Способ извлечения радионуклидов цезия из водных растворов

Изобретение относится к технологии сорбционного извлечения радионуклидов цезия из водных растворов. Способ извлечения радионуклидов цезия включает фильтрацию водного раствора через селективный сорбент, представляющий собой ферроцианид железа-калия на носителе, десорбцию цезия из сорбента щелочным раствором, содержащим Трилон Б и оксалат калия. Полученный при десорбции элюат далее фильтруют через сорбент, представляющий собой ферроцианид никеля-калия. Технический результат заключается в снижении времени извлечения цезия и минимизации объема получаемого концентрата, содержащего радионуклиды цезия. 1 табл., 2 пр.

 

Изобретение относится к технологии сорбционного извлечения радионуклидов из водных растворов и может быть использовано для очистки жидких радиоактивных отходов и в радиоаналитической химии, при экологическом мониторинге, с целью определения содержания радионуклидов цезия в морской и пресной воде и в различных технологических растворах.

Известен способ извлечения цезия-137 из водных растворов соосаждением с осадком ферроцианида никеля, требующий значительного количества времени для полного извлечения цезия (Радиохимия, 2008, т.50, №1, с.57-59).

Известен способ извлечения цезия-137 из водопроводной воды с использованием ферроцианидов железа и меди, нанесенных на полотно из полиакрилонитрила (ПАН) (Неорганические материалы, 1999, т.35, №8, с.949-952). Этот способ требует большого расхода сорбента и значительного времени для полного извлечения цезия.

Известен способ извлечения радиоактивного цезия из технологических растворов и жидких отходов АЭС, включающий использование ферроцианида железа в качестве селективного сорбента цезия (А.С. СССР №1686960, Ремез В.П. и др. от 22.06.1991 г.). Недостатком данного способа является низкая скорость очистки растворов.

Наиболее близким к заявляемому способу по технической сущности, назначению и достигаемому результату является известный способ переработки маломинерализованных жидких радиоактивных отходов (RU 2437177 от 25.11.2010 г.), выбранный в качестве прототипа. Данный способ заключается в фильтрации раствора, содержащего радионуклиды цезия, через селективный сорбент на основе ферроцианида никеля-калия, нанесенного на древесные опилки, размером 1-4 мм. После использования сорбент сжигают при температуре 800-1000°С, что приводит к сокращению образующихся твердых радиоактивных отходов в 40-60 раз.

Основным недостатком данного способа является использование большого количества дорогого токсичного ферроцианида никеля-калия, а также необходимость его термического разрушения при температурах до 1000°С в условиях перехода цезия в аэрозольное состояние, что требует использования сложной и дорогой аппаратуры. Кроме того, если учесть, что зольность древесных опилок не может быть меньше 3-5%, а разложение при 1000°С ферроцианида никеля-калия приведет к образованию соединений никеля, железа и калия в количестве не менее 5-8% от массы исходного сорбента, то можно определить, что сокращение образующихся твердых радиоактивных отходов от сжигания обработанных сорбентов будет не в 40-60 раз (как говорится в прототипе), а не более чем в 10 раз, что многократно на практике было установлено автором заявляемого изобретения (Ремез В.П. «Охрана окружающей среды от радиоактивных загрязнений на основе создания и применения целлюлозно-неорганических сорбентов», 1999 г., диссертация на соискание ученой степени доктора технических наук, с.163-167).

Целью заявляемого изобретения является создание экономичного способа извлечения радионуклидов цезия из водных растворов, позволяющего быстро и эффективно концентрировать изотопы цезия, получая конечный концентрат радионуклидов минимального объема.

