Мр-томография, использующая параллельное получение сигнала



Мр-томография, использующая параллельное получение сигнала
Мр-томография, использующая параллельное получение сигнала

 

A61B6/00 - Приборы для радиодиагностики, например комбинированные с оборудованием для радиотерапии (рентгеноконтрастные препараты A61K 49/04; препараты, содержащие радиоактивные вещества A61K 51/00; радиотерапия как таковая A61N 5/00; приборы для измерения интенсивности излучения, применяемые в ядерной медицине, например измерение радиоактивности живого организма G01T 1/161; аппараты для получения рентгеновских снимков G03B 42/02; способы фотографирования в рентгеновских лучах G03C 5/16; облучающие приборы G21K; рентгеновские приборы и их схемы H05G 1/00)

Владельцы патента RU 2523687:

КОНИНКЛЕЙКЕ ФИЛИПС ЭЛЕКТРОНИКС Н.В. (NL)

Группа изобретений относится к медицине. При осуществлении способа подвергают импульсными последовательностями часть тела пациента, помещенного в исследуемый объем МР-устройства. Получают набор данных обзорного сигнала при низком разрешении изображений параллельно или последовательно через объемную РЧ-катушку и через набор матричных РЧ-катушек. Определяют профили пространственной чувствительности матричных РЧ-катушек при низком разрешении изображений. Получают набор данных опорного сигнала при промежуточном разрешении изображений параллельно через матричные РЧ-катушки. Определяют профили пространственной чувствительности матричных РЧ-катушек при промежуточном разрешении. Получают набор данных диагностического сигнала при высоком разрешении изображений параллельно через матричные РЧ-катушки. Реконструируют диагностическое МРТ-изображение из комбинации набора данных диагностического сигнала и из профилей пространственной чувствительности, определенных при промежуточном разрешении. MP-устройство включает в себя главную магнитную катушку, градиентные катушки, объемную РЧ-катушку, набор матричных РЧ-катушек, блок управления, блок реконструкции и блок визуализации. Носитель данных содержит компьютерную программу, исполняемую на МР-устройстве, которая содержит инструкции для осуществления этапов способа. Группа изобретений позволяет осуществить более быструю методику параллельной МР-томографии. 3 н. и 7 з.п. ф-лы, 2 ил.

 

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Изобретение относится к области магнитно-резонансной (МР) томографии (МРТ). Изобретение касается способа МР-томографии по меньшей мере части тела пациента, помещенного в исследуемый объем МР-устройства. Изобретение также относится к МР-устройству и к компьютерной программе, исполняемой на МР-устройстве.

ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ

Способы формирования МРТ-изображений, которые используют взаимодействие между магнитными полями и ядерными спинами для того, чтобы сформировать двумерные или трехмерные изображения, широко применяются в настоящее время, в частности, в области медицинской диагностики, так как при томографии мягких тканей они по многим аспектам превосходят другие способы томографии, не требуют ионизирующего излучения и обычно являются неинвазивными.

В общем, согласно способу магнитного резонанса тело подлежащего обследованию пациента располагается в сильном, однородном магнитном поле, направление которого в то же самое время определяет ось (обычно z-ось) системы координат, на которой основано измерение. Магнитное поле порождает различные уровни энергии у отдельных ядерных спинов в зависимости от интенсивности магнитного поля, которые могут быть возбуждены (спиновый резонанс) при использовании электромагнитного изменяющегося поля (РЧ-поля) заданной частоты (так называемая Ларморова частота или МР-частота). С макроскопической точки зрения распределение отдельных ядерных спинов порождает общее намагничивание, которое может отклоняться от состояния равновесия при использовании электромагнитного импульса соответствующей частоты (РЧ-импульса), когда магнитное поле проходит перпендикулярно z-оси, так что намагничивание осуществляет прецессионное движение вокруг z-оси. Прецессионное движение описывает поверхность конуса, угол апертуры которого упоминается как угол наклона вектора. Величина угла наклона вектора зависит от интенсивности и продолжительности используемого электромагнитного импульса. В случае так называемого 90°-го импульса спины отклоняются от z-оси до поперечной плоскости (угол наклона вектора в 90°).

После прерывания РЧ-импульса намагниченность релаксирует обратно до исходного состояния равновесия, в котором намагниченность в направлении z снова накапливается с первой постоянной T1 времени (время спин-решеточной или продольной релаксации), а намагниченность в направлении, перпендикулярном направлению z, релаксирует со второй постоянной T2 времени (время спин-спиновой или поперечной релаксации). Изменение намагниченности может быть обнаружено посредством принимающих РЧ-катушек, которые расположены и ориентированы в исследуемом объеме МР-устройства таким образом, чтобы изменение намагниченности измерялось в направлении, перпендикулярном z-оси. Затухание поперечной намагниченности сопровождается, например, после использования 90°-го импульса, переходом ядерных спинов (вызываемым неоднородностями локального магнитного поля) из упорядоченного состояния с той же самой фазой в состояние, в котором все фазовые углы однородно распределены (дефазировка). Дефазировка может быть скомпенсирована посредством перефокусирующего импульса (например, 180°-го импульса). Это порождает эхосигнал (спиновое эхо) в принимающих катушках. Для того чтобы реализовать пространственную разрешающую способность в теле, на однородное магнитное поле накладывают градиенты линейного магнитного поля, простирающиеся вдоль трех основных осей, что ведет к линейной пространственной зависимости частоты спинового резонанса. Тогда сигнал, захваченный в принимающих катушках, содержит компоненты различных частот, которые могут ассоциироваться с различными местами в теле. Данные сигнала, получаемые через принимающие катушки, соответствуют области пространственной частоты и называются данными k-пространства. Данные k-пространства обычно включают в себя многочисленные линии, полученные с помощью различного фазового кодирования. Каждая линия оцифровывается с помощью сбора некоторого числа выборок. Набор данных k-пространства преобразовывается в МРТ-изображение посредством преобразования Фурье.

