Интегрированная инерциально-спутниковая система ориентации и навигации для морских объектов

Изобретение относится к области навигационного приборостроения морских подвижных объектов. Достигаемый технический результат изобретения - повышение точности и помехоустойчивости системы. Указанный результат достигается тем, что заявленная система содержит бескарданный инерциальный измерительный модуль (БИИМ) с измерительным блоком на инерциальных датчиках (микромеханических гироскопах, акселерометрах низкой точности) и магнитометрах, а также приемную аппаратуру спутниковой навигационной системы (ПА СНС) с фазовыми измерениями и разнесенными на соответствующей базе антеннами при выработке курса объекта. При этом в измерительный блок БИИМ дополнительно включают волоконно-оптический гироскоп навигационного класса точности с измерительной осью, ортогональной плоскости палубы, причем БИИМ, кроме параметров ориентации (курс и углы качки), осуществляет дополнительно выработку составляющих вектора линейной скорости и координат места объекта. В вычислительный модуль системы дополнительно поступают данные от судового лага для формирования совместно с данными от блока магнитометров соответствующих разностных измерений и их обработки с целью реализации автономного режима работы системы; при этом в вычислительном модуле системы дополнительно осуществляют оценку погрешностей БИИМ по составляющим вектора линейной скорости, а также оценку дрейфов микромеханических гироскопов и волоконно-оптических гироскопов (ВОГ) и их подачу по обратной связи в БИИМ для коррекции.8 ил.

 

Изобретение относится к области навигационного приборостроения морских подвижных объектов.

Одной из проблем на пути создания малогабаритной интегрированной системы ориентации и навигации (ИСОН) для морских объектов на базе бескарданного инерциального измерительного модуля (БИИМ), содержащего измерительный блок (ИБ) низкого уровня точности (например, на микромеханических гироскопах (ММГ), нестабильность дрейфов которых составляет 0,01%) и приемную аппаратуру спутниковых навигационных систем (ПА СНС), является проблема обеспечения требований по точности выработки курса. Так, для обеспечения навигационной безопасности плавания морских судов требования по курсу составляют: ±0.75° sec φ - установившаяся погрешность для неподвижного основания и ±(2…3)° - при маневрировании в широтах φ≤60° (согласно резолюции ИМО А.424(Х1) от 15.11.1979 и А.821 (ХIХ) от 23.11.1995 для гирокомпасов).

Проблему обеспечения требований по курсу в ИСОН с БИИМ низкого уровня точности в последнее время пытаются решить, в частности, за счет создания для подвижных объектов ПА СНС с фазовыми измерениями и разнесенными антеннами.

Способы определения параметров ориентации объекта, основанные на использовании в ПА СНС фазовых измерений с разнесенных на объекте антенн, приведены в заявке РФ №98118543 на выдачу патента на изобретение; патентах РФ №2215299; №2276384.

Известна интегрированная система Seapath 200 норвежской фирмы Seatex AS для морских судов, которая использует мультиантенную ПА СНС с фазовыми измерениями на несущей частоте ([http://www.km.kongsberg.com]).

Из отечественных разработок следует выделить аналогичную мультиантенную ПА СНС МРК-32, использующую фазовые измерения (разработка Красноярского государственного технического университета и НИИ радиотехники [http://www.krtz.su]).

Известны схемы построения ИСОН, например, описанные в:

- ([http://www.km.kongsberg.com]);

- Интегрированная инерциально-спутниковая система ориентации и навигации с разнесенными антеннами // Сб.: Интегрированные инерциально-спутниковые системы навигации // СПб: изд-во ФГУП ЦНИИ «Электроприбор», 2001, С.222-229;

- Интегрированная система спутниковой и инерциальной навигации: экспериментальные результаты и применение к управлению мобильными роботами// Гироскопия и навигация, 2007, №1(56), С.16-28.

В качестве ближайшего аналога (прототипа) предлагаемой ИСОН принимается система, описанная в ([http://www.km.kongsberg.com]).

В этих системах используется мультиантенная ПА СНС с фазовыми измерениями, обеспечивающая с определенной дискретностью автономную выработку параметров ориентации объекта в течение всего времени движения объекта (плавания судна).

Определение параметров ориентации объекта ПА СНС с использованием фазовых измерений, как известно, требует решения проблемы их неоднозначности в условиях движения объекта [Степанов О.А., Кошаев Д.А. Исследование методов решения задачи ориентации с использованием спутниковых систем // Гироскопия и навигация, 1999, №2(25), С.30-55]. Однако решение данной задачи не всегда обеспечивается в условиях маневрирования судна и наличия помех.

Перечень фигур и чертежей

На фигуре 1 изображена структурная схема предлагаемой ИСОН. Фигуры 2а-2г и 3а-3в иллюстрируют результаты оценки точности ИСОН путем решения задачи моделирования ИСОН по данным, имитирующим показания чувствительных элементов ИСОН, спутниковой аппаратуры, лага, и по реальным данным ходовых испытаний на автомобиле инерциального модуля.

