Способ получения ароматических углеводородов

Изобретение относится к способу получения ароматических углеводородов из этана в присутствии катализатора. Способ характеризуется тем, что газовую смесь этана и кислорода, взятую в объемном соотношении 60-70 и 30-40 соответственно, подвергают контактированию с нагретым до 400-450°C катализатором, представляющим собой двухслойную композицию в виде смешанной оксидной Mo1.0V0.37Te0.17Nb0.12O3 составляющей, расположенной в проточном реакторе на входе газового сырья, и цеолита HZSM-5, расположенного далее по ходу движения сырья, при этом компоненты катализатора взяты в объемном соотношении 20-30 и 70-80 соответственно, и процесс проводят при атмосферном давлении и объемной скорости подачи газового сырья 1000-2000 ч-1. Использование настоящего способа позволяет достичь более высокой конверсии этана, а также более высокого выхода ароматических углеводородов при существенном снижении температуры проведения процесса и увеличении срока стабильной работы катализатора. 1 ил., табл., 1 пр.

 

Изобретение относится к технологии переработки углеводородного сырья, в частности к способу получения ароматических углеводородов из этана, этансодержащих газов термического и каталитического крекинга, а также из природного газа. Ароматические углеводороды (АрУ) находят применение в качестве высокооктановых компонентов моторных топлив как растворители и др.

Сегодня этан главным образом используется для получения этилена. Другим перспективным направлением конверсии этана в ценные продукты является его ароматизация - способ селективного превращения этана непосредственно в ароматические углеводороды. Однако здесь широкому использованию этана препятствует высокая химическая и термическая устойчивость его молекулы. Неокислительная ароматизация этана - эндотермическая реакция с необходимостью постоянного подвода тепла и протекает по схеме:

2Н66Н6+6Н2.

С термодинамической точки зрения реакция не благоприятна, для нее ΔG равно нулю только при 825°C. Процесс ароматизации обычно проводят при повышенных температурах 600-800°C и повышенном давлении (до 20 атм). Выход ароматических соединений (в основном бензола и нафталина) на лучших катализаторах, содержащих в своем составе благородные металлы, не превышает 14-17% при конверсии этана до 30%. Катализаторами процесса ароматизации метана и этана в составе природного и попутных нефтяных газов служат нанесенные системы, в которых в качестве носителя используются цеолиты типа ZSM-5 или МСМ-22, а в качестве активного компонента различные переходные металлы [В. Liu, Y. Yang, A. Sayari // Non-oxidative dehydroaromatization of methane over Ga-promoted Mo/HZSM-5-based catalysts // Appl. Catal. A., 214, 95, (2001)].

В патенте США №6239057 описан способ получения высших ароматических углеводородов (в т.ч. бензола) из низших углеводородов C1-C4, при контакте последних с катализаторами, состоящими из пористого носителя, такого как цеолит ZSM-5, нанесенного на него рения и металлических промоторов, выбранных из железа, кобальта, ванадия, марганца, молибдена, вольфрама или их смесей.

Существенными недостатками способа является использование повышенного давления (3 атм), низкий выход АрУ (не превышает 12,5%) при высоком содержании в катализаторах нанесенных металлов (в случае молибдена до 15%), а также использование предварительной длительной (до 100 часов) высокотемпературной (до 800°C) активации катализаторов в водороде. Кроме этого в процессе ароматизации в сырьевую смесь дополнительно добавляют СО или CO2, что увеличивает выход бензола и стабильность катализатора.

Общим недостатком известных способов ароматизации этана является неблагоприятность процесса с термодинамической точки зрения, что приводит к невысокой конверсии этана при достаточно высоких температурах (600-800°C). Также в ходе высокотемпературной реакции происходит интенсивное образование углеродистых отложений, что приводит к быстрой дезактивации катализаторов и вынуждает проводить периодическую регенерацию катализаторов.