Поставленная цель достигается тем, что водный раствор, содержащий радионуклиды цезия, сначала фильтруют через селективный к цезию сорбент - ферроцианид железа-калия, нанесенный на прочные гранулы или волокна (цеолит, силикагель, ПАН, древесную целлюлозу и т.п.). После прохождения всего объема раствора через колонну с сорбентом, слой ферроцианида железа-калия растворяют тремя-четырьмя объемами раствора, содержащего 1-5 г/л Трилона Б, 1-5 г/л оксалата калия при рН=10-12. Полученный элюат фильтруют через колонку с ферроцианидом никеля-калия, химически устойчивым в данной среде, нанесенным на прочные гранулы или волокна минерального или органического состава. Поскольку ферроцианид никеля-калия химически устойчив в щелочной трилонатно-оксалатной среде и обладает высокой селективностью к цезию, радионуклиды цезия полностью переходят из элюата в твердую фазу сорбента.

Соотношение объемов сорбента на основе ферроцианида железа-калия к объему никельсодержащего сорбента подбирают в интервале от 10 до 100, в зависимости от решаемой задачи. Большое количество сорбента на основе ферроцианида железа, используемое на первой стадии реализации заявляемого способа, позволяет быстро извлечь радионуклиды цезия из большого объема очищаемого раствора, а минимальное количество никельсодержащего сорбента, используемого на второй стадии, обеспечивает значительное сокращение объема твердых радиоактивных отходов, содержащих концентрат радионуклидов цезия.

Гранулы или волокна носителя, оставшиеся после растворения ферроцианида железа-калия щелочным трилонатно-оксалатным раствором, не содержат радионуклиды (поскольку весь цезий переходит в элюат) и могут быть использованы повторно для получения новых партий сорбентов или их можно утилизировать как неактивные материалы.

При наличии оборудования, обеспечивающего безопасное термическое разложение полученных концентратов, на второй стадии заявляемого способа может быть использован ферроцианид никеля-калия, нанесенный на горючую подложку (древесные опилки, целлюлоза и т.п.), что позволит, как и в способе-прототипе, путем сжигания отработанного сорбента, еще сократить в 3-4 раза объем получаемых твердых радиоактивных отходов.

Поскольку соли никеля, идущие на приготовление ферроцианидного сорбента, примерно в 30 раз дороже солей железа, а санитарные нормы при сбросе технологических промвод, содержащих никель, в 50 раз более жесткие, чем к железосодержащим стокам, стоимость сорбента на основе ферроцианида железа-калия в несколько раз дешевле, чем сорбента на основе никеля. Следовательно, снижение количества используемого для концентрирования цезия ферроцианида никеля в 10-100 раз дает значительный экономический эффект.

Кроме того, скорость извлечения цезия из водных растворов ферроцианидом железа-калия выше, чем ферроцианидом никеля-калия (Таблица 1), что позволяет значительно сократить общее время концентрирования цезия.

Таблица 1
Сорбция цезия-137 и морской воды (залив Петра Великого), объемная активность исходной морской воды по цезию-137 1,7×103 Бк/л3
Скорость фильтрации морской воды, м/ч Количество очищенных (до проскока) тысяч колоночных объемов морской воды
Ферроцианид железа-калия Ферроцианид никеля-калия
20 30 30
40 30 25
60 30 22
80 28 21
100 26 18

Оба сорбента содержали по 10% ферроцианидосодержащего материала, нанесенного на гранулированную древесную целлюлозу с размером гранул 0,5-1 мм.

Ниже приведены примеры осуществления заявляемого способа.

Пример 1

Сорбция цезия-137 из 1000-литровых проб морской воды (залив Петра Великого), объемная активность 3,2×105 Бк/м3

Прототип Заявляемый способ
Сорбент 50 см3 ферроцианида никеля-калия, очищает до проскока 20 тыс. колоночных объемов раствора Первая стадия: 1 л ферроцианида железа-калия
Время извлечения цезия 33 часа 2,5 часа
Объем конечного концентрата (ферроцианида никеля-калия) с цезием-137 50 см3 Вторая стадия: Растворение концентрата, полученного на 1-й стадии, 3 литрами щелочного трилонатно-оксалатного раствора и извлечение цезия-137 из полученного элюата на 10 см3 ферроцианида никеля-калия за 30 минут
Общее время концентрирования 33 часа 3 часа
Объем полученного концентрата 50 см3 10 см3
Объем зольного остатка, полученного при сжигании концентрата цезия-137 10 см3 2 см3

Из представленных результатов видно, что время извлечения цезия-137 заявляемым способом сокращается более чем в 10 раз по сравнению с прототипом, а объем получаемого радиоактивного концентрата уменьшается в 5 раз.