На фигуре 1 приняты следующие обозначения:

1 - модуль приемников сигналов спутниковых навигационных систем;

2 - ИБ на ММД и магнитометрах, входящий в состав БИИМ;

3 - вычислитель БИИМ;

4 - вычислительный модуль интегрированной системы;

5 - приемник дифференциальных поправок (Differential Global Positioning System, DGPS);

6 - измеритель относительной скорости судна (лаг);

7 - высокоточный волоконно-оптический гироскоп (ВОГ), входящий в состав БИИМ;

ММГ - микромеханический гироскоп;

К - курс от инерциального модуля;

Kmk - курс магнитный;

ψ,θ - углы качки;

∇h - вертикальные перемещения судна;

Δ K ^ , Δ ψ ^ , Δ θ ^ - оценки погрешностей по курсу и углам качки;

GPS - спутниковая глобальная система позиционирования.

Цифрами в скобках обозначены соответствующие входы и выходы блоков.

На фигурах 2а-2г и 3а-3в приняты следующие обозначения:

ΔК, Δψ, Δθ - погрешности ИСОН по курсу и углам качки;

C D ˜ K m - погрешности оценки смещения нуля курса, вырабатываемого по данным блока магнитометрических датчиков;

C D ˜ r x b , C D ˜ r y b , C D ˜ r z b - погрешности оценок смещений нулей ММГ (оси xb, yb) и ВОГ (ось zb);

C D ^ r x b , C D ^ r y b , C D ^ r z b - оценки смещений нулей ММГ (оси xb, yb) и ВОГ (ось zb).

К недостаткам принятой за прототип схемы построения ИСОН следует отнести необходимость одновременного и непрерывного наблюдения в течение всего времени плавания судна группировки навигационных спутников (НСi, i - индекс спутника) с целью разрешения проблемы неоднозначности фазовых измерений. Невыполнение данного требования в условиях маневрирования судна приводит к сбоям в выходных данных ПА СНС и, следовательно, к существенным погрешностям ИСОН по курсу.

Задачей изобретения является повышение точности и помехоустойчивости ИСОН, содержащей БИИМ с измерительным блоком на «грубых» датчиках типа ММГ и микромеханических акселерометрах (ММА) и блоке магнитометров, а также ПА СНС с фазовыми измерениями и разнесенными на соответствующей базе антеннами, в выработке курса объекта.

Поставленная задача решается тем, что:

- в БИИМ, содержащий ИБ на микромеханических датчиках и магнитометрах (ИБ на ММД и магнитометрах) (оси: хb, yb, zb; при этом ось zb - ортогональна плоскости палубы), по оси zb дополнительно вводится гироскоп навигационного класса - датчик угловой скорости, например, ВОГ;

- БИИМ кроме параметров ориентации (курс и углы качки) осуществляет дополнительно выработку составляющих вектора линейной скорости и координат места объекта;

- в вычислительный модуль системы дополнительно поступают данные от судового лага для формирования совместно с данными от блока магнитометров соответствующих разностных измерений (см. формулы 2, 6) и их обработки с целью реализации автономного режима работы ИСОН;

- данные встроенных в корпусе БИИМ двух плат приемников СНС используются при начальном запуске ИСОН в течение порядка 5…10 мин с целью определения начального значения курса судна и калибровки ВОГ, а также периодически в процессе эксплуатации при движении судна с постоянным курсом и видимости навигационных спутников используется информация от приемников СНС. Следует заметить, что всегда имеется возможность, например, в условиях ледовой обстановки (когда лаг функционирует неэффективно) или при отсутствии на данном судне информационной связи ИСОН с лагом, привлечь вместо данных лага данные СНС по скорости.

Предлагаемая структура ИСОН (см. фиг.1) включает:

- БИИМ, содержащий измерительный блок 2 (ИБ на ММД и магнитометрах), ВОГ навигационного класса с измерительной осью, ортогональной плоскости палубы (блок 7), вычислитель БИИМ (блок 3);

1 - приемники СНС с фазовыми измерениями и разнесенными на соответствующей базе антеннами;

4 - вычислительный модуль интегрированной системы, входы которого соединены с выходами БИИМ по курсу и курсу магнитному, углам качки, по составляющим вектора линейной скорости и координатам места, а также с выходами приемников СНС 1 по навигационным параметрам и фазе несущей сигналов, принимаемых от навигационных спутников. Кроме того, вычислительный модуль 4 интегрированной системы имеет дополнительный вход для приема данных от судового лага 6. На выходе вычислительного модуля 4 формируются оценки погрешностей БИИМ по курсу, курсу магнитному, углам качки, скорости, координатам места, а также дрейфам ММГ и ВОГ для использования их в обратной связи с целью коррекции БИИМ.

Отличие предлагаемой схемы ИСОН от прототипа заключается:

- во введении в состав БИИМ ВОГ навигационного класса точности с измерительной осью, ортогональной плоскости палубы (блок 7);

- в выработке БИИМ дополнительно составляющих вектора линейной скорости, координат места объекта и подачи их на вход вычислительного модуля интегрированной системы 4;

- в наличии у вычислительного модуля интегрированной системы (блок 4) дополнительного входа для приема данных судового лага (блок 6);

- в оценке погрешностей БИИМ по составляющим вектора линейной скорости, а также дрейфам ММГ и ВОГ и использовании их в обратной связи с целью коррекции БИИМ;

- в использовании данных модуля приемников СНС 1 с фазовыми измерениями и разнесенными на соответствующей базе антеннами, предназначенных для выработки курса судна только для начальной выставки БИИМ по курсу в течение нескольких минут и периодически в море при движении постоянным курсом и отсутствии помех.