Известен способ получения ароматических углеводородов из этана на катализаторе HZSM-5 и принятый за прототип [Михайлов М.Н., Дергачев А.А., Мишин И.В., Кустов Л.М., Лапидус А.Л. // Роль GA-PT-наночастиц в ароматизации низших алканов на цеолитах ZSM-5 // ЖФХ, 2008, т.82, №4, с.713]. При температуре 600°C и объемной скорости подачи этана 450 ч-1 его конверсия на катализаторе HZSM-5 составила 8,4%, а выход АрУ всего 2,3%. При этом наблюдается интенсивное метанообразование (селективность по СН4 достигает 37%). Наилучшие результаты получены при модифицировании исходного цеолита HZSM-5 металлами - галлием (до 2 мас.%) и платиной (до 0,5 мас.%). Металлы вводили в катализатор методом пропитки цеолита нитратом галлия и хлорплатинатом аммония. Однако максимальные значения конверсии этана, полученные на этих катализаторах, не превышают 29%, а выход ароматических углеводородов не превышает 17%.

Существенным недостатком известного способа является очень низкий выход ароматических углеводородов при использовании немодифицированного металлами цеолита HZSM-5, а также низкая производительность по АрУ даже на высокоактивных модифицированных платиной и галлием катализаторах из-за низкой объемной скорости подачи этана. Кроме этого наблюдается высокая степень дезактивации катализаторов вследствие повышенного коксообразования. Так, катализатор HZSM-5 практически полностью теряет свою активность в течение 12 часов.

Задачей настоящего изобретения является повышение конверсии этана и выхода ароматических углеводородов, а также увеличение срока стабильной работы катализатора.

Поставленная задача достигается предлагаемым способом получения ароматических углеводородов из этана в присутствии катализатора, отличающимся тем, что, согласно изобретению, газовую смесь этана и кислорода, взятую в объемном соотношении 60-70 и 30-40 соответственно, подвергают контактированию с нагретым до 400-450° катализатором, представляющим собой двухслойную композицию в виде смешанной оксидной Mo1.0V0.37Te0.17Nb0.12O3 составляющей, расположенной в проточном реакторе на входе газового сырья, и цеолита HZSM-5, расположенного далее по ходу движения сырья, при этом компоненты катализатора взяты в объемном соотношении 20-30 и 70-80 соответственно, и процесс проводят при атмосферном давлении и объемной скорости подачи газового сырья 1000-2000 ч-1.

Следует отметить, что катализатор может использоваться также в виде двухслойной загрузки в проточном полочном реакторе. Это, при необходимости, позволит устроить рецикл газов процесса, содержащих непрореагировавший этилен, а также олефины С34, образующиеся в процессе ароматизации этана, направив их на вторую полку реактора, что приведет к дальнейшему увеличению выхода АрУ. Кроме этого вместо этана в качестве сырья могут использоваться этансодержащие газы термического и каталитического крекинга, а также природный газ, а вместо дорогостоящего кислорода в составе газового сырья можно использовать воздух.

Смешанную оксидную Mo1.0V0.37Te0.17Nb0.12O3 составляющую катализатора готовят одним из известных способов, например гидротермальным соосаждением оксидов металлов (в автоклаве при 175°C в течение 50 часов) из растворов солей - теллурата молибдена, сульфата ванадия и оксалата ниобия с последующей фильтрацией образующегося осадка, его промывкой дистиллированной водой и прокаливанием при 600°C в токе инертного газа-азота (патент РФ №2400298).

В качестве второй составляющей катализатора вместо цеолита HZSM-5 могут использоваться другие цеолиты с высокой бренстедовской кислотностью, типа HZSM-12, HZSM-22, Н-ВЕТА и др., с силикатным модулем (SiO2/Al2O3) не выше 30.

Решаемая посредством настоящего изобретения задача состоит в разработке способа окислительной конверсии этана с получением ароматических углеводородов при использовании двухкомпонентного (двухслойного) катализатора, при этом на первом (лобовом) слое катализатора, состоящем из смешанного Mo1.0V0.37Te0.17Nb0.12O3 оксида, протекает реакция окислительного дегидрирования этана с образованием этилена, а далее на втором (по ходу движения газового сырья) слое цеолита образующийся этилен эффективно превращается в АрУ, при этом катализатор не содержит благородных металлов (Pt) и работает в области пониженных (400-450°C) температур, что существенно снижает затраты процесса.

Технический результат, получаемый при реализации настоящего изобретения, состоит в достижении более высокой конверсии этана, а также более высокого выхода ароматических углеводородов при существенном снижении температуры проведения процесса. Также при пониженных температурах проведения процесса и за счет присутствия в исходной газовой смеси окислителя - кислорода, наблюдается увеличение срока стабильной работы катализатора.

