Способ регулирования процесса горения, в частности, в топочном пространстве парогенератора, отапливаемого ископаемым топливом, и система сжигания

Изобретение относится к способу регулирования процесса сгорания, в частности, в топочном пространстве парогенератора, отапливаемого ископаемым топливом, в котором в топочном пространстве определяются пространственно разрешимые измеренные значения. Пространственно разрешимые измеренные значения преобразуются в параметры состояния, оцениваемые посредством техники регулирования, которые затем в качестве фактических значений подаются в контуры регулирования. Определенные в контурах регулирования изменения параметров регулирования в информации обратного преобразования с учетом цели оптимизации распределяются на исполнительные органы. Изобретение также относится к соответствующей системе сжигания. Изобретение позволяет повысить эффективность процесса горения. 3 н. и 18 з.п. ф-лы, 1 ил.

 

Изобретение относится к способу регулирования процесса горения, в частности, в топочном пространстве парогенератора, отапливаемого ископаемым топливом, при котором в топочном пространстве определяются пространственно разрешимые измеренные значения. Изобретение также относится к соответствующей системе сжигания.

Подобный способ раскрыт в документе US 2007/0122757 F23Q 9/08, 31.05.2007, который может рассматриваться в качестве аналога заявленного изобретения.

В случае процесса горения парогенератора топливо сначала подготавливается (например, размалывание угля в угольной мельнице, подогрев жидкого котельного топлива (мазута) и т.д.) и затем контролируемым образом с помощью воздуха для горения подается в топочное пространство в соответствии с текущей потребностью в тепле установки. Ввод топлива в топочное пространство осуществляется при этом в различных местах парогенератора в так называемые горелки. Также подача воздуха осуществляется в различных местах. На самих горелках всегда осуществляется также подача воздуха. Дополнительно подача воздуха может происходить в местах, в которых в топочное пространство не поступает топливо.

Таким образом, существует потребность проводить процесс горения таким образом, чтобы он протекал по возможности эффективно, с малым износом и/или по возможности с незначительными эмиссиями (выпуском в атмосферу веществ, загрязняющих окружающую среду).

Типичные существенные параметры влияния для процесса горения парогенератора следующие:

- распределение горючих веществ по отдельным горелкам,

- распределение воздуха для горения по различным зонам горения,

- общий массовый поток воздуха для горения,

- качество подготовки горючего вещества (например, усилие помола, число оборотов сепаратора, температура сепаратора в угольной мельнице),

- отвод дымовых газов,

- положение поворотных горелок.

Эти параметры влияния, как правило, устанавливаются в момент времени пуска в эксплуатацию парогенератора. При этом в зависимости от эксплуатационных краевых условий различные цели оптимизации выдвигаются на передний план, такие как максимальный кпд установки, минимальные эмиссии (NOx, СО,…), минимальное содержание углерода в золе (полнота сгорания). Из-за временной варьируемости параметров процесса, в частности непостоянных свойств топлива (теплота сгорания, расход воздуха, режим воспламенения и т.д.), требуется, однако, постоянный контроль и настройка процесса горения. Поэтому в технических установках горение контролируется устройствами измерительной техники, и располагаемые параметры влияния модифицируются за счет регулирующих воздействий согласно текущей определенной ситуации горения.

Вариация параметров влияния в течение работы установки выполняется лишь в очень ограниченной мере. Причина этого состоит в том, что за счет высоких температур, а также среды, подверженной химическому и механическому износу, лишь мало результатов измерений доступно или они вообще недоступны в достаточном качестве из среды, близкой к горению. Поэтому только данные измерений, которые получены в канале дымового газа, удаленно от горения, привлекаются для регулирования горения. Данные процесса, таким образом, предоставляются в распоряжение лишь с задержкой и без специфического отношения к отдельным исполнительным органам для оптимизации средствами техники регулирования. Из-за больших размеров технических крупномасштабных топочных камер располагаемые точечные измерения часто являются нерепрезентативными и не дают дифференцированной картины реальной пространственной ситуации процесса.