Алгоритмическое обеспечение вычислителя БИИМ 3 и вычислительного модуля системы 4 практически аналогично алгоритмам работы соответствующих блоков прототипа. Отличие блока 3 от прототипа заключается в обработке дополнительных данных ВОГ 7. Отличие вычислительного модуля интегрированной системы 4 от аналогичного блока в прототипе заключается в обработке дополнительных разностных измерений, формируемых с использованием данных лага 6, которые поступают на вход вычислительного модуля 4 в автономном режиме работы интегрированной системы.

Сущность предлагаемого решения сводится к следующему.

Известно, что при запуске гирогоризонткомпаса (ГГК) или инерциальной курсовертикали (в авиации) система проходит два режима: режим горизонтирования (построение вертикали места) и режим гирокомпасирования (нахождение плоскости меридиана места). Для этого привлекаются разностные скоростные измерения:

z V E = V E и м V E e t , z V N = V N и м V N e t ( 1 )

где V i и м , V i e t (i=E,N) - составляющие линейной скорости, поступающие соответственно от инерциального модуля (ГГК) и внешнего измерителя (ПА СНС или лага). Для неподвижного объекта значение эталонной скорости равно нулю.

При использовании скорости Vл от лага имеем

z V E V E и м V л sin K , z V N V N и м V л cos K ( 2 )

Данные измерения можно приближенно представить в виде

z V E = Δ V E + ν V N R ( β ˙ ω N Δ K + δ E ) + ν V N , z V E = Δ V E + ν V E R ( γ ˙ δ N ) + ν V E , ( 3 )

где ΔVE,V - погрешности выработки системой составляющих линейной скорости судна; νVi - шумы измерений (при использовании лага включают морские течения, неизмеряемую поперечную составляющую вектора линейной скорости судна и инструментальные погрешности лага); β, γ - погрешности построения вертикали места, содержащие шулеровские колебания и характеризующие погрешности выработки ГГК углов качки (Δψ, Δθ); ΔК - погрешность по курсу; δE, δN - дрейфы инерциального модуля в проекциях на географические оси; R - радиус Земли; ωN - проекция абсолютной скорости вращения навигационного сопровождающего трехгранника с географической ориентацией осей на собственную ось, образуемую при пересечении плоскости меридиана места и плоскости горизонта и направленную на географический север.

Известно, что наличие в измерениях (3) слагаемых, пропорциональных β ˙ , γ ˙ , обеспечивает при формировании соответствующих управлений в ГГК реализацию режима горизонтирования (жесткое демпфирование шулеровских колебаний в погрешностях вертикали в течение 1…2 мин). Присутствие же слагаемого ωNΔK в z V N (где ωN=Ωcosφ+VE/R, Ω - угловая скорость суточного вращения Земли) обеспечивает в ГГК реализацию режима гирокомпасирования (время переходного процесса при минимизации погрешности по курсу обычно составляет около 10…15 мин.).

Однако в режиме гирокомпасирования начальная погрешность ГГК по курсу списывается только до уровня Δ K ¯ = δ ¯ E / ω N , обусловленного значением «восточного» дрейфа (при Δ K ¯ 1 0 в средних широтах). При этом изменчивость погрешности по курсу зависит также и от дрейфа δ ¯ H инерциального модуля вокруг вертикальной оси:

Δ K ˙ = ω N β ω E γ + 1 R t g φ Δ V E + ( Ω cos φ + V E R cos 2 φ ) Δ φ + δ H + u α , ( 4 )

где uα - управление в азимутальном канале, обеспечивающее режим гирокомпасирования.

Согласно приведенному выражению (3) «восточный» дрейф ГГК на фоне начальной погрешности ΔK0 по курсу является ненаблюдаемым, то есть из скоростных измерений z V N нельзя оценить «восточный» дрейф ГГК при наличии начальной погрешности по курсу.

Обычно данная проблема решается следующим образом:

- в составе ГГК используются достаточно точные гироскопы (0.01…0.03°/ч), чтобы исключить необходимость калибровки «восточного» дрейфа при запуске системы. Однако использование точных гироскопов приводит к существенной стоимости системы;

- при использовании в ГГК менее точных гироскопов (1…3°/ч) применяется модуляционное вращение измерительного блока для компенсации дрейфов гироскопов, что увеличивает массогабаритные характеристики, стоимость и снижает надежность;

- применяются прямые курсовые измерения с использованием мультиантенной ПА СНС для непрерывной коррекции курса в случае применения инерциального модуля на грубых гироскопах типа ММГ, что приводит к снижению уровня безопасности плавания в стесненных водах.