Представленные в примере 1 данные были получены в ходе разработки экспресс-анализа морской воды для экологического мониторинга миграции изотопов цезия в океанической среде. Было показано, что расходы на сорбенты и реактивы в заявляемом способе в 3-5 раз меньше, чем стоимость сорбента, используемого в прототипе, а с учетом судового времени, необходимого для забора и переработки проб морской воды, заявляемый способ дешевле в 12-17 раз.

Пример 2

Сорбция цезия-137 из трапных вод АЭС при исходной объемной активности 1,4×104 Бк/л. До «проскока» пропущено 3000 л. При использовании прототипа время концентрирования составило 125 часов, объем полученного концентрата 150 см. При осуществлении заявленного способа общее время концентрирования (обе стадии) составило 11 часов, а объем полученного концентрата цезия-137 - 40 см3.

Состав трилонатно-оксалатного щелочного раствора, применяемого для вымывания радионуклидов цезия из сорбента на основе ферроцианида железа-калия, используемого на первой стадии концентрирования, подобран экспериментальным путем. Было показано, что меньшие концентрации реагентов не полностью переводят радионуклиды цезия из сорбента в раствор, а использование больших количеств реагентов экономически нецелесообразно.

Соотношение объемов сорбентов (ферроцианида железа-калия к ферроцианиду никеля-калия), находящееся в интервале от 10 до 100, выбирают исходя из требований решаемых задач, связанных с извлечением радионуклидов цезия из водных растворов. Так, для решения радиоаналитических задач, связанных с получением концентрата радиоцезия заданного объема (для гамма-спектрометрирования препарата в конкретном объеме детектора), объем ферроцианида никеля-калия, используемого на 2-й стадии, определяется объемом детектора, а объем ферроцианида железа-калия (1-я стадия) выбирают исходя из времени, необходимого для извлечения изотопов цезия из исходной пробы.

При очистке жидких радиоактивных отходов от изотопов цезия, когда необходимо получить высокоактивный концентрат минимального объема, пригодный к долговременному хранению, выбирают соотношение объемов сорбентов в интервале 80-100, что позволяет при незначительном увеличении времени концентрирования радиоцезия получать минимальные количества радиоактивных отходов.

Способ извлечения радионуклидов цезия из водных растворов, включающий фильтрацию раствора через селективный сорбент, представляющий собой ферроцианид железа-калия нанесенный на носитель, элюацию цезия раствором Трилона Б и оксалата калия, фильтрацию элюата через ферроцианид никеля-калия, нанесенный на носитель, отличающийся тем, что соотношение сорбентов на основе ферроцианида железа-калия и ферроцианида никеля-калия равно (10-100):1, а элюирующий раствор содержит 1-5 г/л Трилона Б и 1-5 г/л оксалата калия при pH=10-12.



 

Похожие патенты:

Изобретение относится к сорбентам, полученным на основе микросфер зол-уноса тепловых электростанций, и может быть использовано для очистки жидких отходов от радионуклидов.
Изобретение относится к области аналитической радиохимии и обеспечения безопасности эксплуатации ядерных энергетических установок (ЯЭУ). Контроль содержания урана в технологических средах ЯЭУ осуществляют следующим образом: отбирают пробу технологической среды, подщелачивают ее до рН 9-11 добавлением аммиака, фильтруют через ацетатцеллюлозную мембрану со свежеосажденной двуокисью марганца, растворяют мембрану с двуокисью марганца в соляной кислоте при кипении, восстанавлливают уран аскорбиновой кислотой и металлическим цинком до степени окисления IV, а затем определяют содержание урана в растворе фотометрическим методом с использованием арсеназо III в солянокислой среде.
Изобретение относится к удалению радионуклидов стронция, рубидия, цезия, урана и некоторых токсичных ионов металлов из водных потоков. Радионуклиды и токсичные ионы металлов удаляют из воды сорбентами, в качестве которых используется крошка опок диаметром от 20 до 50 мм.