Так как во многих случаях невозможно никакое регулирование или оптимизация процесса горения, параметры процесса (например, избыток воздуха) устанавливаются на достаточном удалении от технических границ процесса. Это обуславливает потери из-за работы с пониженной эффективностью процесса, высоким износом и/или высокими эмиссиями.

При необходимости имеющееся регулирование и оптимизация процесса горения согласно современному уровню техники выполняются с помощью различных подходов.

- Регулирование полного массового потока (расхода) воздуха на основе измерения содержания кислорода в потоке дымового газа.

- Регулирование соотношений между воздухом для горения и воздухом, подаваемым сверху (верхнее дутье) на основе NOx- или СО-измерения в потоке дымового газа.

- При угольных котлах соответствующий массовый поток (расход) топлива измеряется как число оборотов подающего (ленточного) транспортера-дозатора, с помощью которого угль транспортируется в угольную мельницу. Точное разделение потока угля на питаемые этой мельницей горелки при этом часто не определяется. Поэтому принимается, что каждая горелка переносит постоянную часть массового потока топлива и соответственно устанавливает воздух для горения. Однако существуют различные измерительные системы, с помощью которых могут определяться потоки угля отдельных горелок. Более точное регулирование воздуха, при котором массовый поток воздуха на каждую горелку согласуется с соответствующим массовым потоком угля, таким образом, становится возможным.

- В котлах, которые оснащены ветровой камерой, сначала также не известен массовый поток воздуха на каждую подачу воздуха. Для того чтобы все-таки иметь возможность регулирования воздуха на подачу воздуха, разности давления через отдельные воздушные клапаны определяются средствами измерительной техники, и массовые потоки воздуха вычисляются из этих данных. Тем самым возможно более точное, согласованное с топливом регулирование массовых потоков воздуха.

- Нейронные сети применяются для того, чтобы изучать взаимосвязь между различными параметрами влияния и измеренными данными процесса. На основе возникающей таким образом нейронной модели парогенератора затем проводится оптимизация процесса горения.

В патентной заявке ЕР 1850069 В1 определен способ и контур регулирования для регулирования процесса горения, при котором наглядное определение процесса горения на горелках применяется для того, чтобы обучать нейронные сети, с помощью которых затем выполняется оптимизация горения.

- Для того чтобы противопоставить большим пространственным протяженностям крупных топок, частично определяются важные параметры процесса, такие как концентрация кислорода в дымовом газе, посредством дифракционных измерений на выходе котла. В ограниченной мере можно, таким образом, сделать выводы о пространственном распределении параметров процесса в процессе горения.

Дальнейшая оптимизация горения возможна, если используется пространственно разрешающая измерительная система, с помощью которой данные измерения из непосредственной окрестности горения могут предоставляться в распоряжение.

С учетом указанных документов предшествующего уровня техники задачей настоящего изобретения является предложить улучшенный способ для регулирования процесса горения, при котором применяются пространственно разрешенные измеренные данные в топочном пространстве. Другая задача состоит в том, чтобы предложить соответствующую систему сжигания.

Эти задачи решаются с помощью признаков независимых пунктов формулы изобретения. Предпочтительные выполнения приведены в зависимых пунктах формулы изобретения.

Существенные признаки изобретения могут быть сформулированы следующим образом.

- Пространственные информации измерения преобразуются в параметры состояния, которые могут оцениваться посредством техники регулирования.

- Для этих параметров состояния затем определяются заданные значения, которые описывают желательный режим работы.

- Эти параметры состояния применяются затем как фактические значения для, в частности, обычных контуров регулирования и там сравниваются с заданными значениями.

- Образованные таким способом регулирующие разности подаются на регуляторы, которые затем определяют необходимые изменения управляющего параметра.

- Выходы регуляторов распределяются на имеющиеся исполнительные органы, причем производится обратное преобразование выходов регуляторов на имеющиеся исполнительные органы, так как результат выходов регуляторов должен быть согласован с установкой.