В предлагаемом решении данная проблема разрешается следующим образом:

- в вычислительном модуле интегрированной системы 4 формируются разностные фазовые измерения путем сравнения расчетных s i , i + 1 b 1 ( R ) (вычисленных в блоке 4 по данным БИИМ и эфемерид навигационных спутников) и измеренных s i , i + 1 b 1 ( z ) (по данным приемников СНС от разнесенных на базе антенн блока 1) значений вторых разностей фазовых измерений

Z i , i + 1 b 1 = s i , i + 1 b 1 ( R ) s i , i + 1 b 1 ( z ) , ( 5 )

(данные измерения содержат в основном погрешности решения вычислителем БИИМ 3 задачи ориентации объекта, неоднозначности вторых разностей фазовых измерений, погрешности ориентации базы и шумы измерений);

- разностные скоростные измерения z V E , z N N (2), формируемые как в условиях неподвижного судна (значение эталонной скорости равно нулю), так и при его движении с использованием данных лага 6, используются в вычислительном модуле 4 для непрерывного обеспечения функционирования режимов горизонтирования и гирокомпасирования. При этом (после оценки и коррекции начальной погрешности по курсу до уровня Δ K ˜ 0 , смещения нуля ВОГ) по данным скоростных измерений при наличии маневрирования по курсу обеспечивается наблюдаемость и оценка текущей погрешности по курсу и дрейфов δxb, δyb ММГ измерительного блока 2;

- по данным измерительного блока 2, высокоточного ВОГ 7 и вычислителя БИИМ 3 в вычислительном модуле 4 интегрированной системы формируется курсовое измерение

z М Д = K K m k , ( 6 )

где К, Кmk - курс от инерциального модуля измерительного блока 2 и высокоточного ВОГ 7 и курс магнитный - от МД измерительного блока 2, формируемый по данным магнитометров.

Для условий морского объекта вследствие ограниченности углов качки «восточный» дрейф δE предлагаемой ИСОН будет обусловлен в основном дрейфами ММГ измерительного блока 2 по осям xb, yb, а дрейф δH вокруг вертикальной оси - дрейфом δzb ВОГ 7.

Измерения (5) совместно с измерениями (2) и (6) используются вычислительным модулем 4 интегрированной системы в течение 5…10 мин при запуске системы для оценки и коррекции начальной погрешности ΔK0 по курсу, калибровки дрейфа ВОГ 7 и оценки систематической погрешности ΔКmk (склонения и девиации) магнитного курса магнитометра измерительного блока 2.

В процессе плавания судна измерения (2) и (6) при учете смещения ΔKmk МД, оценка которого ранее была получена с использованием данных СНС в вычислительном модуле 4, обеспечивают устойчивую работу ИСОН в автономном режиме. При этом осуществляется оценка и коррекция погрешности БИИМ по курсу, оценка дрейфов ММГ измерительного блока 2 и ВОГ 7.

Фазовые измерения блока 1 ПА СНС привлекаются периодически в процессе эксплуатации в условиях отсутствия «сбоев» (как правило, при движении судна с постоянным курсом) и видимости навигационных спутников для уточнения смещения ΔKmk курса магнитного от МД измерительного блока 2.

Произведено моделирование на ПК алгоритмов работы ИСОН с оценкой погрешностей при следующих исходных данных:

движение судна:

Vo=20 м/с, K0=40°, Кr=1.5°, Tk=15 с (рысканье); ψ0=3° (дифферент); ψr=3°, Тψ=12 с (килевая качка); θ0=6° (крен); θr=20°, Tψ=10 с (бортовая качка); модель погрешностей ММА:

- нестабильность масштабных коэффициентов линейных акселерометров - случайные величины с уровнем 1%;

- смещение нулей линейных акселерометров - случайные величины с уровнем 0.1 м/с2;

- дрейфы нулей линейных акселерометров - марковские процессы первого порядка σ1ai=0.03 м/с2, µai=1/180 (с-1);

- флуктуационные составляющие погрешностей акселерометров в проекциях на оси ИБ - дискретные белые шумы σ2аi=0.3 м/с2 на частоте 100 Гц;

- неортогональности измерительных осей - 1 угл. мин;

модель погрешностей ММГ:

- нестабильность масштабных коэффициентов - случайные величины с уровнем 1%;

- систематические составляющие дрейфов, которые характеризуют смещение нулей от пуска к пуску - случайные величины с уровнем 300°/ч;

- случайные составляющие дрейфов, которые характеризуют дрейф нуля в пуске - марковские процессы первого порядка σ1gi=100°/ч, µgi=1/180 (с-1);

- флуктуационные составляющие дрейфов - дискретные белые шумы σ2gi=300°/ч; на частоте 100 Гц;

модель погрешностей ВОГ ВГ035ПД (ЗАО «Физоптика»):

- смещение нуля от пуска к пуску - до 10°/ч;

- нестабильность нуля в пуске 0.3…1.0°/ч, Ткор.=180 с (при термокомпенсации);

- шумовая составляющая около 7°/ч на частоте 100 Гц;

- погрешность масштабного коэффициента на уровне 0.1%;

- неортогональность измерительной оси (осям ИБ на ММД) - 1 угл.мин;

погрешности блока магнитометров в выработке курса магнитного:

- смещение нуля - случайная величина с уровнем 5 град.;

- случайная составляющая - марковский процесс первого порядка σ1mk=0.1 град., µgi=1/180 (с-1);

- флуктуационная составляющая - дискретный белый шум σ2mk=5 град. на частоте 100 Гц;

погрешности лага и морские течения:

- инструментальные погрешности лага аппроксимированы дискретными белыми шумами σл=0.1 м/с;

- северная и восточная составляющие скорости течения VTE, VTN - марковские процессы первого порядка σT=0.2…0.3 м/с, µT=1/5400 с-1;

начальные погрешности системы:

Δ K ˜ 0 = 0.5 0 ; β0=-0.3°; γ0=0.3°;

ΔVE0=0.1 м/с; ΔVN0=-0.1 м/с; ΔVH0=0.1 м/с;

Δφo=30 м; Δλo=-30 м; Δho=0.5 м;

формирование и обработка в фильтре Калмана вычислительного модуля 4 интегрированной системы фазовых измерений от приемников СНС осуществлялась по слабосвязанной схеме, т.е. по данным СНС предварительно вычислялись текущие значения курса судна.

Расчетная модель погрешностей

С учетом принятых допущений расчетная модель погрешностей ИСОН будет иметь вид

x k + 1 = Ф k + 1 / k x k + Г k + 1 w k , z k + 1 = H k + 1 x k + 1 + ν k + 1 , ( 6 )

где

x T = [ Δ K β γ Δ V E Δ V N Δ V H Δ ϕ Δ λ Δ h Δ ω ¯ x b Δ ω ¯ y b Δ ω ¯ z b Δ a ¯ x b Δ a ¯ y b Δ a ¯ z b Δ M g x Δ M g y Δ M g z V T E V T N Δ K ¯ m k ] - вектор состояния системы, ΔK, β, γ - погрешности выработки курса и построения вертикали места; ΔVE, ΔVN, ΔVH - погрешности в выработке составляющих вектора относительной линейной скорости объекта в проекциях на географические оси; Δφ, Δλ, Δh - погрешности выработки географических координат места (по широте, долготе и высоте); Δ ω ¯ i ( i = x b , y b , z b ) - смещения нулей ММГ и ВОГ; Δ a ¯ i ( i = x b , y b , z b ) - смещения нулей ММА; ΔMgi(i=xb,yb,zb) - систематические составляющие погрешностей масштабных коэффициентов ММГ и ВОГ; VTi(i=E,N) - составляющие морских течений; Δ K ¯ m k - систематическая погрешность МД; Фk/k+1 - переходная на шаге формирования измерений матрица состояния системы; Гk+1≅Фk+1·dT - матрица, определяющая влияние вектора входных шумов wk с ковариациями Qk; Нk+1 - матрица измерений, соответствующая уравнениям (2), (5) и (6).

Результаты решения модельной задачи (при имитации показаний ВОГ ВГ035ПД) приведены на фиг.2а-2г. Моделирование проводилось при задании следующего режима работы ИСОН: режим гирокомпасирования (10 мин - с использованием GPS), затем автономный режим (с лагом и МД).

Объектовые испытания

Для оценки точности автономного режима ИСОН привлекались также реальные данные ходовых испытаний на автомобиле инерциального модуля на основе ММД (фирма Analog Devices), ВОГ ВГ910Ф (ЗАО «Физоптика») и ВОГ навигационного класса (фирма IXSEA). Блок магнитометров отсутствовал.

Массивы данных были записаны на частоте 100 Гц.

Данные лага с учетом влияния морских течений имитировались так же, как и при решении модельной задачи.

Обработка массивов данных производилась по дискретным алгоритмам автономного режима работы ИСОН, реализованным в пакете MATLAB (Simulink).

Для эталонирования по курсу и углам качки использовалась спутниковая мультиантенная ПА СНС МРК-32 (разработка Красноярского государственного технического университета и НИИ радиотехники [http://www.krtz.su/]).

Результаты испытаний

Результаты обработки данных испытаний приведены на фиг.3а-3в (решение осуществлялось на ПК в пакете MATLAB (Simulink)). Моделирование проводилось при задании следующего режима работы ИСОН: режим гирокомпасирования (10 мин - с использованием ПА СНС), затем автономный режим с лагом.

Таким образом, предложенное устройство, работающее в автономном режиме, обеспечивает устойчивую выработку курса без использования данных ПА СНС в течение длительных интервалов времени с погрешностью, удовлетворяющей требованиям Морского и Речного Регистров.

Кроме того, нет необходимости в непрерывном использовании мультиантенной ПА СНС для выработки курса судна в процессе его плавания (что характерно для прототипа), что обеспечивает повышение уровня безопасности плавания в стесненных водах (узкостях, прибрежной зоне, в гаванях с интенсивным движением), где возможны частые «сбои» ПА СНС из-за помех при маневрировании.