В последнее время разработаны методики для ускорения получения МРТ-изображений, которые названы параллельным получением. Способами в этой категории являются SENSE (Прюсман и др., "SENSE: Sensitivity Encoding for Fast MRI" ("SENSE: кодирование чувствительности для быстрой МРТ"), Магнитный резонанс в медицине, 1999 г., 42 (5), 1952-1962) и SMASH (Содиксон и др. "Simultaneous acquisition of spatial harmonics (SMASH): Fast imaging with radio frequency coil arrays" ("Одновременное получение пространственных гармоник (SMASH): быстрая томография с помощью матриц радиочастотных катушек"), Магнитный резонанс в медицине, 1997 г., 38, 591-603). SENSE и SMASH используют данные k-пространства с недостаточной выборкой, полученные параллельно от многочисленных принимающих РЧ-катушек. В этих способах (комплексные) данные сигнала от многочисленных катушек объединяются с комплексными взвешиваниями таким образом, чтобы подавлять артефакты недовыборки (ступенчатость) в реконструированных в конечном итоге МРТ-изображениях. Этот тип объединения сложных матриц иногда упоминается как пространственная фильтрация и включает в себя объединение, которое выполняется в области k-пространства (как в SMASH) или в области изображения (как в SENSE), а также способы, которые являются гибридами. В SENSE или SMASH необходимо знать соответствующие весовые коэффициенты или чувствительности катушек с высокой точностью. Для того чтобы получить чувствительности катушек, т.е. профили пространственной чувствительности матричных РЧ-катушек, используемые для обнаружения сигнала, до и/или после фактического получения изображения типично осуществляют калибровочное предварительное сканирование. В этом предварительном сканировании, которое также иногда упоминается как опорное сканирование, МР-сигналы обычно получают с разрешением, которое существенно ниже, чем разрешение, необходимое для конечного диагностического МРТ-изображения. Такое опорное сканирование низкого разрешения состоит из чередования получения сигнала через матричные РЧ-катушки и через опорную катушку, обычнообъемную катушку, например, квадратурную катушку для тела МР-устройства. МРТ-изображения низкого разрешения реконструируют из МР-сигналов, принятых через матричные РЧ-катушки и через объемную РЧ-катушку. Чувствительности катушек, т.е. профили пространственной чувствительности матричных РЧ-катушек, затем вычисляют путем разделения изображений от матричных катушек с помощью изображения от объемной катушки.

РАСКРЫТИЕ ИЗОБРЕТЕНИЯ

Недостаток известного подхода заключается в том, что время получения опорного сканирования является достаточно длительным. В типичном варианте использования необходимо примерно 30 секунд. Это частично происходит из-за схемы чередования получения сигнала через объемную РЧ-катушку и через матричные РЧ-катушки. Еще одна проблема заключается в том, что необходимо дополнительное усреднение для получения достаточного отношения сигнал-шум для объемной РЧ-катушки, так как объемная РЧ-катушка значительно менее чувствительна, чем матричные РЧ-катушки, которые обычно являются поверхностными катушками.

Из вышеизложенного легко понять, что существует необходимость в улучшенной методике параллельной МР-томографии. Следовательно, задачей изобретения является обеспечение возможности более быстрого опорного сканирования для определения профилей пространственной чувствительности матричных РЧ-катушек, используемых в параллельной МР-томографии.

В соответствии с изобретением раскрыт способ МР-томографии по меньшей мере части тела пациента, помещенного в исследуемом объеме МР-устройства. Способ по изобретению содержит следующие этапы:

- подвергают часть тела первой импульсной последовательности для получения набора данных обзорного сигнала, причем этот набор данных обзорного сигнала включает в себя МР-сигналы, принятые параллельно или последовательно через

- объемную РЧ-катушку, имеющую по существу гомогенный профиль пространственной чувствительности в пределах исследуемого объема, и

- набор из по меньшей мере двух матричных РЧ-катушек, имеющих различные профили пространственной чувствительности в пределах исследуемого объема,

при этом первая импульсная последовательность содержит РЧ-импульсы и градиенты переключаемого магнитного поля, управляемые таким образом, что набор данных обзорного сигнала получают при первом разрешении изображений;

- подвергают часть тела второй импульсной последовательности для получения набора данных опорного сигнала, причем этот набор данных опорного сигнала включает в себя МР-сигналы, принятые параллельно через матричные РЧ-катушки, при этом вторая импульсная последовательность содержит РЧ-импульсы и градиенты переключаемого магнитного поля, управляемые таким образом, что набор данных опорного сигнала получают при втором разрешении изображений, которое выше, чем первое разрешение изображений;

- подвергают часть тела третьей импульсной последовательности для получения набора данных диагностического сигнала, причем этот набор данных диагностического сигнала включает в себя МР-сигналы, принятые параллельно через по меньшей мере подмножество из набора матричных РЧ-катушек, при этом третья импульсная последовательность содержит РЧ-импульсы и градиенты переключаемого магнитного поля, управляемые таким образом, что набор данных диагностического сигнала получают при третьем разрешении изображений, которое выше, чем второе разрешение изображений; и

- реконструируют диагностическое МРТ-изображение из комбинации набора данных диагностического сигнала, набора данных обзорного сигнала и набора данных опорного сигнала.

Суть изобретения состоит в том, что вместо применения двух различных сканирований, как в традиционной параллельной томографии, т.е. опорного сканирования и фактического диагностического сканирования, применяют три различных сканирования. Первое сканирование, которое можно назвать обзорным (обследующим) сканированием, обладает существенно меньшим разрешением, чем разрешение традиционно применяемого опорного сканирования, и может состоять из чередующегося сканирования через объемную РЧ-катушку и набор матричных РЧ-катушек. Во время первого и второго сканирований отдельные наборы данных сигналов получают на основе «на каждую катушку», т.е. один набор данных сигнала получают для каждой катушки. Второе сканирование очень похоже на традиционное опорное сканирование. Тем не менее, во время второго сканирования МР-сигналы принимают исключительно параллельно через матричные РЧ-катушки. МР-сигналы через объемную РЧ-катушку не принимают. Поэтому может быть применено существенно меньшее усреднение для того, чтобы ускорить сбор данных. Третье сканирование является фактическим диагностическим сканированием. Далее могут следовать последующие диагностические сканирования.

Профили пространственной чувствительности матричных РЧ-катушек могут быть определены в соответствии с изобретением при втором разрешении изображений из комбинации набора данных обзорного сигнала и набора данных опорного сигнала. Диагностическое МРТ-изображение может быть затем реконструировано из набора данных диагностического сигнала и из профилей пространственной чувствительности, определенных при втором разрешении. Согласно предпочтительному варианту осуществления изобретения профили пространственной чувствительности матричных РЧ-катушек сначала определяют из МР-сигналов, принятых во время обзорного сканирования, т.е. при низком разрешении обзорных изображений. Это низкое разрешение было бы недостаточным для реконструкции диагностических МРТ-изображений, например, при применении алгоритма SENSE или SMASH. По этой причине разрешение профилей пространственной чувствительности повышается после второго сканирования. Профили пространственной чувствительности матричных РЧ-катушек определяют при промежуточном разрешении, т.е. втором разрешении изображений, из комбинации набора опорных изображений, полученных во время второго сканирования, и профилей пространственной чувствительности, определенных при низком разрешении из МР-сигналов, полученных во время первого сканирования. Это повышенное разрешение профилей пространственной чувствительности матричных РЧ-катушек является достаточным для реконструкции диагностических изображений.