Таким образом, изобретение использует улучшенное определение текущего состояния процессов горения за счет использования по меньшей мере одного средства измерительной техники с пространственно разрешающей областью регистрации для количественного определения продуктов сгорания после сгорания во внутренности технической установки сжигания для более дифференцированного и более быстрого регулирования процесса. Существенное преимущество изобретения состоит в том, что комплексные распределения измеренных значений пространственно разрешающей измерительной техники могут обрабатываться посредством преобразования в простые параметры состояния или регулирования на основе обычных регуляторов. Кроме того, за счет обратного преобразования достигается то, что выходные сигналы обычных регуляторов согласно заданной цели оптимизации распределяются на заданные управляющие параметры. Тем самым достигается оптимальная согласованность между вновь определенной концепцией регулирования и инсталлированной комплексной измерительной техникой. В частности, за счет улучшенных таким образом структур регулирования реализуется по возможности эффективный, обуславливающий малый износ и протекающий по возможности с незначительными эмиссиями процесс горения.

В первом варианте выполнения определяются параметры состояния на основе статистических информаций пространственно разрешенных измеренных значений. Это имеет преимущество, состоящее в том, что здесь может концентрироваться огромное разнообразие информации, например, об имеющихся распределениях температур или концентраций. Могут вводиться взвешивания и применяться другие методы обработки изображений. Дополнительное преимущество состоит в том, что таким образом возникают параметры процесса, с помощью которых процесс горения может описываться и регулироваться.

Другие варианты выполнения касаются определения заданных значений. Преимущество при определении заданных значений состоит в том, что цель оптимизации может быть задана конкретным и общедоступным образом. За счет этого желательное оптимальное поведение установки может быть описано однозначным и воспроизводимым образом. Оператор установки имеет тогда в любое время возможность за счет вариации заданных значений заново определить оптимальную рабочую точку, например, более высокий вес присвоить минимальным эмиссиям ценой несколько худшего кпд.

Распределение регулирующих выходов на исполнительные органы оптимизируется в одном варианте выполнения с помощью нейронной сети. Регулирующие воздействия могут, кроме того, точно юстироваться с помощью нейронной сети. Тем самым достигается особенно интеллектуальное и точное регулирование, которое является устойчивым против вариации других влияний, например изменяющегося качества топлива.

Изобретение далее описывается более подробно на примере выполнения, представленном на чертеже, где показана схема для разъяснения соответствующего изобретению регулирования горения.

Топочное пространство FR электростанции или другой технической установки, в которой осуществляется процесс горения, оснащено пространственно разрешающей измерительной системой (на чертеже обозначена как MS). При этом речь может идти о любой измерительной системе, с помощью которой измеренные данные могут предоставляться из непосредственной близости к зоне горения. Примерами таких измерительных систем являются следующие.

- Камера топочного пространства, с помощью которой может определяться процесс горения в топочном пространстве. При этом с помощью спектрального анализа света, излучаемого от пламени, получают дополнительные информации о горении.

- Конфигурация из лазеров и соответствующих детекторов. При этом лазерные лучи направляются чрез топочное пространство на фотодетекторы. Спектральный анализ лазерных лучей, исходящих из топочного пространства, на основе поглощения определенных длин волн дает информацию о собственно горении. Если лазерные лучи в форме решетки посылаются по нескольким путям через топочное пространство, то информация измерений может разрешаться по пространству.

Решающим при выборе измерительной техники является то, что она пригодна для определения существенных свойств горения с пространственным разрешением. При этом измерения выполняются, например, на поперечном сечении топочного пространства вблизи процесса горения. Определенные измеренные значения характеризуют горение на основе свойств таких, как, например, локальные концентрации (СО, О2, СО2, H2O,…) и температура.

Во всех случаях получают множество самых различных измеренных значений в зависимости от пространственных координат. На входе соответствующей изобретению системы регулирования приложены, таким образом, не отдельные измеренные значения, а полные распределения измеренных значений, подобные двумерному или трехмерному образцу.