Изобретение иллюстрируется следующими примерами.

Пример 1. Смешанная оксидная Mo-V-Te-Nb-On составляющая катализатора, которая активна в реакции окислительного дегидрирования этана в этилен, была получена методом гидротермального синтеза: 6,4 г молибдотеллурата аммония суспензируют в 21,3 г воды при 80°C. В полученную суспензию добавляют раствор 2,4 г сульфата ванадила в 10 мл воды, затем к полученной смеси прибавляют раствор 2,3 г оксалата ниобия в 10 мл воды. Смесь перемешивают в течение 10 минут и переносят в автоклав из нержавеющей стали с внутренним вкладышем из Teflon® (тетрафторэтилен). Воздух в автоклаве замещают инертным газом, автоклав герметизируют и нагревают до 175°C. Автоклав выдерживают при заданной температуре в течение 48 часов и далее охлаждают до комнатной температуры. Образовавшийся в автоклаве в результате гидротермального синтеза твердый осадок отфильтровывают, промывают дистиллированной водой до обесцвечивания промывной воды и сушат при 80°C. Далее осадок прокаливают в токе инертного газа при 600°C в течение 2-х часов (скорость нагрева от комнатной температуры составляет 2°C/мин). Полученный порошок катализатора ОДЭ по данным химического анализа имеет следующий состав Mo1.0V0.37Te0.17Nb0.12O3.

В качестве цеолитной составляющей катализатора последующей ароматизации этилена использовали порошок цеолита HZSM-5 (SiO2/Al2O3=30, марки PPL 6251D, производства “Bayer AG”), предварительно прокаленный в муфельной печи при 500°C.

В каталитический реактор засыпали слой цеолита HZSM-5 (7 мл) и слой Mo1.0V0.37Te0.17Nb0.12O3 (3 мл). Полученная двухслойная композиция с объемным соотношением компонентов 70/30 используется в качестве катализатора в предлагаемом способе получения АрУ в ходе процесса окислительной ароматизации этана.

Пример 2. Катализатор готовили аналогично описанному в примере 1, с той разницей, что в качестве катализатора использовали двухслойную композицию HZSM-5 и Mo1.0V0.37Te0.17Nb0.12O3 с объемным соотношением компонентов 80/20.

Примеры 3-4. Катализаторы, полученные в примерах №1 и 2, испытывают в предлагаемом в настоящем изобретении способе получения ароматических углеводородов, образующихся в процессе окислительной ароматизации этана (таблица). Смесь этана и кислорода, взятую в объемном соотношении 60-70 и 30-40 соответственно, подавали при атмосферном давлении в проточный реактор (кварцевая трубка D=20 мм) со стационарным слоем катализатора (высота слоя 4 см) с объемной скоростью 1000-2000 ч-1. Загрузка катализатора составляла 10 мл, при этом на входе газового сырья располагали слой Mo1.0V0.37Te0.17Nb0.12O3, а далее по ходу газового потока - цеолит HZSM-5. Процесс окислительной ароматизации этана проводили в диапазоне температур 400-450°C. Температуру слоя катализатора в реакторе измеряли с помощью термопары, помещенной в кварцевом стакане непосредственно в середину слоя катализатора.

На выходе из реактора находилась охлаждаемая до 0°C ловушка для сбора жидких углеводородов. Анализ углеводородных C1-C4 газов реакции на выходе из охлаждаемой ловушки и АрУ в составе жидкого катализата проводили на хроматографе “Кристаллюкс” с использованием каппилярной колонки SE-30 (25 м) и пламенно-ионизационного детектора в изотермическом (30°C) и программируемом режиме (50°C- 4 мин, а далее 8°C/мин до температуры 180°C), соответственно. Водород и CO2 в составе реакционного газа (в об.%) анализировали с использованием петли фиксированного объема на колонке HayeSep-Q (3 м) и детектора катарометр при температуре 50°C.

Пример №5 (сравнительный). Выполнен на двухслойном катализаторе, но в условиях прототипа (Т в слое 600°C, W, ч-1 450, в сырьевой смеси отсутствует кислород).

В таблице представлены показатели реакции ароматизации этана на катализаторах, приготовленных по примерам 1-2.