Интегрированная инерциально-спутниковая система ориентации и навигации для морских объектов, содержащая модуль приемников сигналов спутниковых навигационных систем (СНС) с разнесенными на соответствующих базах антеннами, модуль приема дифференциальных поправок по навигационным параметрам, вычислительный модуль интегрированной системы и бескарданный инерциальный измерительный модуль (БИИМ), состоящий из измерительного блока на «грубых» микромеханических гироскопах и акселерометрах, блока магнитометров и вычислителя БИИМ, при этом третий выход модуля приемников сигналов СНС соединен со входом измерительного блока и вторым входом вычислительного модуля интегрированной системы, выход измерительного блока соединен с первым входом вычислителя БИИМ, первый вход вычислительного модуля интегрированной системы соединен с первым выходом вычислителя БИИМ по курсу и углам качки, третий его вход соединен со вторым выходом модуля приемников сигналов СНС по измеренной фазе несущей сигналов от навигационных спутников, четвертый его вход соединен с первым выходом модуля приемников сигналов СНС по навигационным параметрам, пятый вход соединен с приемником дифференциальных поправок по навигационным параметрам, первый и второй выходы вычислительного модуля интегрированной системы по координатам и скорости, а также первый и второй выходы вычислительного модуля БИИМ по курсу, углам качки и вертикальным перемещениям соединены с интерфейсами потребителей, при этом третий и четвертый выходы вычислительного модуля интегрированной системы по оценкам погрешностей БИИМ по курсу и углам качки соединены со вторым и третьим входами вычислителя БИИМ, отличающаяся тем, что БИИМ дополнительно содержит волоконно-оптический гироскоп навигационного класса с измерительной осью, ортогональной плоскости палубы объекта, выход которого соединен с четвертым входом вычислителя БИИМ, а в вычислительный модуль интегрированной системы дополнительно введены шестой вход для приема данных судового лага и седьмой вход, который соединен с третьим выходом вычислителя БИИМ по скорости и координатам места, при этом дополнительные пятый и шестой выходы вычислительного модуля интегрированной системы по оценкам дрейфов микромеханических гироскопов и волоконно-оптического гироскопа и оценкам погрешностей БИИМ по координатам и скорости соединены с пятым и шестым входами вычислителя БИИМ.



 

Похожие патенты:

Изобретение относится к радиопеленгации и может быть использовано в комплексах радиоконтроля для определения местоположения источников излучения коротковолнового диапазона с ионосферным распространением радиоволн.

Изобретение относится к вычислительной технике и может быть использовано при формировании эталонной информации (изображений) для корреляционно-экстремальных навигационных систем летательных аппаратов (ЛА).

Изобретение относится к радиотехнике и может быть использовано в многопозиционных радиотехнических системах с подвижными пунктами приема, устанавливаемыми, например, на летательных аппаратах.

Изобретения могут быть использованы для определения угловой ориентации летательных аппаратов (ЛА) в пространстве и на плоскости. Достигаемый технический результат - повышение точности измерения углов крена, азимута и тангажа ЛА.

Изобретение может быть использовано в загоризонтных радиолокаторах. Достигаемый технический результат - повышение точности измерения высот и упрощение устройства.

Изобретение относится к области определения местоположения источников радиоизлучений. Достигаемый технический результат изобретения - определение координат местоположения источника радиоизлучения известной интенсивности в пассивном режиме в условиях отсутствия взаимной временной синхронизации пунктов приема.

Изобретение относится к области радиотехники, а именно к беспроводной связи, и может быть использовано в системе определения местоположения. Технический результат заключается в предоставлении информации, применимой для выполнения операций определения местоположения для обеспечения возможности определения местоположения.

Изобретение предназначено для определения координат воздушных объектов (ВО) по сигналам системы радиолокационного опознавания (РЛО) при отсутствии приема сигналов радиолокационных запросчиков (РЛЗ), местоположение которых известно.

Изобретение относится к системам отслеживания, выполненным с возможностью отслеживать продукт и/или деятельность. Технический результат заключается в уменьшении искажений и фальсификаций в системе отслеживания.

Изобретение относится к навигационному приборостроению, в частности к устройствам совместной обработки результатов измерения курса ГНСС-компасом и гирогоризонткомпасом, и может быть использовано в навигационных комплексах мобильных средств (МС).

Способ предназначен для определения оценок местоположения объектов на дорожной сети (ДС). Достигаемый технический результат - обеспечение возможности однозначного определения подвижного объекта, привязанного к ДС. Сущность изобретения состоит в следующем. Измеряют угол прихода электромагнитной волны (пеленг) αизм(t) от объекта из одного измерительного пункта (ИП), положение которого известно, при этом сигналы, излучаемые объектом, содержат его опознавательный код. Одновременно с излучением сигнала на объекте измеряют скорость νизм его перемещения вдоль элемента дорожной сети (ЭДС). Сигнал, пропорциональный измеренной скорости, кодируют и полученный код передают по радиоканалу передачи данных на ИП, на котором после приема и декодирования получают значение измеренной скорости. Через интервал времени длительностью Δt повторно измеряют пеленг αизм(t+Δt), идентифицируя его по опознавательному коду объекта. Определяют длину пройденного пути Δe=Δtνизм за время Δt. По измеренному пеленгу αизм(t) и параметрическим моделям пеленга αi(e),, заданным в функции натурального параметра, для каждого ЭДС определяют значения натурального параметра , , соответствующие точкам пересечения линии положения для измеренного пеленга αизм(t) и ЭДС. Для каждого из этих элементов определяют возможные значения пеленгов , , соответствующие перемещению объекта на расстояние Δe, и из условия минимального рассогласования между ними и повторно измеренным пеленгом αизм(t+Δt) определяют номер i* ЭДС, на котором находится объект. Определяют координаты местоположения объекта как координаты точки пересечения линии положения, соответствующей измеренному пеленгу (αизм(t) или αизм(t+Δt)) и i*-го ЭДС. 4 ил.

