Видеовысотомер

Изобретение относится к измерительной технике и самолетной авионике. Видеовысотомер содержит передатчик излучения, выполненный в виде двух параллельных линейных источников света, приемник излучения, выполненный в виде телекамеры с объективом и позиционно-чувствительной матрицей приемников света, а также видеовысотомер содержит индикатор, выполненный в виде видеомонитора. Технический результат - повышение точности измерения высоты полета. 1 ил.

 

Изобретение относится к области измерительной техники и может служить для измерения высоты самолета при посадке, парковки автомобиля у стены, стыковки космических аппаратов и др.

Известны самолетные барометрические высотомеры, основанные на измерении атмосферного давления [1]. Их основными недостатками являются невысокая точность и измерение не абсолютной, а относительной высоты полета, например, относительно уровня моря.

Прототипом предлагаемого видеовысотомера служит известный радиовысотомер малых высот РВ-5, содержащий передатчик излучения, приемник излучения и цифровой индикатор [2]. Основными недостатками прототипа являются невысокая точность, характеризуемая погрешностью измерения высоты ±0,8 м в диапазоне 0-10 м и ±0,8% в диапазоне 10-750 м, а также напряженное внимание, требуемое от пилота для восприятия быстро меняющейся цифровой информации на индикаторе при посадке самолета.

Целью настоящего изобретения является устранение недостатков, присущих прототипу, путем повышения точности измерения высоты, снижения степени напряженности пилота для восприятия визуальной информации и предоставления дополнительной информации о параметрах полета, что в совокупности повышает ее безопасность.

Предлагаемый видеовысотомер, содержащий передатчик излучения, приемник излучения и индикатор, в отличие от прототипа и в соответствии с изобретением передатчик излучения выполнен в виде двух параллельных линейных источников света, создающих на поверхности, до которой измеряется высота, две параллельные световые полосы, между источниками света установлен приемник излучения, выполненный в виде телекамеры с объективом и позиционно-чувствительной матрицей приемников света, в поле зрения которой находится поверхность с двумя параллельными световыми полосами, а индикатор выполнен в виде видеомонитора, на краях экрана которого нанесены две неподвижные параллельные линии, между которыми располагаются две подвижные параллельные им линии, являющиеся изображениями двух параллельных световых полос на поверхности, до которой измеряется высота.

Изобретение поясняется фиг.1, на которой изображены видеомонитор 1, подключенный к телекамере 2, содержащей позиционно-чувствительную матрицу приемников света 3 (ПЗС-матрицу) и объектив 5, линейные источники света 4 и 6, создающие на поверхности 7, до которой измеряется высота, две параллельные световые полосы 8 и 9.

На экране видеомонитора 1 нанесены две неподвижные параллельные линии 10 и 13, между которыми располагаются две подвижные, параллельные им линии 11 и 12, являющиеся изображениями двух световых полос 8 и 9 в видеокадре.

Источники света 4 и 6 и телекамера 2 уставлены под днищем самолета так, что в поле зрения телекамеры 2 находится поверхность 7 с двумя параллельными световыми полосами 8 и 9, созданными двумя источниками света 4 и 6, расстояние между которыми рассчитывается по формуле:

L = M ƒ H 0 ,

где М - эффективный размер позиционно-чувствительной матрицы приемников света, f - фокусное расстояние объектива телекамеры, Н0 - «нулевая» высота. Работа видеовысотомера состоит в следующем.

На больших высотах подвижные линии 11 и 12 располагаются в середине экрана видеомонитора 1.

С уменьшением высоты полета самолета подвижные линии 11 и 12 перемещаются к краям экрана видеомонитора и в момент посадки самолета при горизонтальном полете над горизонтальной поверхностью совмещаются с неподвижными линиями 10 и 13. При посадке с креном подвижные линии 11 и 12 смещаются в сторону крена, что служит дополнительной информацией для пилота. Кроме того, пилот на экране видеомонитора наблюдает поверхность, на которую совершает посадку.

Текущая (на момент измерения) высота вычисляется по формуле:

H C S H 0 ,

где С - константа, определяемая на основе калибровочных измерений, S - расстояние между подвижными линиями на экране видеомонитора.

Согласно формуле погрешность видеовысотомера непостоянна и уменьшается с уменьшением высоты, что наилучшим образом способствует решению задачи повышения точности измерений при посадке самолета без необходимости переключения диапазонов измерений, как это сделано в прототипе.