Таблица
Показатели процесса ароматизации этана.
Пример № 3 4 5*
Катализатор по примеру №1 №2 №1
Т в слое, °C 400 450 600
С2Н6/O2 в исходном сырье, об.% 70/30 60/40 100/0
W, ч-1 1000 2000 450
Составу/в части газа на выходе из охлаждаемой ловушки, мас.%
СН4 6,1 4,2 19,6
С2Н6 29,2 38,1 68,4
С2Н4 5,1 7,5 3,0
С3Н8 37,8 31,9 8,8
С3Н6 4,6 5,1 0,2
ΣC4 17,2 13,2 Следы
Итого, % 100 100 100
Концентрация СО2 в газе реакции, об.% 0,3 0,7 -
Концентрация H2 в газе реакции, об.% 32,4 28,6 5,6
Конверсия этана, % 69,1 75,9 30,1
Выход АрУ, мас.% 22,2 19,4 4,4
Состав катализата, мас.%
Алифатика C5-C9 1,4 1,8 Следы
Бензол 16,2 20,4 69,1
Толуол 27,9 28,1 8,4
Алкилароматика C8-9 21,5 18,5 3,3
Ароматика C10+ 33,0 31,2 18,2
Итого, мас.% 100 100 100
Время 50% снижения выхода АрУ, ч 32 28 10
*- сравнительный пример выполнен в условиях по прототипу (в сырьевой смеси отсутствует кислород).

Сравнение показателей реакции с использованием двухслойной каталитической Mo1.0V0.37Te0.17Nb0.12O3 - HZSM-5 композиции по предлагаемому в настоящем изобретении способу в процессе окислительной ароматизации этана (примеры №3 и 4) и по сравнительному примеру №5, выполненному на двухслойном катализаторе в условиях традиционной неокислительной ароматизации, свидетельствует о том, что в настоящем изобретении достигаются существенно более высокая конверсия этана и выход ароматических углеводородов, при этом температура проведения процесса существенно (на 150-200°C) ниже, что однозначно приводит к уменьшению энергозатрат при получении ароматических углеводородов в ходе окислительной ароматизации. Кроме этого, в настоящем изобретении в составе каталитической композиции отсутствуют благородные металлы, при этом выход АрУ превышает выходы, заявленные в прототипе для образцов, содержащих платину (Pt/HZSM-5). Следует отметить, что использование в настоящем изобретении более высоких объемных скоростей подачи газового сырья приводит к более высокой производительности по АрУ.

Из таблицы видно, что в составе жидкого катализата по примерам №3 и 4 предлагаемого в настоящем изобретении способа получения ароматических углеводородов присутствует весь набор С610+ высокооктановых АрУ, в то время как в сравнительном примере №5 преобладает бензол (до 69,1%), нежелательный в составе бензинов. Кроме этого в составе газов реакции по примерам №3 и 4 присутствуют непрореагировавший этилен и олефины С34 в количестве до 15 мас.%, что, при необходимости, позволяет устроить рецикл газа на второй цеолитный слой катализатора, что приведет к дальнейшему увеличению выхода АрУ.

На Фиг.1 представлены зависимости конверсии этана и выхода АрУ от времени работы катализатора по примерам №3 и сравнительному примеру №5. Видно, что по предлагаемому способу окислительной ароматизации этана (пример №3) время стабильной работы катализатора существенно выше, чем в ходе традиционной неокислительной ароматизации этана. Так, в примерах №3 и 4 (таблица) по предлагаемому способу время работы катализатора, за которое наблюдается 50% снижения выхода АрУ, составляет 28-32 часов, в то время как в сравнительном примере №5 оно не превышает 10 часов. Т.о, при проведении реакции по заявленному в настоящем изобретении способу существенно возрастает период межрегенерационного пробега катализатора, по-видимому, за счет снижения коксообразования при умеренной температуре (400-450°C) проведения процесса.