В рамках преобразования переменных VT эти данные, обозначенные на чертеже с помощью М измеренных значений MW, на первом этапе преобразуются в параметры состояния, которые могут быть оценены средствами техники регулирования. Пространственная информация о топочном пространстве при этом отображается на отдельные параметры и тем самым сжимается.

Для вывода различных параметров состояния из пространственной информации измерений оцениваются следующие пункты:

a) взвешенные средние значения с подчеркиванием или подавлением частей пространства, регистрируемого средствами техники измерений,

b) среднее значение измеренных параметров по пространству, регистрируемому средствами техники измерений,

c) пространственное положение центров тяжести измеренных значений,

d) статистические параметры для пространственного образца распределения.

Для оцениваемых средствами техники измерений параметров состояния может определяться цель оптимизации в качестве заданного значения. Кроме того, эти параметры состояния характеризуют во взаимосвязи с обычными предоставляемыми средствами управления информациями измерений и процесса, текущее рабочее состояние процесса горения.

Посредством описанного преобразования переменных VT в соответствии с этим любое количество М измеренных значений MW преобразуется вновь в любое количество N параметров регулирования RG, причем М и N представляют натуральные числа, и N обычно меньше, чем М. В случае параметров регулирования RG речь идет о параметрах состояния, которые затем применяются как фактические значения для отдельных регуляторов.

N параметров регулирования подаются на N регуляторов R. Это представлено на чертеже на основе компонента регулирования, который содержит вычитатель и дополнительные компоненты техники регулирования, такие как, например, PI (пропорционально-интегральный)-регулятор. При этом речь идет об обычном компоненте регулирования, который, при необходимости, уже имеется в подлежащей регулированию технической установке. Также речь может идти о компоненте с множеством параметров регулирования, в зависимости от вариантов выполнения. Рассматриваемый здесь компонент регулирования имеет, кроме того, вход ESW для заданного значения выведенного параметра регулирования. Последний задается либо вручную, является постоянным или задается в зависимости от нагрузки и должен характеризовать желательный режим работы. Кроме того, существует, наряду с входом ERG для параметра регулирования RG, другой вход EPG для других любых измеренных параметров процесса PG, которые регистрируются вне пространственно разрешающей системы измерений. Внутри регулятора образуется регулирующая разность между заданным и фактическим значением, регулирующая разность варьируется посредством измеренных параметров процесса, например, для согласования усиления регулятора в зависимости от текущей ситуации нагрузки и подается на имеющийся регулятор (здесь PI-регулятор), который определяет необходимые изменения параметров регулирования. Этот сигнал приложен на выходе ARA регулятора.

Если теперь имеется N регуляторов, то существует на этом месте N значений для выходов регулирования RA (см. чертеж). Теперь действительным является то, что при обратном преобразовании RT эти обозначенные как регулирующие выходы сигналы RA в количестве N преобразуются таким образом, что определенное количество K исполнительных органов получает, соответственно, управляющий сигнал, который необходим для достижения цели регулирования. Иными словами, из всех регулирующих выходов RA N регуляторов R теперь выводятся регулирующие воздействия для различных исполнительных органов, с помощью которых на процесс горения можно влиять благоприятным образом. При этом регулирующее воздействие может осуществляться на несколько исполнительных органов с различной силой.

Исполнительными органами являются, например, отверстия размещенных в топочном пространстве воздушных клапанов.

В вычислительном блоке RT осуществляется разделение N регулирующих выходов на K исполнительных органов (N, K - натуральные числа). При этом также учитываются измеренные параметры процесса PG, которые определяются вне пространственно разрешающей измерительной системы. При обратном преобразовании регулирующих выходов на имеющиеся регулирующие параметры особое преимущество заключается в том, что разделение регулирующих выходов на исполнительные органы выполняется оптимальным образом, так что, например, может осуществляться минимизация значений эмиссии, и одновременно достигается по возможности высокий кпд установки. Это в данном примере выполнения достигается тем, что на вычислительный блок RT также подаются значения оптимизации OW из оптимизатора ОРТ. Оптимизатор получает информацию из различных зон.