Если принять расстояние между линейными источниками света L=250 мм, фокусное расстояние объектива телекамеры f=50 мм, то при эффективном размере позиционно-чувствительной матрицы приемников света М=6,4 мм (матрица 1/2 дюйма) «нулевая» высота (высота в момент посадки самолета) составит Н0≈2000 мм. При ширине экрана видеомонитора 200 мм и погрешности совмещения подвижных линий 11 и 12 с неподвижными 10 и 13 в пределах 1 мм, что легко визуально фиксируется, относительная погрешность видеовысотомера составляет 1/100. При этом абсолютная погрешность измерения «нулевой» высоты в момент посадки самолета составляет 20 мм.

Изменением расстояния между линейными источниками света, фокусного расстояния объектива телекамеры и эффективного размера позиционно-чувствительной матрицы приемников света можно устанавливать любую необходимую «нулевую» высоту, что позволяет использовать видеовысотомер на различных типах самолетов и других летательных средств.

Таким образом, в предлагаемом видеовысотомере в сравнении с прототипом существенно повышается точность измерения высоты при посадке самолета, снижается степень напряжения пилота для восприятия визуальной информации с экрана видеомонитора и создаются дополнительные возможности для определения крена самолета и наблюдения поверхности, на которую совершается посадка, что в совокупности повышает безопасность полета.

Видеовысотомер может успешно использоваться в атмосфере, в водной или иной оптически прозрачной среде, а также в космосе.

Важным фактором для производства видеовысотомера является то, что он комплектуется из типовых узлов (полупроводниковый лазер, модульная телекамера, видеомонитор), которые производятся в массовом количестве, характеризуются высокой надежностью и широко представлены на современном рынке товаров и услуг.

Источники информации

1 Волкоедов А.П., Паленый Э.Г. Оборудование самолета. М.: Машиностроение, 1980 г., стр.126-128.

2 Волкоедов А.П., Паленый Э.Г. Оборудование самолета. М.: Машиностроение, 1980 г., стр.128-131.

Видеовысотомер, содержащий передатчик излучения, приемник излучения и индикатор, отличающийся тем, что передатчик излучения выполнен в виде двух параллельных линейных источников света, создающих на поверхности, до которой измеряется высота, две параллельные световые полосы, между источниками света установлен приемник излучения, выполненный в виде телекамеры с объективом и позиционно-чувствительной матрицей приемников света, в поле зрения которой находится поверхность с двумя параллельными световыми полосами, а индикатор выполнен в виде видеомонитора, на краях экрана которого нанесены две неподвижные параллельные линии, между которыми располагаются две подвижные параллельные им линии, являющиеся изображениями двух параллельных световых полос на поверхности, до которой измеряется высота, при этом расстояние между линейными источниками света рассчитывается по формуле:
,
где М - эффективный размер позиционно-чувствительной матрицы приемников света, f - фокусное расстояние объектива телекамеры, Н0 - «нулевая» высота.



 

Похожие патенты:

Изобретение относится к области радиолокации и может быть использовано в системах определения уровня водоемов. Техническим результатом заявленного устройства является повышение точности определения дальности до водной поверхности при наличии волнения.

Изобретение относится к области геодезии, в частности к устройствам для метрологической поверки и калибровки геодезических приборов, например штрих-кодовых реек.

Изобретение относится к области геодезии, в частности к методам определения превышений между измеряемыми точками с использованием электронных тахеометров, и может быть использовано в тригонометрическом нивелировании.

Изобретение относится к вспомогательному инструменту и может быть использовано при определении расположения поверхностей элементов строительных конструкций и сооружений.

Изобретение относится к области геодезического приборостроения, в частности к лазерным приборам для построения плоскостей. .

Изобретение относится к области геодезического приборостроения и может быть использовано при проведении разбивочных работ в строительстве, при монтаже технического оборудования в машиностроении, а также в других областях науки и техники, где требуется использование световой плоскости и возможность переноса отметок в горизонтальной и вертикальной плоскости.

Изобретение относится к устройствам для метрологической поверки и калибровки геодезических приборов. .

Изобретение относится к устройствам для метрологической поверки и калибровки геодезических приборов, например штриховых и штрихкодовых реек. .

Изобретение относится к геодезическим измерениям и может быть использовано для повышения точности высот, определяемых двусторонним тригонометрическим нивелированием.