Способ получения ароматических углеводородов из этана в присутствии катализатора, отличающийся тем, что газовую смесь этана и кислорода, взятую в объемном соотношении 60-70 и 30-40 соответственно, подвергают контактированию с нагретым до 400-450°C катализатором, представляющим собой двухслойную композицию в виде смешанной оксидной Mo1.0V0.37Te0.17Nb0.12O3 составляющей, расположенной в проточном реакторе на входе газового сырья, и цеолита HZSM-5, расположенного далее по ходу движения сырья, при этом компоненты катализатора взяты в объемном соотношении 20-30 и 70-80 соответственно, и процесс проводят при атмосферном давлении и объемной скорости подачи газового сырья 1000-2000 ч-1.



 

Похожие патенты:
Изобретение относится к технологии переработки газообразного углеводородного сырья для получения этилена и касается катализатора и способа получения этилена путем окислительной конденсации метана.

Изобретение относится к способу превращения метана в более высокомолекулярный углеводород (углеводороды), содержащий ароматический углеводород (углеводороды), в реакционной зоне.

Изобретение относится к способу производства этилена и электроэнергии из природного газа путем прямого окисления природного газа с последующей подачей отходящего газа на энергоустановку.

Изобретение относится к способу химической переработки смесей газообразных углеводородов (алканов) С1-С 6 в олефины С2-С3 (этилен и пропилен), заключающемуся в осуществлении реакций окислительной конденсации метана и пиролиза алканов С2-С6, характеризующемуся тем, что осуществляют окислительный пиролиз алканов С2 -С6, который проводят при температуре от 450°С до 850°С, давлении от 1 атм до 40 атм и подаче не более 15 об.% кислорода в присутствии оксидных катализаторов без предварительного разделения исходной смеси газообразных углеводородов (алканов) C1-С6 на составляющие компоненты и/или отделения метана, реакцию окислительной конденсации метана осуществляют в потоке метана, отделенного от продуктов окислительного пиролиза алканов С2-С6, в присутствии оксидных катализаторов при температуре от 700°С до 950°С, давлении от 1 атм до 10 атм и мольном соотношении метана и кислорода в интервале от 2:1 до 10:1, при этом выделение продуктов окислительной конденсации метана проводят совместно или частично совместно с выделением продуктов окислительного пиролиза алканов С2-С 6, а отделенные от реакционных газов метан, этан и алканы С3+ подвергают рециклу и направляют повторно на стадии окислительной конденсации метана и пиролиза алканов С2 -С6 соответственно.

Изобретение относится к способу превращения метана в этилен и этан в процессе его окислительного превращения, характеризующемуся тем, что в качестве катализаторов данного процесса используют смесь кварца с фталоцианиновыми комплексами магния, алюминия или марганца, причем способ проводят при температуре 700-800°С.

Изобретение относится к способу получения ацетилена окислительным пиролизом метана в присутствии кислорода и катализатора, характеризующемуся тем, что катализатор нагревают пропусканием через него электрического тока до температур 700-1200°С, в качестве катализатора используют термообработанный на воздухе при температурах 900-1100°С фехралевый сплав, а соотношение метан:кислород изменяют в интервале значений 5:1-15:1.

Изобретение относится к двум вариантам способа получения ароматических соединений, один из которых включает: стадию метанирования с контактом водородсодержащего газа с моноксидом углерода и/или диоксидом углерода в присутствии катализатора, вызывающего реакцию водорода, содержащегося в газе, с моноксидом углерода и/или диоксидом углерода и превращение этих компонентов в метан и воду; и стадию синтеза ароматического соединения с реакцией низшего углеводорода с метаном, получаемым на стадии метанирования, в присутствии катализатора с получением газа продуктов реакции, содержащего ароматические соединения и водород, причем ароматические соединения отделяют от газа продуктов реакции, получаемого на стадии синтеза ароматического соединения, и затем остающийся полученный водородсодержащий газ подают на стадию метанирования.

Изобретение относится к способу получения катализатора на основе перовскита для окислительной дегидроконденсации метана. .
Изобретение относится к способу увеличения молярного соотношения между метилом и фенилом у одного или нескольких ароматических соединений в подаваемом исходном материале.
Изобретение относится к способу переработки углеводородных соединений, содержащих по меньшей мере одну нитрильную (азотсодержащую) функциональную группу. .