Наряду с параметрами измерений процесса, которые регистрируются вне пространственно разрешающей измерительной системы, оптимизатор также может получать результаты измерений размещенных в топочном пространстве пространственно разрешающих измерительных устройств. В рамках преобразования переменных VT′ некоторое количество М′ пространственно разрешенных измеренных значений преобразуется в любое количество N′ параметров состояния, которые подаются на оптимизатор ОРТ. При этом речь может идти о таких же измеренных значениях, как и описанные выше, в качестве альтернативы, могут также применяться и другие измеренные значения. Опционально оптимизатор ОРТ может соединяться с нейронной сетью NN.

В этом случае реализуется гибридная регулирующая структура из обычных компонентов регулирования, а также нейронных сетей. Нейронная сеть обучается с параметрами измерений процесса и служит в качестве специфической модели для предсказания режима горения. Итеративный алгоритм оптимизации определяет, на основе реакции горения, прогнозируемой нейронной сетью, оптимальное распределение регулирующих воздействий на исполнительные органы, а также корректирующие значения для исполнительных органов. Тем самым процесс оптимизируется соответственно заданной целевой функции.

При значениях оптимизации OW речь может идти, например, о факторах балансирования. Посредством факторов балансирования результаты обратного преобразования RT с учетом процесса оптимизации соответственно желательной цели регулирования взвешиваются, сдвигаются и согласуются.

На основе выданных значений обратного преобразования и, при необходимости, с дополнительным учетом результатов процесса оптимизации в заключение осуществляется вычисление полного параметра регулирования GSB для имеющихся K исполнительных органов. Различные регулирующие воздействия на различные исполнительные органы от различных идентифицированных отклонений от заданных значений суммируются аддитивно в полное регулирующее воздействие для каждого исполнительного органа. В конце алгоритма K изменений параметров регулирования ST направляются далее на отдельные исполнительные органы, такие как воздушные клапаны или устройства подачи топлива.

В течение всего способа регулирования скорость и величина отдельных регулирующих воздействий согласуются с заданными техническими краевыми условиями и пределами технической установки. Заданные процессом пределы не превышаются.

1. Способ регулирования процесса горения, в частности, в топочном пространстве (FR) парогенератора, отапливаемого ископаемым топливом, при котором в топочном пространстве (FR) определяются пространственно разрешимые измеренные значения (MW), причем
- произвольное количество М измеренных значений (MW) на основе преобразования переменных (VT), в котором пространственная информация о топочном пространстве отображается на отдельные параметры и тем самым сжимается, преобразуется в меньшее, чем М, количество N параметров регулирования (RG), причем параметры регулирования, согласно технике регулирования, соответствуют оцениваемым параметрам состояния, которые затем в качестве фактических значений подаются в N контуров (R) регулирования,
- определенные в N контурах (R) регулирования изменения (RA) параметров регулирования в обратном преобразовании (RT) с учетом цели оптимизации распределяются на K исполнительных органов, причем М, N и K являются натуральными числами,
отличающийся тем, что при преобразовании переменных (VT, VT′) для определения различных параметров состояния из пространственных измеренных значений (MW, MW′) оцениваются опорные параметры из группы следующих опорных параметров:
а) взвешенные средние значения с выделением или подавлением частей зарегистрированного измерительной техникой пространства, и/или
b) среднее значение измеренных параметров по зарегистрированному измерительной техникой пространству, и/или
c) пространственное положение центра тяжести измеренных значений, и/или
d) статистические параметры для пространственного образца распределения.

2. Способ по п.1, отличающийся тем, что для параметров состояния может определяться цель оптимизации в качестве заданного значения (SW), причем параметры состояния в связи с обычно доступными информациями измерений и процесса характеризуют текущее рабочее состояние процесса горения.

3. Способ по п.2, отличающийся тем, что заданные значения (SW) для выведенных параметров состояния определяются для задания желательного рабочего режима.