Изобретение относится к гидроакустическим системам навигации подводных аппаратов относительно судна обеспечения и может быть использовано для определения координат буксируемого подводного аппарата (БПА), осуществляющего гидролокацию рельефа дна. Достигаемый технический результат изобретения - уменьшение погрешности определения координат буксируемого подводного аппарата с одновременным снижением трудозатрат при выполнении подводных исследовательских работ. Указанный результат достигается за счет того, что система навигации буксируемого подводного аппарата содержит установленные на буксирующем судне GPS приемник, систему управления, многолучевой эхолот (МЛЭ), набортный блок гидролокатора, антенну подводной навигации и установленные на БПА гидролокатор бокового обзора (ГБО), управляющее устройство и транспондер подводной навигации, при этом путем фазовой пеленгации определяются координаты БПА относительно места расположения антенны GPS приемника на буксирующем судне, затем система управления производит корректировку координат БПА путем кросскорреляционной обработки изображений рельефа дна, полученных с помощью ГБО и МЛЭ, скорректированные координаты БПА пересчитываются в географические координаты. 5 ил.

Изобретение относится к обнаружению сигналов с линейной частотной модуляцией (ЛЧМ). Достигаемый технический результат - повышение достоверности обнаружения ЛЧМ-сигналов и возможность определения их характеристик в случае обнаружения. Указанный результат достигается тем, что в заявленном способе принимают пространственно разнесенные сигналы, излучаемые множеством радиопередатчиков, выполняют ЛЧМ-гетеродинирование суммарного сигнала и вычисляют быстрое преобразование Фурье (БПФ), с помощью сумматора в течение сеанса обнаружения парциально накапливают отсчеты БПФ, далее среди выходов сумматора находят максимальное значение rh и соответствующий ему индекс jp, по заданному значению вероятности ложной тревоги вычисляют пороговое значение rhпор, устанавливают флаг и, если sобн=«Обнаружен», по величине индекса jp определяют значения стартового времени обнаруженного ЛЧМ-сигнала и длины его группового пути распространения. 3 ил.

Изобретение относится к области обнаружения в атмосфере объектов, преимущественно малозаметных, и их координатометрии. Согласно способу дальнего оптического обнаружения по признакам конденсационного следа в атмосфере обеспечивают оптимальные условия обзора с размещением приемных постов угломерной системы координатометрии на бортах барражирующих выше облаков беспилотных вертолетов. При этом скорость перемещения фронта, альбедо и форма искусственного облака представляют его как конденсационный след, а по измеренным углам фронта конденсационного следа угломерным методом определяются местоположение и параметры движения объекта. Техническими результатами являются реализация дальнего пассивного местоопределения и расчета параметров движения объектов с минимальными ошибками, расширение зоны наблюдения. 2 н.п. ф-лы, 4 ил.

Изобретение относится к радиотехнике и может быть использовано в системах контроля воздушного, наземного и морского пространства с использованием прямых и рассеянных подвижными объектами радиосигналов, излучаемых множеством неконтролируемых и контролируемых передатчиков радиоэлектронных систем различного назначения. Достигаемым техническим результатом изобретения является повышение вероятности обнаружения далеких и слаборассеивающих объектов. Повышение вероятности обнаружения достигается за счет применения новых операций поляризационно-чувствительной нелинейной итерационной обработки радиосигналов, обеспечивающих повышение чувствительности и динамического диапазона при формировании компонент горизонтальной и вертикальной поляризации двухкомпонентного комплексного частотно-временного изображения радиосигналов, рассеянных объектами в анализируемой области доплеровских частот и временных задержек. 1 ил.

Изобретение относится к радиотехнике, в частности к радиопеленгации. Достигаемый технический результат - повышение точности пеленгации при приеме радиосигналов источника радиоизлучения и одновременно отраженных сигналов с использованием антенных систем (АС), состоящих из слабонаправленных элементов (вибраторов). Повышение точности пеленгации достигается за счет использования эффективного способа идентификации параметров АС, состоящего в том, что первоначально с помощью преобразования Фурье определяются амплитуды и разность по времени приходов сигналов, входящих в суммарный сигнал, затем находятся по аналитическому выражению сигналов значения фаз сигналов, по которым составляется система алгебраических уравнений для определения амплитуды, азимутальных и угломестных пеленгов и начальной фазы каждого наложившегося сигнала. 4 ил.

Изобретения относятся к радиотехнике и могут быть использованы для определения угловой ориентации летательных аппаратов (ЛА) в пространстве и на плоскости. Достигаемый технический результат - повышение точности оценивания углов крена α, азимута θ и тангажа β ЛА. Указанный результат достигается тем, что выделяют три антенных элемента (АЭ) из их общего числа M, лежащие в одной плоскости, определяют их предварительные координаты, задают необходимую точность е определения координат АЭ, на основе метода Гауса-Зейделя и золотого сечения уточняют координаты АЭ путем максимизации целевой функции BΣ. Поиск максимума BΣ для каждой комбинации αi, θi, βi осуществляют до тех пор, пока длина интервала золотого сечения не станет меньше наперед заданного значения е. Аналогично последовательно методом одномерной оптимизации на основе золотого сечения с точностью е определяют координаты всех M АЭ антенной решетки и далее - уточненные эталонные значения разностей фаз Δφэт.m0(αi, βi, θi). Устройство, реализующее способ, содержит M идентичных приемных каналов, M≥3, блок формирования опорных сигналов, тактовый генератор, S корреляторов, S блоков анализа, S+1 коммутатор, блок начальной установки корреляторов, радионавигатор, блок управления, S блоков вычитания, блок памяти, первый и второй вычислители-формирователи, блок принятия решения, первый и второй вычислители, блок индикации и четыре входных установочных шины. Перечисленные средства определенным образом соединены между собой. 2 н.п. ф-лы, 18 ил.