Более конкретно, способ по изобретению может содержать следующие этапы:

a) получают набор данных обзорного сигнала;

b) реконструируют набор обзорных изображений при первом разрешении изображений из набора данных обзорного сигнала;

c) определяют профили пространственной чувствительности матричных РЧ-катушек при первом разрешении с помощью сравнения изображений из набора обзорных изображений;

d) получают набор данных опорного сигнала;

e) реконструируют набор опорных изображений при втором разрешении изображений из набора данных опорного сигнала;

f) определяют профили пространственной чувствительности матричных РЧ-катушек при втором разрешении изображений из комбинации набора опорных изображений и профилей пространственной чувствительности, определенных при первом разрешении;

g) получают набор данных диагностического сигнала и

h) реконструируют диагностическое МРТ-изображение из набора данных диагностического сигнала и из профилей пространственной чувствительности, определенных при втором разрешении.

Подход по изобретению имеет несколько преимуществ.

Существенно снижено необходимое общее время сбора данных. Обзорное сканирование имеет значительно более низкое разрешение, чем традиционное опорное сканирование, что приводит к соответствующему снижению времени сбора данных и что также допускает меньшее усреднение. На практике обзорное сканирование может быть обычно в 16 раз быстрее, чем традиционное опорное сканирование, используемое при SENSE- или SMASH-томографии. Следовательно, типичная продолжительность обзорного сканирования в соответствии с изобретением составляет примерно 2 секунды. Последующее второе сканирование также существенно быстрее, чем традиционное опорное сканирование, так как не требуется никакого получения сигнала через объемную РЧ-катушку, и, следовательно, необходимо меньшее усреднение. Общая продолжительность обзорного сканирования (этап а) и последующего опорного сканирования (этап d) в соответствии с изобретением составляет всего лишь несколько секунд, а не около тридцати секунд, как при традиционном подходе с опорным сканированием. Дополнительное преимущество изобретения состоит в том, что всякий раз, когда происходит небольшое движение обследуемого пациента относительно РЧ-катушек, используемых для получения сигнала, опорное сканирование, т.е. второе сканирование (этап d), может быть повторено без неоправданных дополнительных затрат времени. Обычно не требуется повторного проведения обзорного сканирования. Оказывается, что немного устаревшие данные обзорного сигнала не приводят к существенным артефактам изображения в реконструированных в конечном итоге диагностических МРТ-изображениях.

Дополнительное преимущество короткого времени сбора данных предварительных сканирований согласно изобретению состоит в том, что эти сканирования достаточно кратковременны, чтобы сделать их незаметными для пользователя. Поэтому предварительные сканирования не должны появляться в пользовательском интерфейсе МР-устройства. Таким образом, предварительные сканирования воспринимаются пользователем только как фазы подготовки, а не как продолжительные по времени и поэтому нежелательные дополнительные сканирования.

Еще одной проблемой в традиционных подходах параллельной МР-томографии является то, что иногда набор матричных РЧ-катушек содержит очень большое число единичных элементов-катушек, из которого следует использовать лишь некоторое подмножество для соответствующей томографической задачи. При традиционном подходе обычно МР-сигналы получают и обрабатывают через все элементы-катушки, так как пользователь не в состоянии спрогнозировать, какие элементы-катушки, как ожидается, будут вносить вклад в получаемое МРТ-изображение, а какие нет. Подмножество из набора матричных катушек, используемых на этапе g), может преимущественно определяться с помощью способа по изобретению автоматическим выбором только тех матричных катушек, через которые на этапах а) (первое сканирование) или d) (второе сканирование) обнаруживается интенсивность МР-сигнала выше заданного порогового уровня. Во время получения сигналов на этапе g) могут быть исключены те элементы-катушки из набора матричных катушек, которые привносят незначительную амплитуду сигнала на этапах a) или d). Таким образом, для всего последующего сканирования необходимы меньшие ресурсы с точки зрения пропускной способности, емкости запоминающего устройства и реконструкционной обработки. Обзорное сканирование (этап а) и/или опорное сканирование (этап d) могут быть получены с полным числом элементов-катушек. Но так как эти сканирования являются достаточно короткими, требования относительно ресурсов МР-системы являются все еще умеренными.

Альтернативным или дополнительным подходом в этом контексте является автоматическое снижение эффективного числа элементов-катушек во время обработки изображений путем применения так называемого метода сжатия матрицы. В методе сжатия матрицы до реконструкции изображения вычисляют линейные комбинации данных диагностического сигнала, полученных через различные катушки. Таким образом, эффективное число элементов-катушек снижается, что экономит время на вычисления и использование памяти для реконструкции. Коэффициенты комбинирования (сочетания) могут автоматически извлекаться в соответствии с изобретением из данных обзорного и/или опорного сканирований. Другими словами, предварительно комбинируют данные сигнала матричных катушек, а не выбирают подмножество матричных катушек, для того чтобы снизить эффективное число элементов-катушек во время обработки изображений. Коэффициенты предварительного комбинирования (или сжатия матрицы) определяют прямо из данных обзорного и/или опорного сканирования.

Согласно предпочтительному варианту осуществления изобретения поле обзора у наборов данных обзорного и опорного сигналов выбирается большим, чем поле обзора у набора данных диагностического сигнала. Таким образом, предварительные сканирования, т.е. первое и второе сканирования, могут использоваться для нескольких диагностических сканирований, которые располагаются где-либо в пределах большого поля обзора предварительных сканирований. Поэтому набор диагностических сканирований с различными геометрическими положениями поля обзора может совместно использовать данные сигнала тех же самых обзорного и опорного сканирований для реконструкции изображений, при условии, что обзорное и опорное сканирования осуществляют с достаточным полем обзора.

Описанный до сих пор способ по изобретению может быть осуществлен посредством МР-устройства, включающего в себя по меньшей мере одну главную магнитную катушку для создания однородного постоянного магнитного поля в пределах исследуемого объема, некоторое число градиентных катушек для создания градиентов переключаемого магнитного поля в различных пространственных направлениях в пределах исследуемого объема, по меньшей мере одну объемную РЧ-катушку, которая имеет по существу гомогенный профиль пространственной чувствительности, для создания РЧ-импульсов в пределах исследуемого объема и/или для приема МР-сигналов от тела пациента, расположенного в исследуемом объеме, набор матричных РЧ-катушек для параллельного приема МР-сигналов от тела, причем матричные РЧ-катушки имеют различные профили пространственной чувствительности, блок управления для управления временной последовательностью РЧ-импульсов и градиентов переключаемого магнитного поля, блок реконструкции и блок визуализации. Способ по изобретению реализуется с помощью соответствующего программирования блока реконструкции, блока визуализации и/или блока управления МР-устройства.