Изобретение относится к области геодезического приборостроения. .

Изобретение относится к измерительному кабелю для гидростатического определения высот при подземной разработке. Измерительный кабель включает в себя охваченную оболочкой кабеля стренгу кабеля, наполненный текучей средой шланг, по меньшей мере один датчик давления для определения давления текучей среды, а также штекерные соединительные элементы, которые расположены каждый на одном конце стренги кабеля. Техническим результатом изобретения является повышение надежности и точности измерений. 2 н. и 8 з.п. ф-лы, 3 ил.
Изобретение относится к области геодезии, в частности к высокоточному геометрическому нивелированию. Техническим результатом является повышение точности геометрического нивелирования. Способ заключается в использовании измерительной системы «цифровой нивелир + две штрихкодовые рейки». Цифровой нивелир имеет функцию "invers". Длины между пятками на каждой рейке известны из калибровки реек в нормальных условиях. При измерениях берут отсчеты по задней и передней рейкам. Рейки переворачивают и измерения повторяют. Отсчитывая, включив на нивелире функцию «INVERS», от верхних пяток, вычисляют длины каждой рейки как суммы отсчетов, полученных из двух положений рейки, и сравнивают их с длинами, полученными при калибровке. Разности длин, полученных при калибровке и в реальных условиях, являются поправками за отклонение температуры, учитывая которые, вычисляют превышения, полученные при двух положениях реек. Равенство нулю вычисленных превышений служит контролем точности измерений.

Изобретение относится к области геофизических исследований и касается устройства для определения вертикали места. Устройство содержит чувствительный элемент, в качестве которого используется баллистический гравиметр, который измеряет ускорения свободного падения с помощью пучка непараллельных лазерных лучей. Технический результат заключается в повышении точности измерений. 1 ил.

Изобретение относится к области сельского хозяйства, в частности к экологическому мониторингу. Способ включает выделение на малой реке или ее притоке визуально по карте или натурно участка пойменного луга. Затем на этом участке по течению малой реки или ее притока в характерных местах размечают не менее трех створов измерений в поперечном направлении. Вдоль каждого створа размечают не менее трех пробных площадок с каждой стороны малой реки или ее притока. После разметки измеряют высоту расположения центра каждой пробной площадки от поверхности малой реки или ее притока, а после выявляют закономерности влияния высоты расположения пробных площадок над урезом воды на показатели проб травы. Также проводят оценку влияния отличительных орографических особенностей рельефа и расположенных внутри и вне территории выделенного участка естественных и антропогенных объектов. На каждом створе измерений выделяют характерные места по изменению высоты. Затем с применением нивелира измеряют перепады высот между центрами пробных площадок и урезом реки. Для анализа видового состава травы на характерном месте створа измерений забивают колышек и затем укладывают квадратную рамку с образованием центра в виде колышка. Причем без срезки травы пробная площадка становится виртуальной. Затем на виртуальной пробной площадке внутри квадратной рамки сосчитывают количество видов травы и заносят в таблицу с общим списком по строкам этой таблицы всех видов травяных и травянистых растений, встречающихся хотя бы один раз на выделенном участке малой реки. В столбцах по номерам виртуальных пробных площадок ставят единицу при наличии данного вида травяного и травянистого растения и оставляют клетку таблицы пустой при отсутствии вида растения, так последовательно выполняют измерения наличия видов травы во всех виртуальных пробных площадках. После этого суммируют единицы по столбцам таблицы и вычисляют количество видов растений на каждой виртуальной пробной площадке, а затем делением наличествующего количества видов растений на общее количество видов по всем строкам таблицы вычисляют относительную встречаемость видов травы на каждой виртуальной площадке. Затем выявляют волновые закономерности изменения относительной встречаемости видов в зависимости от высоты виртуальной пробной площадки над урезом воды путем статистического моделирования. Способ позволяет повысить точность учета наличия видов травяных и травянистых растений с учетом измерений нивелиром высоты расположения площадок без срезания травы. 4 з.п. ф-лы, 5 ил., 3 табл., 1 пр.

Изобретение относится к области определения высоты парашютной системы над поверхностью земли. Способ определения высоты парашютной системы заключается в определении высоты полета самолета и высоты снижения до раскрытия парашюта. Дополнительно до прыжка определяют среднюю скорость снижения парашютной системы с раскрытым основным парашютом, время снижения парашютной системы. Высоту снижения парашютной системы после раскрытия парашюта определяют по времени снижения и средней скорости снижения парашютной системы и полученное значение вычитают из высоты парашютной системы, имевшейся в момент раскрытия парашютной системы. Значение высоты над землей озвучивают звуковым сигналом. Изобретение направлено на повышение точности определения высоты и быстродействием. 1 ил.

