета. Предложена беспилотная авиационная система, пункт управления которой выполнен с возможностью определения и передачи по радиоканалу на БПЛА данных о давлении атмосферы на посадочной позиции, а БПЛА выполнен с возможностью автономного управления полетом с учетом этих данных. Достигается возможность повышения безопасности полета БПЛА в беспилотных авиационных системах. 2 н.п. ф-лы, 3 ил.

 

Предлагаемая группа изобретений относится к средствам измерения и управления для широкого класса беспилотных систем, и в частности для беспилотных авиационных систем.

При создании беспилотных авиационных систем, имеющих полетное время 3 и более часов, возникает необходимость осуществления полета к посадочной позиции с учетом изменения давления атмосферы в месте ее расположения.

Известны система и способ дистанционного управления полетом БПЛА (USA Patent 6,377,875 от 23.04.2002г). Согласно этому способу осуществляют полет БПЛА по заранее запрограммированной траектории, когда необходимо осуществлять дистанционное управление полетом БПЛА.

Недостаток этого способа состоит в том, что информация о давлении атмосферы на посадочной позиции БПЛА не учитывается при полете БПЛА к посадочной позиции. Это существенно снижает возможность безаварийной посадки/спасения БПЛА.

В основу изобретения положено решение задачи повышения безопасности полета БПЛА в беспилотных авиационных системах.

Поставленная цель достигается тем, что в способе дистанционного управления полетом БПЛА с пункта управления посредством передачи управляющих данных на БПЛА по радиоканалу и передачи полетных данных от БПЛА на пункт управления, при котором осуществляют полет БПЛА по заранее запрограммированной траектории, когда необходимо, осуществляют дистанционное управление полетом БПЛА, согласно изобретению, определяют давление атмосферы на посадочной позиции БПЛА, передают данные о давлении атмосферы на посадочной позиции БПЛА от пункта управления на БПЛА через радиоканал, с учетом этих данных определяют на борту БПЛА барометрическую высоту полета относительно посадочной позиции БПЛА, по которой осуществляют управление высотой полета БПЛА.

Описанный способ дистанционного управления полетом БПЛА реализуется с помощью беспилотной авиационной системы, содержащей БПЛА, пункт управления, с посадочной позицией БПЛА, соединенные между собой посредством радиоканала, согласно изобретению, пункт управления выполнен с возможностью определения и передачи на БПЛА по радиоканалу данных о давлении атмосферы на посадочной позиции БПЛА, а БПЛА выполнен с возможностью автономного управления полетом с учетом этих данных.

Заявленное изобретение иллюстрируется приложенными графическими материалами, на которых изображено:

- Фиг.1. - Блок-схема беспилотной авиационной системы.

- Фиг.2. - Траектория полета в вертикальной плоскости.

- Фиг.3. - Траектория полета в горизонтальной плоскости.

Согласно предложенному способу дистанционного управления полетом БПЛА с пункта управления посредством передачи управляющих данных на БПЛА по радиоканалу и передачи полетных данных от БПЛА на пункт управления, при котором осуществляют полет БПЛА по заранее запрограммированной траектории, когда необходимо, осуществляют дистанционное управление полетом БПЛА, определяют давление атмосферы на посадочной позиции БПЛА, передают данные о давлении атмосферы на посадочной позиции БПЛА от пункта управления на БПЛА через радиоканал, с учетом этих данных определяют на борту БПЛА барометрическую высоту полета относительно посадочной позиции БПЛА, по которой осуществляют управление высотой полета БПЛА.

Беспилотная авиационная система (см. фиг.1) содержит БПЛА 1 и пункт управления

2.

БПЛА 1 содержит бортовые датчики 3, вычислитель траекторного управления 4, средства связи 5, автопилот 6. Вычислитель траекторного управления 4 содержит средства для запоминания полетных данных (заданной траектории полета) 7.

Пункт управления 2 содержит посадочную позицию 8, комплекс связи 9, метеостанцию 10, спутниковую навигационную систему 11, пост управления 12.