Способ по изобретению может преимущественно осуществляться в большинстве МР-устройств, имеющихся в клиническом пользовании в настоящее время. С этой целью просто необходимо использовать компьютерную программу, которой МР-устройство управляется так, что оно выполняет вышеизложенные этапы способа по изобретению. Компьютерная программа может находиться либо на носителе данных, либо находиться в сети передачи данных так, чтобы загружаться для установки в блок управления МР-устройства.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Прилагаемые чертежи раскрывают предпочтительные варианты осуществления настоящего изобретения. Тем не менее, следует понимать, что чертежи предназначены лишь для иллюстрации, а не как определение рамок изобретения. На чертежах:

фиг.1 изображает МР-устройство для осуществления способа по изобретению;

фиг.2 изображает блок-схему последовательности операций, иллюстрирующую способ по изобретению.

Со ссылкой на фиг.1 показано МР-устройство 1. Это устройство содержит сверхпроводящие или резистивные главные магнитные катушки 2, так чтобы вдоль z-оси по всему исследуемому объему создавалось по существу однородное, постоянное во времени главное магнитное поле.

ПОДРОБНОЕ ОПИСАНИЕ

Система создания магнитного резонанса и управления подает последовательность РЧ-импульсов и градиенты переключаемого магнитного поля для того, чтобы инвертировать или возбуждать ядерные магнитные спины, индуцировать магнитный резонанс, перефокусировать магнитный резонанс, управлять магнитным резонансом, пространственно и иным образом кодировать магнитный резонанс, насыщать спины и тому подобного для осуществления МР-томографии.

Более конкретно, градиентный импульсный усилитель 3 подает импульсы тока на выбранные из градиентных катушек 4, 5 и 6 для всего тела вдоль x-, y- и z-осей исследуемого объема. Цифровой РЧ-передатчик 7 передает РЧ-импульсы или импульсные пакеты через переключатель 8 «прием-передача» в объемную РЧ-катушку 9 для всего тела для передачи РЧ-импульсов в исследуемый объем. Типичная импульсная последовательность МР-томографии состоит из пакета сегментов РЧ-импульсов малой длительности, которые, взятые вместе друг с другом и любыми применяемыми градиентами магнитного поля, реализуют выбранное управление ядерным магнитным резонансом. РЧ-импульсы используются для насыщения, возбуждения резонанса, инвертирования намагниченности, перефокусировки резонанса или управления резонансом и выбора части тела 10, расположенного в исследуемом объеме. МР-сигналы также захватываются объемной РЧ-катушкой 9 для всего тела. Для создания МРТ-изображений ограниченных областей тела 10 посредством параллельной томографии набор из местных матричных РЧ-катушек 11, 12, 13 располагается граничащим с областью, выбранной для томографии. Матричные катушки 11, 12, 13 могут использоваться для приема МР-сигналов, индуцируемых РЧ-передачами катушек для тела.

Получающиеся в результате МР-сигналы захватываются объемной РЧ-катушкой 9 для всего тела и/или матричными РЧ-катушками 11, 12, 13 и демодулируются приемником 14, предпочтительно включающим в себя предусилитель (не показан). Приемник 14 соединен с РЧ-катушками 9, 11, 12 и 13 через переключатель 8 «прием-передача».

Главный компьютер 15 управляет градиентным импульсным усилителем 3 и передатчиком 7 для создания любой из множества импульсных последовательностей МР-томографии, такой как эхопланарная томография (EPI), эхообъемная томография, градиентная томографии и томография спинового эхо, томография быстрого спинового эхо и тому подобные. Для выбранной последовательности приемник 14 принимает единственную или множество строк МР-данных в быстрой последовательности, следующей за каждым РЧ-импульсом возбуждения. Система 16 сбора данных осуществляет аналого-цифровое преобразование принятых сигналов и преобразовывает каждую строку МР-данных в цифровой формат, подходящий для дальнейшей обработки. В современных МР-устройствах система 16 сбора данных является отдельным компьютером, который специализируется на сборе исходных данных изображения.

В конечном итоге цифровые исходные данные изображений реконструируются в представление изображения с помощью процессора 17 реконструкции, который использует преобразование Фурье или другие подходящие алгоритмы реконструкции, такие как, например, SENSE или SMASH. МРТ-изображение может представлять собой вид пациента в плоском срезе, массив параллельных плоских срезов, трехмерный объем или тому подобное. Затем изображение сохраняется в памяти изображений, где оно может быть доступно для преобразования срезов, проекций или других частей представления изображения в соответствующий формат для визуализации, например, через видеомонитор 18, который выдает считываемое человеком отображение получившегося в результате МРТ-изображения.

Продолжая ссылаться на фиг. 1 и с дополнительной ссылкой на фиг. 2, поясняется вариант осуществления томографического подхода по изобретению. Каждому диагностическому томографическому сканированию с реконструкцией SENSE или SMASH предшествует сочетание обзорного сканирования и опорного сканирования, как пояснялось выше.

На этапе 20 осуществляют обзорное сканирование, во время которого параллельно принимают набор данных обзорного сигнала через набор матричных РЧ-катушек 11, 12, 13 и, чередующимся образом, через объемную РЧ-катушку 9. Данные сигнала, принятые при первом разрешении изображений, которое является низким разрешением, через объемную РЧ-катушку 9, обозначены как 21, а данные сигнала, принятые через набор матричных РЧ-катушек 11, 12, 13, обозначены как 22. Из полученного таким образом набора 21, 22 данных обзорного сигнала реконструируют набор из обзорных изображений при низком разрешении изображений, что означает, что одно обзорное изображение реконструируют из данных обзорного сигнала, принятых через объемную РЧ-катушку 9, и из данных сигнала, принятых через каждую из матричных РЧ-катушек 11, 12, 13. Затем вычисляют профили 23 пространственной чувствительности матричных РЧ-катушек 11, 12, 13 при низком разрешении обзорного сканирования путем разделения обзорных изображений от матричных РЧ-катушек 11, 12, 13 с помощью обзорного изображения от объемной РЧ-катушки 9.

На этапе 24 осуществляют опорное сканирование при промежуточном разрешении, которое выше, чем низкое разрешение обзорного сканирования. Во время опорного сканирования параллельно принимают набор 25 данных опорного сигнала исключительно через матричные РЧ-катушки 11, 12, 13. Объемная РЧ-катушка 9 не используется во время опорного сканирования. Реконструируют опорные изображения из набора 25 данных опорного сигнала при промежуточном разрешении опорного сканирования для каждой матричной РЧ-катушки 11, 12, 13. На этапе 26 осуществляют коррекцию интенсивности набора опорных изображений согласно профилям 23 пространственной чувствительности, определенным при низком разрешении обзорного сканирования. Таким образом, компенсируют изменения интенсивности в опорных изображениях из-за различных профилей пространственной чувствительности матричных РЧ-катушек 11, 12, 13. Из скорректированных по интенсивности опорных изображений получают «подобное опорной катушке» изображение при промежуточном разрешении, например, с помощью (взвешиваемого) наложения скорректированных по интенсивности опорных изображений. Это «подобное опорной катушке» изображение, которое по существу имитирует опорное МРТ-изображение, полученное через объемную РЧ-катушку 9 при промежуточном разрешении опорного сканирования, затем используют для вычисления профилей 27 пространственной чувствительности матричных катушек 11, 12, 13 при промежуточном разрешении. Это достигается путем разделения нескорректированных опорных изображений, ассоциированных с матричными катушками 11, 12, 13, с помощью «подобного опорной катушке» изображения.