Изобретение относится к способу дезактивации жидких радиоактивных отходов. Способ дезактивации жидких отходов, содержащих один или несколько предназначенных для удаления радиоактивных химических элементов, содержащий следующие стадии: - стадию введения в контакт в первом реакторе жидких отходов с твердыми частицами; - стадию отстаивания суспензии во втором реакторе, в результате чего получают твердую фазу и жидкую фазу; - стадию разделения указанной твердой фазы и указанной жидкой фазы, часть указанной твердой фазы, полученной после стадии отстаивания, повторно направляют в первый реактор для осуществления стадии введения в контакт.
Изобретение относится к технологии обращения с жидкими радиоактивными отходами (ЖРО) атомных электростанций (АЭС) и может быть использовано в процессе переработки трапных вод и кубового остатка ЖРО АЭС для удаления радионуклида 60Со с концентрированием его в твердой фазе.
Изобретение относится к области аналитической радиохимии и технологии обработки радиоактивных вод. .

Изобретение относится к атомной энергетике, в частности к технологии обработки радиоактивных отходов атомной электростанции (АЭС). .
Изобретение относится к области переработки и утилизации радиоактивных отходов предприятий атомной промышленности. .

Изобретение относится к обработке воды, включающей сочетание способов из группы, содержащей коагуляцию, седиментацию, флоккуляцию и балластную флоккуляцию, которую дополнительно улучшают посредством добавления системы упрощенной рециркуляции осадка.

Изобретение относится к энергосберегающим системам оборотного водоснабжения. Система оборотного водоснабжения для мойки автомашин содержит технологическое оборудование, связанное системой трубопроводов с аппаратами очистки сточной воды, и включает в себя накопительную емкость 47, в которую самотеком поступают сточные воды, насос 48 для подачи воды из накопительной емкости 47 в реактор 49, компрессор 52 для перемешивания среды в реакторе 49, насос-дозатор 51 рабочего раствора коагулянта, флотатор 54, накопительную емкость 59 для сбора очищенной воды после флотатора 54, фильтры грубой 61 и тонкой 66 очистки, накопительную емкость 63 для сбора очищенной воды после фильтров грубой очистки, диафрагменный насос 55 и сборник шлама 56.
Изобретение относится к области микробиологии. Предложен штамм бактерий Exiguobacterium mexicanum ВКПМ B-11011, обладающий способностью быстро утилизировать нефть, дизельное топливо, масло моторное, газовый конденсат.

Изобретение относится к области обработки неочищенной воды, содержащей загрязнения. Способ включает по меньшей мере одну стадию приведения воды во взаимодействие по меньшей мере с одним порошкообразным адсорбентом в зоне (2) предварительного взаимодействия с перемешиванием; стадию флокуляции с утяжеленными хлопьями; стадию осаждения; стадию извлечения смеси осадка, балласта и порошкообразного адсорбента из нижней части зоны (5) осаждения; стадию введения смеси в гидроциклон (11), а также стадию передачи верхнего продукта гидроциклона (11), содержащего смесь осадка и порошкообразного абсорбента, в переходную зону (14).

Изобретение относится к области получения сорбционных материалов для очистки сточных и природных вод. Сорбент получают путем термообработки сапропеля с содержанием минеральной составляющей 54-85%.

Изобретение относится к области аналитической химии объектов окружающей среды и направлено на разработку средств аналитического контроля параметров экосистем и полиэлементного фонового мониторинга природных вод и водных экосистем.