Первый и второй выходы бортовых датчиков 3 соединены с первыми входами вычислителя траекторного управления 4 и автопилота 6 соответственно. Первый и второй выходы средств связи 5 соединены со вторыми входами вычислителя траекторного управления 4 и автопилота 6 соответственно. Первый и второй входы средств связи 5 соединены с первым выходом блока траекторного управления 4 и третьим выходом бортовых датчиков 3 соответственно. Второй выход вычислителя траекторного управления 4 соединен с третьим входом автопилота 6. Средства связи 5 осуществляют связь (прием/передачу информации) с пунктом управления 2.

Выходы метеостанции 10, спутниковой навигационной системы 11 соединены с первым и вторым входами поста управления 12 соответственно. Первый и второй выходы поста управления 12 соединены со входами посадочной позиции 8 и комплекса связи 9 соответственно. Выход комплекса связи 9 соединен с третьим входом поста управления 12. Комплекс связи 9 осуществляет связь (прием/передачу информации) с БПЛА 1.

Возможность осуществления изобретения иллюстрируется на примере беспилотной авиационной системы. Этот пример не должен рассматриваться ни как ограничивающий объем изобретения, ни как предпочтительная для всех случаев форма его реализации.

В спутниковой навигационной системе 11 формируются координаты местоположения пункта управления 2 с позицией спасения 8.

Метеостанция 10 выдает давление атмосферы.

В посте управления 12, содержащем рабочее место оператора, осуществляется планирование траектории полета БПЛА 1. При планировании траектории полета БПЛА 1 вводятся координаты позиций пуска и посадки БПЛА, координаты, высоты промежуточных пунктов маршрута (ППМ), конечного пункта маршрута (КПМ), способ управления (маршрутный, путевой, комбинированный), исходя из полетного задания, например, мониторинга определенных объектов.

Траектория полета, в виде массива полетных данных (МПД), передается через комплекс связи 9 на БПЛА 1 в процессе предполетной подготовки. Указанный МПД поступает через средства связи 5 на средства для запоминания полетных данных 7, где запоминается.

Также в процессе предполетной подготовки на БПЛА 1 передаются данные о давлении атмосферы с метеостанции 10 через пост управления 12 и комплекс связи 9. Указанные данные поступают через средства связи 5 на средства для запоминания полетных данных 7, где запоминаются.

В процессе полета в посте управления 12 при необходимости могут формироваться сигналы дистанционного управления в виде заданных значений: угла курса, высоты полета, приборной скорости, которые поступают через канал связи (блоки 9, 5) на автопилот 6. Также в процессе полета на БПЛА 1 передаются: данные о текущем давлении атмосферы с метеостанции 10 через пост управления 12 и комплекс связи 9.

Бортовые датчики 3 содержат датчики аэрометрической информации: (статическое, полное давление) и датчики навигационной информации: текущие координаты местоположения БПЛА, параметры углового положения, угловых скоростей и ускорений.

С выхода 1 блока 3 поступают на вход блока траекторного управления 4 параметры:

- статическое давление;

- полное давление;

- температура воздушного потока;

- текущие координаты местоположения БПЛА.

С выхода 2 блока 3 поступают на вход автопилота 6 параметры:

- параметры углового положения, угловых скоростей и ускорений. В средствах для запоминания полетных данных 7 хранятся: координаты местоположения ППМ, КПМ и посадочной позиции 8, способ управления (маршрутный, путевой, комбинированный), данные о направлении ветровых возмущений, высота круга (Фиг.2), введенные при предполетной подготовке БПЛА 1. При пролете КПМ в блоке 7, по разовой команде с блока 4, осуществляется запоминание текущих данных о давлении атмосферы на позиции спасение БПЛА, поступающих с метеостанции 10, через блок 12, канал связи (блоки 9, 5) и блок 4. В случае потери связи с пунктом управления до пролета КПМ в блоке 7 осуществляется, по разовой команде с блока 4, запоминание последних, переданных по каналу связи данных о давлении атмосферы на посадочной позиции БПЛА 8.

В блоке 4 формируются: абсолютная барометрическая высота, барометрическая высота относительно посадочной позиции, скоростной напор и приборная скорость, поступающие на автопилот 6. Барометрическая высота полета относительно посадочной позиции формируется по данным о: статическом давлении и температуре с блока 3, давлении атмосферы на посадочной позиции с блока 7 и параметрам «стандартной атмосферы», также хранящихся в блоке 7.