На этапе 28 осуществляют диагностическое сканирование при высоком разрешении. Во время диагностического сканирования получают набор 29 данных диагностического сигнала снова исключительно через набор матричных РЧ-катушек 11, 12, 13. Диагностическое МРТ-изображение 30 реконструируют, используя алгоритм SENSE или SMASH, из набора 29 данных диагностического сигнала и из профилей 27 пространственной чувствительности, вычисленных на предыдущих этапах. Далее могут следовать дополнительные диагностические сканирования, из которых реконструируют дополнительные диагностические МРТ-изображения, используя те же самые профили 27 пространственной чувствительности.

1. Способ MP-томографии по меньшей мере части тела (10) пациента, помещенного в исследуемый объем MP-устройства (1), причем способ содержит этапы, на которых:
- подвергают часть тела (10) первой импульсной последовательности для получения набора (21, 22) данных обзорного сигнала, причем этот набор (21, 22) данных обзорного сигнала включает в себя MP-сигналы, принятые параллельно или последовательно через
- объемную РЧ-катушку (9), имеющую по существу гомогенный профиль пространственной чувствительности в пределах исследуемого объема, и
- набор из по меньшей мере двух матричных РЧ-катушек (11, 12, 13), имеющих различные профили пространственной чувствительности в пределах исследуемого объема,
при этом первая импульсная последовательность содержит РЧ-импульсы и градиенты переключаемого магнитного поля, управляемые таким образом, что набор (21, 22) данных обзорного сигнала получают при первом разрешении изображений;
- подвергают часть тела (10) второй импульсной последовательности для получения набора (25) данных опорного сигнала, причем этот набор данных опорного сигнала включает в себя MP-сигналы, принятые параллельно через матричные РЧ-катушки (11, 12, 13), при этом вторая импульсная последовательность содержит РЧ-импульсы и градиенты переключаемого магнитного поля, управляемые таким образом, что набор (25) данных опорного сигнала получают при втором разрешении изображений, которое выше, чем первое разрешение изображений;
- подвергают часть тела (10) третьей импульсной последовательности для получения набора (29) данных диагностического сигнала, причем этот набор (29) данных диагностического сигнала включает в себя MP-сигналы, принятые параллельно через по меньшей мере подмножество из набора матричных РЧ-катушек (11, 12, 13), при этом третья импульсная последовательность содержит РЧ-импульсы и градиенты переключаемого магнитного поля, управляемые таким образом, что набор (29) данных диагностического сигнала получают при третьем разрешении изображений, которое выше, чем второе разрешение изображений; и
- реконструируют диагностическое МРТ-изображение (30) из комбинации набора (29) данных диагностического сигнала, набора (21, 22) данных обзорного сигнала и набора (25) данных опорного сигнала и при этом профили пространственной чувствительности матричных РЧ-катушек (11, 12, 13) определяют при втором разрешении изображений из комбинации набора (21, 22) данных обзорного сигнала и набора (25) данных опорного сигнала, причем диагностическое МРТ-изображение (30) реконструируют из набора (29) данных диагностического сигнала и из профилей (27) пространственной чувствительности, определенных при втором разрешении.

2. Способ по п.1, содержащий этапы, на которых
a) получают набор (21, 22) данных обзорного сигнала;
b) реконструируют набор обзорных изображений при первом разрешении изображений из набора (21, 22) данных обзорного сигнала;
c) определяют профили (23) пространственной чувствительности матричных РЧ-катушек (11, 12, 13) при первом разрешении с помощью сравнения изображений набора обзорных изображений;
d) получают набор (25) данных опорного сигнала;
e) реконструируют набор опорных изображений при втором разрешении изображений из набора (25) данных опорного сигнала;
f) определяют профили пространственной чувствительности матричных РЧ-катушек (11, 12, 13) при втором разрешении изображений из комбинации набора опорных изображений и профилей (23) пространственной чувствительности, определенных при первом разрешении;
g) получают набор (29) данных диагностического сигнала; и
h) реконструируют диагностическое МРТ-изображение (30) из набора (29) данных диагностического сигнала и из профилей (27) пространственной чувствительности, определенных при втором разрешении.

3. Способ по п.2, в котором профили (26) пространственной чувствительности матричных катушек при втором разрешении изображений определяют путем
- коррекции интенсивности набора опорных изображений согласно профилям (23) пространственной чувствительности, определенным при первом разрешении;
- разделения нескорректированных данных набора опорных изображений с помощью скорректированных по интенсивности данных.

4. Способ по п.1, в котором набор (29) данных диагностического сигнала получают с помощью подвыборки k-пространства, диагностическое МРТ-изображение (30) реконструируют с использованием алгоритма SENSE или SMASH.

5. Способ по п.1, в котором подмножество из набора матричных катушек (11, 12, 13), используемое для получения набора (29) данных диагностического сигнала, определяют с помощью автоматического выбора только тех матричных катушек (11, 12, 13), через которые была обнаружена интенсивность MP-сигнала выше заданного порогового уровня во время получения набора (21, 22) данных обзорного сигнала или набора (25) данных опорного сигнала.

6. Способ по любому из пп.1-5, в котором поле обзора у наборов (21, 22, 25) данных обзорного и опорного сигналов больше, чем поле обзора у набора (29) данных диагностического сигнала.