Изобретение относится к способу превращения алифатического углеводорода с низким числом углеродных атомов в более высокомолекулярные углеводороды, включающие ароматические углеводороды, включающий контактирование исходного материала, содержащего упомянутый алифатический углеводород, с катализатором дегидроциклизации в условиях, эффективных для превращения упомянутого алифатического углеводорода в ароматические углеводороды и получения отходящего потока, включающего ароматические углеводороды и водород, где упомянутый катализатор дегидроциклизации включает металл, выбранный из группы, включающей молибден, рений и вольфрам, и молекулярное сито, включающее ZSM-5 и где отношение количества всех участков кислот Бренстеда в молекулярном сите к количеству упомянутого металла составляет меньше 0,4 моля/моль упомянутого металла.

Изобретение относится к способу превращения этилбензола, включающий стадию введения смешанного С8 ароматического углеводородного сырья, содержащего этилбензол, в контакт с катализатором(ами), содержащими, по меньшей мере, один металл, выбранный из металлов Группы VII и VIII в присутствии Н2 для превращения указанного этилбензола в бензол.

Изобретение относится к 2,4,6-триазидотолуолу формулы (I) и способу его получения. .

Изобретение относится к способу получения пропилена и ароматических углеводородов (два варианта), один из которых включаюет: (1) стадию получения пропилена, в которой углеводородное сырье, содержащее 50% по массе или более по меньшей мере одного из С4-12-олефинов контактирует в реакторе для получения пропилена с формованным катализатором А, содержащим первый цеолит, в указанных ниже условиях (i)-(iv) для осуществления реакции каталитической конверсии по меньшей мере одного из С4-12 -олефинов, с получением реакционной смеси, содержащей пропилен, реакционную смесь разделяют на фракцию С, содержащую преимущественно водород и C1-3-углеводороды, и фракцию D, содержащую преимущественно по меньшей мере один из С4+-углеводородов, и пропилен выделяют из фракции С: (i) с цеолитом, имеющим средний диаметр пор с диаметром пор от 5 до 6,5 Å; (ii) имеющим количество протонов, составляющее 0,02 ммол или менее на грамм цеолита, по измерению методом жидкофазного ионного обмена/титрования фильтрата; (iii) содержащим по меньшей мере один металл, выбранный из группы, состоящей из металлов Группы IB периодической таблицы; и (iv) имеющим молярное соотношение SiO2/Al2 O3 по меньшей мере 800, но не более 2000; и (2) стадию получения ароматических углеводородов, в которой сырьевой материал, содержащий полностью или частично фракцию D или ее часть, контактирует в реакторе для получения ароматических углеводородов с формованным катализатором В, содержащим второй цеолит, в указанных ниже условиях (v)-(vii), в газовой фазе при температуре 650°С или менее: (v) с цеолитом, имеющим средний диаметр пор с диаметром пор от 5 до 6,5 Å; (vi) с первоначальным диаметром частиц в диапазоне от 0,02 до 0,25 мкм; и (vii) содержащим по меньшей мере один металлический элемент, выбранный из группы, состоящей из металлических элементов в группе IB периодической таблицы.

Изобретение относится к способу получения чистого бензола и чистого толуола из исходного продукта, содержащего ароматические углеводороды, причем исходный продукт в стабилизационной технологической ступени перегонки (1) освобождают от газов, причем стабилизированный исходный продукт разделяют на промежуточный продукт, обогащенный бензолом, и на промежуточный продукт, обогащенный толуолом, причем промежуточный продукт, обогащенный бензолом, и промежуточный продукт, обогащенный толуолом, направляют в технологическую ступень экстрактивной перегонки (2) и по отдельности выдают на различные тарелки колонны для экстрактивной перегонки (4), причем смесь из чистого бензола, чистого толуола и экстрагирующего агента отбирают из нижней части (3) колонны для экстрактивной перегонки (4) и причем экстрагирующий агент в отпарной технологической ступени (5) отделяют от чистого бензола и чистого толуола и возвращают в технологическую ступень экстрактивной перегонки (2).
Изобретение относится к области катализа. Описан способ приготовления катализатора для получения бензола из метана путем его конверсии, включающий нанесение молибдена на носитель, представляющий собой цеолит HZSM-5, путем пропитки его водным раствором соли молибдена с последующей прокалкой на воздухе при температуре 500-600°С, причем цеолит HZSM-5 предварительно подвергают деалюминированию путем его термопаровой обработки в токе воздуха с парциальным давлением паров воды 10-100 кПа при температуре 450-550°С.
Наверх