В блоке траекторного управления 4 в соответствии с данными, хранящимися в блоке 7, формируются сигналы траекторного управления БПЛА 1, поступающие на автопилот 6:

- режим полета (маршрут, возврат, посадка);

- в боковом канале - заданный угол курса;

- в продольном канале - заданное значение абсолютной барометрической высоты полета в режиме Маршрут, заданное значение вертикального смещения (отклонение текущего значения относительной барометрической высоты от заданного) в режиме Возврат, заданное значение относительной барометрической высоты полета в режиме Посадка;

- в канале скорости - заданное значение приборной скорости. Траектория полета БПЛА 1 включает участок полета в режиме Маршрут,включающего ППМ, КПМ, участок полета в режиме Возврат: от КПМ до выхода БПЛА на «посадочный курс» (направление полосы посадочной позиции БПЛА) и участок полета в режиме «Посадка» - после выхода на «посадочный курс».

Траектория полета в режиме Возврат в вертикальной плоскости представляет собой снижение в точку, отстоящую на 1-2 км по горизонтали от точки 3-го разворота до высоты «круга» (100-200 м) (Фиг.2).

В режиме Возврат в горизонтальной плоскости осуществляется выход в точку, отстоящую на заданной дальности (2-4 км) от посадочной позиции 8 с заданным направлением (посадочной полосы) на нее (Фиг.3).

Формирование заданного угла курса для реализации такой траектории осуществляется в блоке 4 на основе комбинированного способа управления и с использованием данных о текущем положении БПЛА с блока 3, координатах местоположения посадочной позиции 8 и направлении посадочной полосы с блока 7. Полет в точку 3-го разворота, по касательной к окружности 3-4-го разворотов, осуществляется по кратчайшему расстоянию (путевой способ траекторного управления), далее осуществляются 3-й и 4-й развороты с выходом БПЛА в точку, отстоящую на заданной дальности от посадочной позиции БПЛА и с направлением на посадочную позицию БПЛА.

В режиме «Посадка» заданный угол курса задается равным «посадочному курсу», в продольном канале осуществляется снижение до полосы посадочной позиции БПЛА. При этом на завершающем участке снижения (с высоты 30 м) управление по высоте осуществляется путем отработки (в автопилоте 6) заданной относительной барометрической высоты, формируемой в блоке 4 в виде экспоненциально убывающей функции. В канале скорости осуществляется снижение приборной скорости до минимального значения.

В автопилоте 6 штатно реализуется автономный режим отработки управляющих сигналов с блока 4 с учетом признака режима полета (Маршрут, Возврат, Посадка).

При поступлении на второй вход автопилота 6 сигналов дистанционного управления (режим полета, заданные курс, высота, приборная скорость) с блока 5, автопилот 6 переходит в режим дистанционного управления с отработкой указанных сигналов.

Полунатурная отработка системы показала ее эффективность.

1. Способ дистанционного управления полетом БПЛА с пункта управления посредством передачи управляющих данных на БПЛА по радиоканалу и передачи полетных данных от БПЛА на пункт управления, при котором осуществляют полет БПЛА по заранее запрограммированной траектории, когда необходимо, осуществляют дистанционное управление полетом БПЛА, отличающийся тем, что определяют давление атмосферы на посадочной позиции БПЛА, передают данные о давлении атмосферы на посадочной позиции БПЛА от пункта управления на БПЛА через радиоканал, с учетом этих данных определяют на борту БПЛА барометрическую высоту полета относительно посадочной позиции БПЛА, по которой осуществляют управление высотой полета БПЛА.

2. Беспилотная авиационная система, содержащая БПЛА, пункт управления с посадочной позицией БПЛА, соединенные между собой посредством радиоканала, отличающаяся тем, что пункт управления выполнен с возможностью определения и передачи на БПЛА по радиоканалу данных о давлении атмосферы на посадочной позиции БПЛА, а БПЛА выполнен с возможностью автономного управления полетом с учетом этих данных.