4. Способ по п.1, отличающийся тем, что для различных параметров регулирования выводятся регулирующие воздействия, с помощью которых на процесс горения можно целенаправленным образом оказывать влияние, причем регулирующее воздействие на несколько исполнительных органов воздействует с дифференцированной силой.

5. Способ по п.1, отличающийся тем, что вычисляются отклонения заданных значений для идентификации отклонений для корректирующих воздействий средствами техники регулирования на процесс.

6. Способ по п.1, отличающийся тем, что различные регулирующие воздействия на различные исполнительные органы из различных идентифицированных отклонений заданных значений аддитивно суммируются в одно общее регулирующее воздействие для каждого исполнительного органа.

7. Способ по п.1, отличающийся тем, что для достижения цели оптимизации нейронная сеть обучается с измеренными параметрами процесса и применяется в качестве конкретной модели для прогнозирования режима горения.

8. Способ по п.7, отличающийся тем, что посредством итерационного алгоритма оптимизации на основе предсказанной нейронной сетью реакции горения определяется благоприятное распределение регулирующих воздействий на исполнительные органы, а также корректирующие значения для исполнительных органов.

9. Способ по п.1, отличающийся тем, что измерение выполняется на поперечном сечении топочного пространства вблизи зоны горения.

10. Способ по п.1, отличающийся тем, что в качестве характеристических свойств горения определяются локальные концентрации СО, О2, СО2, Н2О и температуры или подгруппы этих или сопоставимых измеренных параметров.

11. Способ по п.3, отличающийся тем, что для различных параметров регулирования выводятся регулирующие воздействия, с помощью которых на процесс горения можно целенаправленным образом оказывать влияние, причем регулирующее воздействие на несколько исполнительных органов воздействует с дифференцированной силой.

12. Способ по п.11, отличающийся тем, что вычисляются отклонения заданных значений для идентификации отклонений для корректирующих воздействий средствами техники регулирования на процесс.

13. Способ по п.12, отличающийся тем, что различные регулирующие воздействия на различные исполнительные органы из различных идентифицированных отклонений заданных значений аддитивно суммируются в одно общее регулирующее воздействие для каждого исполнительного органа.

14. Способ по п.2, отличающийся тем, что для достижения цели оптимизации нейронная сеть обучается с измеренными параметрами процесса и применяется в качестве конкретной модели для прогнозирования режима горения.

15. Способ по п.3, отличающийся тем, что для достижения цели оптимизации нейронная сеть обучается с измеренными параметрами процесса и применяется в качестве конкретной модели для прогнозирования режима горения.

16. Способ по п.11, отличающийся тем, что для достижения цели оптимизации нейронная сеть обучается с измеренными параметрами процесса и применяется в качестве конкретной модели для прогнозирования режима горения.

17. Способ по п.12, отличающийся тем, что для достижения цели оптимизации нейронная сеть обучается с измеренными параметрами процесса и применяется в качестве конкретной модели для прогнозирования режима горения.

18. Способ по п.13, отличающийся тем, что для достижения цели оптимизации нейронная сеть обучается с измеренными параметрами процесса и применяется в качестве конкретной модели для прогнозирования режима горения.

19. Способ по любому из пп.14-18, отличающийся тем, что посредством итерационного алгоритма оптимизации на основе предсказанной нейронной сетью реакции горения определяется благоприятное распределение регулирующих воздействий на исполнительные органы, а также корректирующие значения для исполнительных органов.

20. Система сжигания с топочным пространством, в частности, для парогенератора, отапливаемого ископаемым топливом, содержащая систему регулирования с блоком диагностики горения, причем блок диагностики горения оснащен пространственно разрешающей системой измерения в топочном пространстве, отличающаяся тем, что система регулирования выполнена для осуществления способа согласно любому из пп.1-19.

21. Электростанция, отапливаемая ископаемым топливом, с системой сжигания по п.20.



 

Похожие патенты:

Предохранительное устройство для анализа топочного газа для работающей на газе или нефти установки, имеющей электрическое соединение и топочный канал для горючих газов, содержит элемент для обнаружения опасного газа, выполненный с обеспечением возможности размещения в топочном канале для отслеживания топочного газа, и контроллер для автоматического регулирования соотношения газа и воздуха в топочном газе на основании сигнала от элемента для обнаружения опасного газа.