Способ измерения высоты и вертикальной скорости летательного аппарата (ЛА) заключается в многократном зондировании объекта импульсами лазерного излучения, приеме и регистрации отраженного объектом сигнала с его привязкой к импульсам стабильной тактовой частоты. При этом в рабочем режиме полета для определения дальности до объекта используют режим некогерентного накопления. В режимах взлета и посадки отключают режим некогерентного накопления и используют моноимпульсный режим измерения дальности и скорости. Технический результат заключается в обеспечении измерений с борта летательного аппарата его высоты и вертикальной составляющей скорости как в стационарном полете, так и при взлете и посадке в широком диапазоне высот и режимов подъема и снижения. 2 з.п. ф-лы, 3 ил.

Изобретение относится к измерительной технике и может быть использовано в метеорологии для определения физических параметров атмосферы. Технический результат - повышение оперативности. Для этого дополнительно выполняют навигационные измерения орбиты космического аппарата (КА), производят съемку краевой точки видимого с КА на фоне земной поверхности облачного покрова при нахождении в кадре точки тени от выбранной краевой точки облачного покрова и расположении данной краевой точки облачного покрова вне линии, проходящей через КА параллельно направлению на Солнце. Определяют координаты точки земной поверхности, лежащей на линии визирования выбранной краевой точки облачного покрова, и координаты точки земной поверхности, на которую падает тень от выбранной краевой точки облачного покрова. По навигационным измерениям определяют координаты точки местоположения КА на момент выполнения съемки и высоту облачности определяют по высоте выбранной краевой точки облачного покрова. 1 ил.

Изобретение относится к измерительной технике и может найти применение при измерении высоты облачности. Технический результат - повышение оперативности. Для этого по варианту 1 выполняют навигационные измерения орбиты космического аппарата. Производят съемку с космического аппарата (КА) выбранной краевой точки видимого с КА на фоне земной поверхности облачного покрова в моменты, отстоящие один от другого на задаваемое время. По полученным на снимках изображениям определяют координаты точек земной поверхности, лежащих на линиях визирования выбранной краевой точки облачного покрова. По навигационным измерениям определяют координаты точек местоположений КА на моменты выполнения снимков. По варианту 2 - по полученным на снимках изображениям определяют координаты точек земной поверхности, лежащих на линиях визирования выбранной краевой точки облачного покрова. 2 н.п. ф-лы, 2 ил.

Изобретение относится к области геодезии и, в частности, к стендам для метрологической поверки и калибровки геодезических приборов, например измерительных систем «цифровой нивелир + кодовая рейка». Стенд содержит вертикально расположенные направляющие для прямолинейного перемещения по ним каретки с цифровым нивелиром, соосно с цифровым нивелиром на каретке расположен отражатель измерительного канала лазерного интерферометра, перемещение каретки осуществляется электроприводом по заранее заданным интервалам перемещения и количеству приемов измерений. Кодовая рейка измерительной системы расположена отдельно на жестком основании. Техническим результатом изобретения является повышение точности измерений. 1 ил.

Заявленное изобретение относится к области геодезии и может быть использовано в области промышленной безопасности при определении взаимного высотного положения (осадок) конструкций зданий (сооружений), элементов технологического оборудования, проведении разбивочных работ в строительстве, при монтаже технического оборудования в машиностроении, а также в других областях науки и техники, где требуется возможность измерения превышений в горизонтальной и вертикальной плоскости местах, точек, недоступных для непосредственного контакта. Заявленный способ дистанционного геометрического нивелирования состоит в использовании лазерного построителя плоскостей и лазерного дальномера. Причем, первоначально, с помощью лазерного построителя плоскостей, создается опорная, видимая, горизонтальная плоскость, а затем от нее берутся отсчеты высоты, установленным вертикально, лазерным дальномером точек, недоступных для непосредственного измерения (контакта). Технический результат – расширение диапазона и повышение производительности при проведении измерений высотного положения точек в условиях, когда трудно или невозможно производить измерения с помощью приборов, установленных в непосредственной близости от точки. 1 ил.
Наверх