 

Похожие патенты:

Изобретение относится к бортовому оборудованию летательных аппаратов. Комплекс бортового оборудования вертолета содержит комплексную систему электронной индикации и сигнализации, пилотажный комплекс вертолета, пилотажно-навигационную аппаратуру, систему управления общевертолетным оборудованием, информационный комплекс высотно-скоростных параметров, пульты управления общевертолетным оборудованием, систему регулирования внутрикабинного освещения, интегрированную систему резервных приборов, ответчик системы управления воздушным движением, малогабаритную систему сбора и регистрации, комплекс средств связи, генератор цифровых карт, метеонавигационную радиолокационную систему, систему раннего предупреждения близости земли, бортовую систему диагностики вертолета, комплект внутреннего светотехнического и светосигнального оборудования, пульты-вычислители навигационные, аварийные спасательные радиомаяки, систему табло аварийной и уведомляющей сигнализации, основной канал информационного обмена, аудиоканал информационного обмена.

Изобретение относится к области техники, занимающейся разработкой бортовой аппаратуры и бортовых систем летательных аппаратов (ЛА), обеспечивающих как безопасность полетов, так и безопасность наземных объектов.

Изобретение относится к области управления воздушным движением, а именно к области посадки летательных аппаратов (ЛА) на взлетно-посадочную полосу (ВПП). .

Изобретение относится к области предотвращения несанкционированного применения воздушных судов (ВС), в том числе предотвращения террористических атак. .

Изобретение относится к области обработки и анализа инструментально-зарегистрированной полетной информации. .

Изобретение относится к области вычислительной техники, а именно к подвижным комплексам средств управления в частях и подразделениях силовых министерств. .

Изобретение относится к области посадки летательных аппаратов (ЛА) на взлетно-посадочную полосу (ВПП) и может быть эффективно использовано для аэропортов с большой интенсивностью движения.

Изобретение относится к системе передачи данных между летательным аппаратом и, по меньшей мере, одним пунктом связи, находящимся за пределами летательного аппарата.

Изобретение относится к области авиации, в частности к системам бортового оборудования вертолетов. Система обнаружения помех для посадки и взлета вертолета включает ультразвуковые устройства сканирования (1), каждое из которых состоит, по меньшей мере, из средств для передачи ультразвукового сигнала в направлении вниз и получения отраженного ультразвукового сигнала. Средства передачи и получения сигнала установлены, по меньшей мере, в лопастях (2) несущего винта вертолета (3) на удалении от оси его вращения или смежно их концам и связаны с бортовой вычислительной системой вертолета или с самостоятельной вычислительной системой для визуального отображения данных на доступном пилоту мониторе о рельефе расположенной под вертолетом поверхности и/или данных об опасных препятствиях. Повышается точность данных о рельефе поверхности под вертолетом на площади, необходимой для выполнения маневрирования при выполнении взлета и посадки. 4 з.п. ф-лы, 13 ил.

Изобретение относится к области авиационной техники и предназначено для реализации на борту самолета функций аудио- и видеонаблюдения, автоматического сбора данных и регистрации путем записи речевой, звуковой, видео- и параметрической информации в защищенных бортовых накопителях. Техническим результатом является повышение надежности. Интегрированная система сбора, контроля, обработки и регистрации полетной информации содержит защищенные бортовые накопители параметрической, звуковой и визуальной информации, размещенные в кабине пилотов микрофоны и по крайней мере одну зональную видеокамеру, коммутируемую бортовую сеть связи, комбинированный блок сбора полетных данных, снабженный входными портами для получения данных от набора датчиков, установленных в самолетных системах и в оборудовании самолета, и выходными портами для передачи данных в защищенные бортовые накопители и в телеметрическое устройство, предназначенное для передачи данных из самолета, пульт управления и связи. 4 з.п. ф-лы, 1 ил.