7. MP-устройство для осуществления способа, заявленного в пп. 1-6, причем MP-устройство (1) включает в себя по меньшей мере одну главную магнитную катушку (2) для создания однородного, постоянного магнитного поля в пределах исследуемого объема, некоторое число градиентных катушек (4, 5, 6) для создания градиентов переключаемого магнитного поля в различных пространственных направлениях в пределах исследуемого объема, по меньшей мере одну объемную РЧ-катушку (9), которая имеет по существу гомогенный профиль пространственной чувствительности, для создания РЧ-импульсов в пределах исследуемого объема и/или для приема MP-сигналов от части тела (10) пациента, расположенного в исследуемом объеме, набор матричных РЧ-катушек (11, 12, 13) для параллельного приема MP-сигналов от части тела (10), причем матричные РЧ-катушки (11, 12, 13) имеют различные профили пространственной чувствительности, блок (15) управления для управления временной последовательностью РЧ-импульсов и градиентов переключаемого магнитного поля, блок (17) реконструкции и блок (18) визуализации, при этом МР-устройство (1) выполнено с возможностью осуществления следующих этапов:
- подвергают часть тела (10) первой импульсной последовательности для получения набора (21, 22) данных обзорного сигнала, причем этот набор (21, 22) данных обзорного сигнала включает в себя MP-сигналы, принятые параллельно или последовательно через объемную РЧ-катушку (9) и через набор матричных РЧ-катушек (11, 12, 13), при этом первая импульсная последовательность содержит РЧ-импульсы, созданные через объемную РЧ-катушку (9), и градиенты переключаемого магнитного поля, созданные через градиентные катушки (4, 5, 6), управляемые таким образом, что набор (21, 22) данных обзорного сигнала получают при первом разрешении изображений;
- подвергают часть тела (10) второй импульсной последовательности для получения набора (25) данных опорного сигнала, причем этот набор (25) данных опорного сигнала включает в себя MP-сигналы, принятые параллельно через матричные РЧ-катушки (11, 12, 13), при этом вторая импульсная последовательность содержит РЧ-импульсы и градиенты переключаемого магнитного поля, управляемые таким образом, что набор (25) данных опорного сигнала получают при втором разрешении изображений, которое выше, чем первое разрешение
изображений;
- подвергают часть тела (10) третьей импульсной последовательности для получения набора (29) данных диагностического сигнала, причем этот набор данных диагностического сигнала включает в себя MP-сигналы, принятые параллельно через по меньшей мере подмножество из набора матричных РЧ-катушек (11, 12, 13), при этом третья импульсная последовательность содержит РЧ-импульсы и градиенты переключаемого магнитного поля, управляемые таким образом, что набор (29) данных диагностического сигнала получают при третьем разрешении изображений, которое выше, чем второе разрешение изображений; и
- определяют профили пространственной чувствительности матричных РЧ-катушек (11, 12, 13) при втором разрешении изображений из комбинации набора (21, 22) данных обзорного сигнала и набора (25) данных опорного сигнала и реконструируют диагностическое МРТ-изображение (30) из набора (29) данных диагностического сигнала и из профилей (27) пространственной чувствительности, определенных при втором разрешении.

8. MP-устройство по п.7, в котором объемная РЧ-катушка (9) является квадратурной катушкой для тела.

9. MP-устройство по п.7 или 8, в котором матричные РЧ-катушки (11, 12, 13) являются поверхностными катушками.

10. Носитель данных, содержащий компьютерную программу, исполняемую на MP-устройстве, которая содержит инструкции для:
- получения набора данных обзорного сигнала при первом разрешении изображений, причем этот набор данных обзорного сигнала включает в себя MP-сигналы, принятые параллельно или последовательно через
- объемную РЧ-катушку, имеющую по существу гомогенный профиль пространственной чувствительности в пределах исследуемого объема, и
- набор из по меньшей мере двух матричных РЧ-катушек, имеющих различные профили пространственной чувствительности в пределах исследуемого объема,
- получения набора данных опорного сигнала при втором разрешении изображений, которое выше, чем первое разрешение изображений, причем этот набор данных опорного сигнала включает в себя MP-сигналы, принятые параллельно через матричные РЧ-катушки,
- получения набора данных диагностического сигнала при третьем разрешении изображений, которое выше, чем второе разрешение изображений, причем этот набор данных диагностического сигнала включает в себя MP-сигналы, принятые параллельно через по меньшей мере подмножество из набора матричных РЧ-катушек; и
- реконструкции диагностического МРТ-изображения из комбинации набора данных диагностического сигнала, набора данных обзорного сигнала и набора данных опорного сигнала, при этом профили пространственной чувствительности матричных РЧ-катушек (11, 12, 13) определяют при втором разрешении изображений из комбинации набора (21, 22) данных обзорного сигнала и набора (25) данных опорного сигнала, диагностическое МРТ-изображение (30) реконструируют из набора (29) данных диагностического сигнала и из профилей (27) пространственной чувствительности, определенных при втором разрешении.



 

Похожие патенты:

Изобретение относится к способу выбора набора катушечных элементов из множества физических катушечных элементов, содержащихся в комплекте катушек, для выполнения магнитно-резонансного сканирования интересуемой области для визуализации.

Изобретение относится к медицине, а именно к травматологии и ортопедии, и может быть использовано для прогнозирования риска развития стрессовых переломов костей нижних конечностей.
Изобретение относится к области медицины, а именно к профессиональной патологии, и может быть использовано для прогнозирования и выявления начальных признаков развития профессионального флюороза у работающих с фторсодержащими веществами.
Изобретение относится к области медицины, а именно к профессиональной патологии, и может быть использовано для диагностики начальной формы профессионального флюороза.

Настоящее изобретение относится к системе и способу получения ангиографических изображений. Способ содержит этапы выполнения алгоритма трехмерной сегментации на наборе данных изображения трехмерного представления, связанного с предварительно вычисленным оптимальным углом наблюдения для нахождения контуров целевой структуры или патологического изменения, которые должны исследоваться и хирургически лечиться в интересующей области, и автоматической регулировки положения клиньев коллиматора и/или апертуры механизма затвора, используемой для коллимирования рентгеновского пучка, излучаемого источником рентгеновского излучения трехмерного вращающегося ангиографического устройства на основе C-образного кронштейна или системы получения томографических изображений на основе вращающейся портальной рамы, действию которого пациент подвергается во время рентгенографической процедуры исследования с визуальным контролем, основываясь на данных, полученных в результате упомянутой сегментации, указывающей контур и размер упомянутой целевой структуры или патологического изменения.

Использование: для формирования рентгеновских изображений. Сущность изобретения заключается в том, что устройство формирования рентгеновских изображений согласно настоящему изобретению включает фазовую решетку 130, поглощательную решетку 150, детектор 170 и арифметический блок 180.
Изобретение относится к области медицины, а именно к кардиологии, функциональной диагностике, гериатрии, и может быть использовано для определения биологического возраста сердечно-сосудистой системы у мужчин от 20 до 90 лет и женщин от 20 до 96 лет.

Изобретение относится к биомедицинской оптике и касается проблемы идентификации аденомы гипофиза после или во время хирургического вмешательства. Регистрируют кинетику затухания аутофлуоресценции в диапазоне 450-600 нм, а также спектры диффузно рассеянного света опухолевой ткани.

Изобретение относится к медицине, рентгенологии, пульмонологии и может быть использовано для оценки внутренней структуры шаровидных образований при диагностике заболеваний легких с помощью компьютерной томографии.
Изобретение относится к медицине, а именно к травматологии и ортопедии, и может быть использовано для хирургического лечения несросшихся переломов и ложных суставов трубчатых костей при наличии дефицита мягких тканей.

Изобретение относится к медицинской технике, а именно к устройствам для визуализации объектов. Устройство для визуализации объекта содержит детекторную камеру.