Изобретение относится к радиотехнике и может быть использовано в системах контроля воздушного, наземного и морского пространства с использованием прямых и рассеянных подвижными объектами радиосигналов, излучаемых множеством неконтролируемых и контролируемых передатчиков радиоэлектронных систем различного назначения. Достигаемый технический результат изобретения - повышение вероятности поиска малоразмерных подвижных объектов. Указанный результат достигается за счет применения новых операций адаптивной обработки с обратной связью по полезному радиосигналу, обеспечивающих повышение чувствительности и динамического диапазона при формировании компонент горизонтальной и вертикальной поляризации двухкомпонентного комплексного частотно-временного изображения радиосигналов, рассеянных объектами в анализируемой области доплеровских частот и временных задержек. 3 ил.

Изобретение относится к области радиотехники, а именно к системам радиоконтроля для определения местоположения источников радиоизлучения. Достигаемый технический результат - определение пространственных координат местоположения источников радиоизлучений (ИРИ) путем измерения его уровня сигнала с помощью двух стационарных постов радиоконтроля и одного мобильного в М точках (первый вариант) или двух мобильных постов радиоконтроля (второй вариант) в M1 и М2 точках их положения при независимом перемещении по нелинейной траектории без привлечения уравнений линий положения. Способ основан на сравнении отношений расстояний от точек измерения до местоположения источника радиоизлучения и обратных отношений измеренных уровней сигналов Для этого составляются мультипликативные функции разностей указанных отношений. Для обработки этих функций предложен дихотомический способ, в основе которого лежит принцип последовательного определения параметров местоположения ИРИ. 1 табл., 3 ил.

Изобретение относится к области навигации летательных аппаратов (ЛА) с использованием комплексного способа навигации, функционально объединяющего инерциальный способ навигации, спутниковый способ навигации и дальномерный способ навигации. Изобретение может быть использовано при осуществлении навигации высокодинамичных ЛА в сложных навигационных условиях. Новизна способа состоит в том, что формируют дополнительную базу данных, включающую диаграммы направленности антенны спутникового приемника и бортовых антенн приемопередатчика дальномерных сигналов, после приема сигналов навигационных спутников (НС) параллельно с определением навигационных параметров по спутниковому способу навигации (ССН) выделяют состав рабочего созвездия и угловые координаты НС, выделяют отношения сигнал/шум спутникового приемника и формируют корреляционную матрицу ошибок ССН, затем формируют векторы направления НС и определяют весовые коэффициенты НС из состава рабочего созвездия по ориентации ЛА, уточненному положению ЛА, угловым координатам НС и диаграмме направленности антенны спутникового приемника, корректируют состав рабочего созвездия спутников по весовым коэффициентам НС, корректируют навигационные параметры по откорректированному составу рабочего созвездия НС, далее формируют ориентированную корреляционную матрицу ошибок ССН, учитывающую ориентацию ЛА на основе откорректированного состава рабочего созвездия и учета весовых коэффициентов НС, параллельно по дальномерному способу навигации (ДСН) формируют корреляционную матрицу ошибок ДСН, формируют векторы направления и определяют весовые коэффициенты наземных радиомаяков (НРМ) из рабочего состава НРМ по ориентации ЛА, уточненному положению ЛА, координатам НРМ из рабочего состава НРМ и диаграмме направленности упомянутой бортовой антенны приемопередатчика, корректируют рабочий состав НРМ по весовым коэффициентам НРМ, формируют ориентированную корреляционную матрицу ошибок ДСН, учитывающую ориентацию ЛА, на основе откорректированного рабочего состава НРМ и учета весовых коэффициентов НРМ формируют соответственно ориентированные навигационные параметры по ССН и ДСН и используют их в бортовом вычислителе для формирования комплексных навигационных параметров, при этом выходные результаты представляют в виде уточненного положения ЛА, откорректированного с учетом ориентации ЛА. Предлагается вариант способа, использующий для определения данных по ориентации ЛА оператор ориентации, вычисляемый в инерциальном способе навигации. Предлагается также вариант способа, определяющий выбор диаграммы направленности антенны одной из бортовых антенн приемопередатчика дальномерных сигналов. Предлагается также вариант способа, учитывающий зависимость диаграммы многолучевости ЛА от ориентации ЛА и корректирующий определение положения ЛА в зависимости от уровня многолучевости. Результатом использования способа является повышение надежности и точности систем навигации, снижения вероятности авиационных катастроф. 3 з.п. ф-лы, 5 ил., 3 прил.
Наверх