Интеллектуальная система поддержки экипажа (ИСПЭ) относится к области бортового оборудования, предназначена для установки на летательные аппараты (ЛА) и может быть использована для функционального диагностирования технического состояния авиационной техники. Техническим результатом является повышение безопасности полета ЛА путем снижения уровня аварийной ситуации. Интеллектуальная система поддержки экипажа содержит датчики состояния двигателей, топливной системы, гидросистемы, системы электроснабжения, системы выпуска шасси и торможения, противообледенительной системы, противопожарной системы, системы воздушных сигналов (СВС), спутниковую навигационную систему (СНС), инерциальную навигационную систему (ИНС), радиовысотомер (РВ), приборную систему посадки (ПСП), систему штурвального управления (СШУ), параллельно соединенные с системой сбора бортовой информации (ССБИ), систему отображения информации (СОИ), блок распознавания аварийных ситуаций (БРАС), систему контроля разбега (СКР), систему предупреждения об опасной близости земли (СПОБЗ), систему предупреждения о выходе на опасные значения угла атаки и перегрузки (СПВОЗ), систему контроля захода на посадку и посадки (СКЗП) и систему предупреждения о попадании в сдвиг ветра (СПОПСВ). 1 ил.

Изобретение относится к способу управления траекторией летательного аппарата (ЛА) при посадке на незапрограммированный аэродром. Техническим результатом является повышение безопасности полета ЛА. В способе управления траекторией летательного аппарата при посадке на незапрограммированный аэродром измеряют и корректируют параметры движения ЛА, формируют параметры положения ЛА относительно взлетно-посадочной полосы (ВПП), формируют заданную траекторию посадки относительно виртуального курсо-глиссадного радиомаяка (ВРМ), который размещают под точкой стандартного положения курсового радиомаяка, управляют угловым положением ЛА по крену и тангажу с учетом рассогласования пеленга ВРМ и курса ВПП и рассогласования угла места ВРМ и угла наклона заданной траектории посадки, измеряют координаты ближнего торца ВПП незапрограммированного перед полетом аэродрома, которые, с учетом стандартной длины ВПП или расчетной длины ВПП и заданного или расчетного курса ВПП, используют для определения координат ВРМ. 1 з.п. ф-лы, 4 ил.

Изобретение относится к способу управления траекторией летательного аппарата (ЛА) при посадке на незапрограммированный аэродром. Техническим результатом является повышение безопасности полета ЛА. В способе управления траекторией посадки летательного аппарата осуществляют предварительное измерение с помощью бортовых систем визуальной ориентации координат ЛА относительно любой визуально идентифицируемой и запрограммированной навигационной точки (НТ) в районе аэродрома, которую с учетом известных параметров НТ используют для коррекции местоположения ЛА, а в процессе самой посадки с помощью бортовых систем визуальной ориентации измеряют координаты ЛА относительно ближнего торца ВПП, которые с учетом известных параметров ближнего торца ВПП используют для уточнения положения ЛА относительно траектории посадки. 6 ил.

Изобретение относится к области авиационного приборостроения, в частности к способу управления траекторией летательного аппарата (ЛА) при заходе на посадку. Техническим результатом является повышение безопасности совершения посадки ЛА. В способе управления траекторией летательного аппарата при заходе на посадку дополнительно задают допустимую вертикальную скорость при соприкосновении ЛА с ВПП, используя известную горизонтальную посадочную скорость конкретного типа ЛА, определяют допустимый угол наклона траектории посадки, определяют текущий угол наклона заданной траектории посадки, которую формируют относительно ВКГРМ, перемещаемого в пространстве по вертикали от начального положения, соответствующего начальной высоте и начальному углу наклона заданной траектории посадки, по направлению к ВПП таким образом, что расстояние от ВКГРМ по вертикали до ВПП прямо пропорционально текущей горизонтальной дальности от ЛА до ближнего торца ВПП, контролируют текущий угол наклона заданной траектории посадки, причем при достижении им значения соответствующего снижению ЛА с допустимой вертикальной скоростью, положение ВКГРМ относительно ВПП фиксируют. 4 ил.

Изобретение относится к области управления полетами планирующих беспилотных летательных аппаратов (БЛА) и может быть использовано при планировании их маршрутов и соответствующих траекторий. Техническим результатом является повышение эффективности управления планирующим беспилотным летательным аппаратом. Сущность способа заключается в заблаговременном расчете маневренных траекторий беспилотного летательного аппарата, фиксации координат их опорных точек во вспомогательной системе координат, которые затем задают в полетном задании вместе с данными для привязки вспомогательной системы координат к Земле в точке цели и используют в полете в качестве промежуточных точек наведения по методу требуемых ускорений. 2 ил., 3 табл.