Группа изобретений относится к технологиям компьютерной томографии. Техническим результатом является повышение точности определения изменений размера объекта. Устройство для определения изменения размера объекта включает в себя блок предоставления набора данных изображения для предоставления первого набора данных изображения, показывающего объект в первое время и для предоставления второго набора данных изображения, показывающего объект во второе время, являющееся отличным от первого времени. Устройство также включает в себя блок предоставления области интереса для предоставления первой и второй областей интереса, в которых располагаются объекты, показанные в первом и втором наборе данных изображения. Устройство также содержит блок регистрации для регистрации первой и второй областей интереса относительно друг друга. При этом указанный блок выполнен с возможностью генерировать значение масштабирования, осуществляя преобразование масштабирования для регистрации первой и второй областей интереса относительно друг друга. 3 н. и 7 з.п. ф-лы, 4 ил.
Изобретение относится к медицине, в частности к гастроэнтерологии, и касается диагностики недостаточности сфинктера Одди. Для этого после внутривенного введения гепатотропного радиофармпрепарата, меченного 99mTc, исследуют его кинетику в организме в течение 90 минут. Регистрируют время максимальной активности радиофармпрепарата в зоне общего желчного протока. На 45 минуте исследования вводят желчегонный завтрак. Рассчитывают индекс недостаточности сфинктера Одди по формуле: N=x/y, где N - индекс недостаточности сфинктера Одди, x - время приема желчегонного завтрака в минутах, y - время максимальной активности радиофармпрепарата в зоне общего желчного протока, прошедшее от начала исследования в минутах. И при величине N более 1 ед. диагностируют недостаточность сфинктера Одди. Изобретение обеспечивает повышение чувствительности, точности и упрощение способа, возможность использования у больных постхолецистэктомическим синдромом. 3 пр.

Изобретение относится к области медицины, конкретно к рентгеноэндоваскулярным методам диагностики. Проводят обтурацию катетером дистального отдела яичковой вены. Вводят контрастное вещество до вен гроздьевидного сплетения яичка. Выполняют флеботестикулографию в дискретном режиме времени до 3 минут и при выявления «смыва» контрастного вещества в проксимальном направлении диагностируют наличие порто-кавальных анастомозов. Способ позволяет повысить частоту обнаружения брыжеечно-яичковых анастомозов при проведении флеботестикулографии за счет введения контраста при обтурации дистального отдела яичковой вены. 2 ил.,1 пр.

Изобретение относится к медицине, пульмонологии, рентгенологии. Способ рентгенологической диагностики открытых ретенционных кист экзокринных желез трахеи и бронхов заключается во введении контрастного средства в расширенные выводные протоки кист. В качестве контрастного средства используют воздушно-порошковый аэрозоль из биоинертного материала с частицами диаметром менее 1 мкм. Путем активного вдыхания обеспечивают движение частиц в каждую кисту через выводной проток и осаждение частиц на стенках кист, таким образом визуализируя их наличие. При этом в качестве биоинертного материала используют тантал, порошок которого помещают в емкость, соединенную с портативным аэрозольным ингалятором ПАИ-2, содержащим компрессор. Создают струю воздуха, с помощью которой активируют порошок с образованием воздушно-порошкового аэрозоля и его поступлением через катетер в выводные протоки открытых ретенционных кист экзокринных желез трахеи и бронхов. Способ обеспечивает точность и достоверность рентгенологической диагностики специфических образований трахеобронхиального дерева - открытых ретенционных кист экзокринных желез трахеи и бронхов. 1 з.п. ф-лы, 1 ил., 1 пр.

Изобретение относится к трехмерным вращательным рентгеновским средствам получения изображения для использования в компьютерной томографии. Способ предварительной калибровки для предотвращения возникновения, по существу, круговых кольцевых артефактов при трехмерной реконструкции изображения в неидеальной изоцентрической трехмерной вращательной рентгеновской сканирующей системе состоит в сканировании калибровочного фантома при перемещении рентгеновской трубки и рентгеновского детектора вдоль неидеально круговой траектории, вычислении для каждого проекционного направления трехмерного положения фокального пятна рентгеновской трубки и трехмерного положения центра рентгеновского детектора из полученных двумерных проекционных изображений фантома, и определении из набора геометрических калибровочных данных, получаемых в результате процедуры трехмерной калибровки, выполняемой на основе вычисленных трехмерных позиционных данных, трехмерные координаты эффективного центра вращения, вокруг которого может считаться вращающейся неидеально изоцентрическая трехмерная вращательная рентгеновская сканирующая система. Трехмерная вращательная рентгеновская сканирующая система с C-образным кронштейном содержит блок калибровки для способа калибровки и дополнительно блок реконструкции для способа реконструкции. Считываемый компьютером носитель содержит команды, которые позволяют осуществлять калибровку и реконструкцию на трехмерной вращательной рентгеновской сканирующей системе. Для калибровки сканирующей системы или трехмерной реконструкции изображения применяют трехмерные координаты эффективного центра вращения. Использование изобретения позволяет улучшить качество изображения за счет облегчения коррекции кольцевых круговых артефактов. 7 н. и 7 з.п. ф-лы, 5 ил.
Изобретение относится к медицине, а именно к травматологии, ортопедии, и может быть использовано для сопроводительного лечения при эндопротезировании крупных суставов. Для этого за полгода до операции определяют объем контрактуры пораженного сустава. Также проводят рентгенологическое и МРТ-исследование как пораженного, так и коллатерального суставов и определяют их состояние. Кроме того, оценивают качество костной ткани методом остеоденситометрии. При выявлении изменений качества костной ткани в комплекс лекарственной терапии включают препараты Бивалос и Кальцемин. За три месяца до операции оценивают уровень выраженности болевого синдрома по Визуально-Аналоговой Шкале. После этого проводят комплексную терапию, направленную на оптимизацию состояния суставов конечностей, в которую включают локальную инъекционную терапию (ЛИТ). Для этого на биологически активные околосуставные зоны, расположенные проксимальнее и дистальнее пораженного сустава, предварительно воздействуют сфокусированным лазерным излучением красного спектра. Затем в эти же зоны инъекционно вводят смесь, включающую растворы лекарственных препаратов: хондропротекторы, Контрикал, Лидокаин и витамин В12. Кроме того, вводят Артрофоон в течение всего предоперационного периода. При значении уровня выраженности болевого синдрома менее 4 баллов Артрофоон вводят в дозе 4 таблетки в сутки. При его значении более 4 баллов препарат вводят в дозе 8 таблеток в сутки в комплексе с коротким курсом нестероидного противовоспалительного препарата и хондропротектором. Сразу же после проведения операции эндопротезирования коллатеральный сустав фиксируют ортезом на срок 3 месяца. В схему комплексного послеоперационного сопроводительного лечения, которое начинают через три недели после проведения операции, включают однократное внутривенное введение препарата Акласта, препарат Артрофоон в дозе 4 таблетки в сутки в течение трех месяцев, альфакальцидол и Кальцемин постоянно. Проводят индивидуально подобранный комплекс упражнений лечебной физкультуры и электромиостимуляцию в ходьбе для укрепления мышечного корсета конечностей. Через 3 месяца с момента операции проводят ЛИТ коллатерального сустава. При наличии дегенеративного процесса в смежных суставах ЛИТ проводят поочередно в этих зонах. На фоне ЛИТ вводят вазодилататоры, хондропротекторы, препарат Мильгамма. Кроме того, при наличии изменений в психоэмоциональной сфере пациента дополнительно вводят препарат Тенотен. Схему послеоперационной лекарственной терапии, включая ЛИТ, повторяют 3-4 раза с интервалом в 6 месяцев. Способ обеспечивает оптимизацию результатов оперативного лечения и профилактику развития осложнений как в оперированном суставе, так и в смежных и симметричном суставах после эндопротезирования, профилактику развития нестабильности компонентов эндопротеза, профилактику развития или усугубления дегенеративного процесса в симметричном и смежных суставах, что снижает риск повторных оперативных вмешательств. 1 пр.