Изобретение может быть использовано для очистки природных поверхностных и подземных вод при получении питьевой воды. Для осуществления способа проводят осветление пропусканием воды через слой пенопластовых кубиков или вспененный полистирол, фильтруют через кварцевый песок с крупностью зерен 0,3-1,5 мм и гравий от 2 до 32 мм.
Изобретение относится к очистке бытовых и промышленных сточных вод, водоемов и морских акваторий от загрязнений. Флокулянт для очистки воды получают путем сополимеризации смеси мономеров - итаконой кислоты или ее ангидрида, алкилового эфира итаконовой кислоты и амида акриловой или метакриловой кислот, при содержании каждого компонента в смеси, равном 10-80% мол.

Изобретение относится к устройствам для очистки воды от взвешенных частиц и может быть использовано при обработке природных, техногенных и бытовых сточных вод. Отстойник состоит из резервуара с нижним подводом очищаемой воды через центральную трубу, снабженную водораспределителем, обеспечивающим подачу воды в объем резервуара в виде струй в горизонтальных плоскостях под разными углами направлений струй к радиальному направлению.

Изобретение относится к области очистки техногенных вод и может быть использовано на предприятиях горной и металлургической промышленности. Способ очистки техногенных вод включает растворение полиэтиленгликольтерефталата в органическом растворителе, подачу полученной смеси в очищаемую воду и последующую флотацию обработанной воды при pH 7-8 с отделением ионов тяжелых металлов.

Изобретение используется для защиты подводных конструкций и оборудования от их биологического обрастания. На выходе из отводного канала формируют и излучают энергетические, информационные, высокоградиентные и биорезонансные сигналы, которые воздействуют на рыб и изменяют их поведенческие характеристики. Одновременно с этим излучают шумовые сигналы и формируют интенсивную воздушно-пузырьковую завесу, которая поднимает на поверхность биообрастатели и примеси. Воздушно-пузырьковая завеса и шумовые акустические волны являются дополнительными преградами для скопления рыб, находящихся вблизи выхода отводящего канала с перегретой водой. На поверхности воды разворачивают боновое заграждение, образующее сплошную преграду для поднятых на поверхность биообрастателей и примесей, а затем собирают их в виде грязной пены. При помощи мобильного передвижного комплекса, оснащенного акустическими излучателями, принудительно перемещают скопление рыб - естественных хищников биообрастателей, из удаленной части водоема в область, прилегающую к подводящему каналу, путем непрерывного излучения энергетических, информационных, высокоградиентных и биорезонансных сигналов. Одновременно с этим с помощью второго акустического модуля и второго акустико-пузырькового модуля, формируют акустический барьер для рыб - естественных хищников биообрастателей, а также акустико-пузырьковую завесу в наиболее узкой части водоема. Охлаждаемую в водоеме оборотную воду дополнительно очищают от биообрастателей и примесей, а рыб - не выпускают из данной акватории водоема. Одновременно с этим с помощью третьего акустического модуля и третьего акустико-пузырькового модуля, формируют акустический барьер для мальков рыб - естественных хищников биообрастателей, а также акустико-пузырьковую завесу на входе в подводящий канал объекта энергетического комплекса. В результате охлажденную в водоеме оборотную воду дополнительно очищают от биообрастателей и примесей. Одновременно с этим при помощи интенсивных ультразвуковых волн и низкочастотных электромагнитных волн осуществляют воздействие на биообрастателей на входе в водозаборное окно - с одновременной очисткой механической защитной решеткой от биообрастателей, и на выходе из подводящей трубы подводной конструкции. Одновременно с этим при помощи акустического фильтра, установленного на входе в оборудование объекта энергетического комплекса, осуществляют тонкую очистку воды от биообрастателей, а также от биологических и механических примесей. Обеспечивается повышение качества очистки и надежности защиты подводных конструкции и оборудования от биообрастания. 9 ил.
Наверх