Группа изобретений относится к способу и системе автоматического управления самолетом. Для автоматического управления самолетом при посадке используют сигналы радиовысоты, вертикальной скорости, формируют управляющий сигнал на руль высоты и на привод регулятора тяги двигателей, добавляют корректирующие сигналы компенсации влияния ветра на руль высоты и на привод регулятора тяги. Корректирующий сигнал на руль высоты основан на измерении разности путевой и приборной скорости. Корректирующий сигнал на привод регулятора тяги основан на измерении разности текущей и расчетной энергии самолета, определяемых на основе путевой и приборной скорости. Система автоматического управления самолетом на посадке содержит систему измерения параметров полета, устройства формирования управляющих сигналов на руль высоты и привод тяги двигателей соответственно. Система измерения параметров полета содержит радиовысотомер, датчик вертикальной скорости, датчик вертикальной перегрузки, датчик путевой скорости, датчик приборной скорости. Устройство формирования управляющих сигналов на руль высоты содержит блок формирования комплексного экспоненциального сигнала, два сумматора, программатор, дифференциатор, два блока коррекции высоты, два нелинейных преобразователя. Устройство формирования управляющего сигнала содержит пульт задания скорости, сумматор, нелинейный преобразователь, блок стабилизации тяги, блок расчета заданной энергии самолета, блок расчета текущей энергии самолета, компаратор. Обеспечивается требуемая точность посадки самолета. 2 н.п. ф-лы, 1 ил.

Группа изобретений относится к беспилотному летательному аппарату и способу предупреждения его столкновения с посторонним воздушным судном. Для предупреждения столкновения определяют положение постороннего воздушного судна относительно беспилотного летательного аппарата, измеряют угловую скорость постороннего воздушного судна в горизонтальной плоскости, определяют, оснащено ли постороннее воздушное судно системой TCAS, следуют по предварительно определенной траектории уклонения согласно полученному извещению от TCAS постороннего воздушного судна. В случае отсутствия системы TCAS у постороннего воздушного судна траекторию уклонения определяют самостоятельно. Беспилотный летательный аппарат для реализации способа предупреждения столкновения содержит приемоответчик режима S, запросчик приемоответчика, средства определения положения и угловой скорости постороннего воздушного судна, систему управления полетом. Обеспечивается возможность определения положения постороннего воздушного судна и уклонение от столкновения с ним. 2 н. и 9 з.п. ф-лы, 5 ил.

Способ автоматического совмещения продольной оси летательного аппарата с осью взлетно-посадочной полосы (ВПП) относится к области радиотехники и систем управления и может быть использовано при организации автоматического привода и посадки летательного аппарата на ВПП. Новым в способе автоматического совмещения продольной оси летательного аппарата с осью ВПП является размещение в плоскости ВПП вдоль ее оси нескольких ретрансляторов, каждый из которых своими антеннами первично принимает исходные высокочастотные колебания, сдвигает частоту этих колебаний на свою определенную частоту и вновь своими антеннами вторично излучает в направлении антенн первичного излучения, расположенных на плоскостях крыльев летательного аппарата. Двумя антеннами интерферометра летательного аппарата трансформированные высокочастотные колебания вторично принимают и смешивают с исходными высокочастотными колебаниями, в результате чего в каждом канале интерферометра летательного аппарата выделяют комбинационные низкочастотные составляющие разности исходных и трансформированных по частоте высокочастотных колебаний. Выделенные в каждом канале интерферометра низкие частоты равны частотам сдвига, вносимыми каждым из ретрансляторов. Измеряя разность фаз между выделенными в каждом канале низкими частотами, измеряют угол прихода радиоволн от каждого из ретрансляторов. Осуществляя управление летательного аппарата таким образом, что сигнал на выходе каждого из фазометров поддерживается на нулевом уровне, получаем совмещение продольной оси летательного аппарата с осью ВПП.
Наверх