Изобретение относится к медицине, а именно к диагностике непереносимости лактозы. Для этого проводят выявление водорода в воздухе ротовой полости обследуемого и диагностику синдрома избыточного бактериального роста (СИБР) путем определения исходного содержания водорода до приема тестовой нагрузки с последующим определением нагрузочных содержаний водорода через 15 и 30 мин после приема тестовой нагрузки. В качестве тестового используют раствор 1 г лактулозы на 1 кг веса пациента в воде, но не более 20 г, далее рассчитывают разницу между наибольшим из нагрузочных содержаний водорода и исходным содержанием водорода. Если значение разницы после приема лактулозы равно или меньше порогового уровня 5 ppm, то диагностируют отсутствие избыточного водорода у пациента и диагностику непереносимости лактозы рекомендуют провести другими способами. Если значение разницы после приема лактулозы находится в диапазоне от 5 до 10 ppm, то у обследуемого выявляют продуцирование водорода и отсутствие СИБР. Далее после перерыва продолжительностью не менее 24 часов определяют ряд нагрузочных содержаний водорода через 30, 60, 90 и 120 мин после приема тестовой нагрузки. В качестве тестового используют раствор 2 г лактозы на 1 кг веса обследуемого в воде, но не более 50 г. Затем рассчитывают разницу между наибольшим из нагрузочных содержаний водорода и исходным содержанием водорода, если значение разницы после приема лактозы больше 10 ppm, делают вывод о непереносимости лактозы. Если значение разницы после приема лактулозы больше 10 ppm, то у обследуемого выявляют продуцирование водорода и наличие СИБР. Далее после перерыва продолжительностью не менее 24 часов определяют ряд нагрузочных содержаний водорода через 30, 60, 90 и 120 мин после приема тестовой нагрузки. В качестве тестового используют раствор 2 г лактозы на 1 кг веса обследуемого в воде, но не более 50 г. Далее рассчитывают разницу между наибольшим из нагрузочных содержаний водорода и нагрузочным содержанием на 30 мин. Если значение разницы после приема лактозы больше порогового уровня 10 ppm, то делают вывод о непереносимости лактозы. Заявляемый способ является неинвазивным, позволяет проводить дополнительно выявление проявлений и симптомов непереносимости углеводов обследуемого на вторые сутки, а также установить наличие или отсутствие СИБР, что позволяет повысить достоверность диагностики. 3 ил., 3 пр.

Изобретение относится к медицине, в частности к ортопедии и травматологии, и может быть использовано для лечения ишемической деформации проксимального отдела бедренной кости. Выполняют рентгенограмму таза в передне-задней проекции. Определяют анатомическую ось бедра, центр головки бедра, угол вертикального наклона вертлужной впадины (угол Шарпа). Нарушают целостность бедренной кости путем С-образной чрезвертельной остеотомии. Перемещают и фиксируют чрескостным устройством костные фрагменты для коррекции шеечно-эпифизарной, шеечно-диафизарной деформации, восстановления длины шейки бедра. По рентгенограмме, в зависимости от степени децентрации головки бедра относительно впадины, определяемой из соотношения между углом Шарпа и углом, образованным горизонталью и поперечной осью головки бедра, рассчитывают центр и величину угла поворота проксимального костного фрагмента. Ориентируясь на величину угла поворота проксимального костного фрагмента, радиус головки бедра, соотношение между верхушкой большого вертела и центром головки бедра, устанавливают место оптимального расположения большого вертела относительно головки бедра, обеспечивающее устранение укорочения шейки бедра. Определяют направление и величину перемещения дистального костного фрагмента. Способ обеспечивает коррекцию деформации и укорочения шейки бедра за счет определения оптимального направления и величины перемещения костных фрагментов. 1 пр., 9 ил.

Изобретение относится к способам и устройствам для автоматической регистрации анатомических точек на медицинских изображениях. Техническим результатом является повышение точности автоматической регистрации анатомических точек в трехмерных медицинских изображениях. Способ предусматривает выполнение таких операций, как получение трехмерного медицинского изображения, определение множества поисковых точек, извлечение признаков указанных точек, формирование множества кандидатов на искомые анатомические точки, фильтрация указанных кандидатов, вывод финальных позиций искомых анатомических точек; определение множества поисковых точек производят путем задания сетки поисковых точек внутри объемного изображения с использованием статистического атласа; извлечение признаков точек производят путем выделения окружающего контекста для каждой такой точки; формирование множества кандидатов производят с помощью вычисления меры качества для каждой поисковой точки и для каждого типа искомых анатомических точек; фильтрацию кандидатов производят с помощью статистического атласа и вычисленных заранее порогов для значений меры качества; вывод финальных позиций производят путем сортировки всех оставшихся после фильтрации кандидатов в рамках каждого типа искомых анатомических точек по мере их качества и вывода кандидатов с наибольшими значениями меры качества или требуемого количества кандидатов с наибольшими значениями меры качества. 3 н. и 39 з.п. ф-лы, 6 ил.

Изобретение относится к медицине, а именно к ангиологии, ангиохирургии и функциональной диагностике, и может быть использовано при диагностике состояния микроциркуляции нижних конечностей. Для этого осуществляют введение радионуклидного индикатора с последующей регистрацией динамики его распределения в тканях конечности сцинтиграфическим методом. Исследование проводят в состоянии покоя и во время нагрузочного теста. При этом в качестве нагрузочного теста используют эпидуральную блокаду посредством дробного введения между позвонками L2-L3 в течение 5-7 минут 25-30 мг бупивакаина. После этого определяют объемный кровоток в виде процентного соотношения его величины к уровню этого показателя в аналогичном сегменте коллатеральной конечности. Способ обеспечивает качественное проведение оценки состояния резерва кровообращения у различных категорий пациентов, в том числе и инвалидизированных, за счет подавления симпатической и в минимальной степени сенсорной активности при сохранении моторной активности пациентов. 2 ил., 2 пр.
Наверх