Изобретение относится к газотурбинным двигателям. Устройство горения газотурбинного двигателя содержит воздухоприемник, первое измерительное устройство для измерения количества газа в воздухоприемнике, по меньшей мере одну камеру сгорания, множество линий подачи топлива в камеру сгорания, выхлопную трубу, второе измерительное устройство для измерения количества газа в выхлопной трубе и блок управления, приспособленный для изменения подачи топлива в множество линий подачи топлива с возможностью контролировать количество газа в выхлопной трубе, причем данное изменение осуществляется в зависимости как от измеряемого количества газа в воздухоприемнике, так и от измеряемого количества газа в выхлопной трубе.

Изобретение относится к области теплоснабжения и может быть использовано на котельных, имеющих два и более котла с различными характеристиками. Способ предназначен для водогрейных и паровых котельных, на которых установлено не менее двух котлов с различными характеристиками.

Изобретение относится к энергетике. .

Изобретение относится к способам управления горением в газовой турбине. .

Изобретение относится к устройствам для термической нейтрализации огневым методом жидких отходов, например промышленных стоков, образующихся на газоконденсатных и нефтяных месторождениях.

Изобретение относится к области теплоэнергетики и предназначено для сжигания жидкого топлива в котлах, нагревательных устройствах и камерах сгорания. .

Изобретение относится к газорегулирующей арматуре. .

Изобретение относится к области теплоэнергетики и может быть применено на тепловых электростанциях, использующих энергетические бурые угли открытых разрезов. .

Изобретение относится к области уничтожения отходов. .

Изобретение может быть использовано при проектировании систем управления нагревом свечей накаливания (запальных свечей), применяемых в камерах сгорания дизелей. Способ заключается в том, что определяют электроэнергию, подаваемую на запальную свечу (С), и температуру камеры сгорания. При этом прогнозируют температуру С и используют прогнозируемую температуру С для управления подачей электроэнергии на С. Прогнозируемую температуру С получают из числового решения дифференциального уравнения (ДУ) для температуры С, причем ДУ для температуры С является нелинейным по температуре С. ДУ для температуры С получают из уравнения баланса мощности, содержащего, по меньшей мере, четыре члена Pg, Pi, Pe, Pc, где Pg моделирует электроэнергию, подаваемую на С, Pi моделирует энергию, аккумулируемую в С за единицу времени, Pe моделирует энергию излучения за единицу времени, и Pc моделирует тепловую энергию за единицу времени, причем тепловая энергия передается посредством конвекции или теплопроводности. Технический результат заключается в повышении точности управления температурой С. 5 н. и 9 з.п. ф-лы, 5 ил.

Изобретение относится к энергетике. Система управления электростанцией с мельницей для измельчения материала для ввода в систему сгорания содержит первый датчик, второй датчик, систему регулирования, компонент модуля оценки состояния, выполненный с возможностью принимать сигналы, причем компонент модуля оценки состояния выполнен с возможностью использовать первый сигнал, второй сигнал и третий сигнал, чтобы вырабатывать сигнал индикатора параметра материала и сигнал индикатора состояния системы, и компонент вывода, для выработки выходного управляющего сигнала. Изобретение позволяет повысить точность системы при реагировании на возмущения и уменьшить время реакции электростанции на изменение нагрузки. 2 н. и 12 з.п. ф-лы, 2 ил.

Изобретение относится к области энергетики. Устройство для сжигания жидкого топлива содержит удлиненное отделение для сгорания, содержащее боковые стенки, имеющие внешнюю поверхность и внутреннюю поверхность, определяющие радиальную периферию отделения для сгорания, имеющего центральную ось, проходящую от ближнего конца к дальнему концу этого отделения в продольном направлении, при этом дальний конец является открытым, обеспечивая сообщение по текучей среде изнутри отделения для сгорания и наружу этого отделения; средство для создания воздушного потока для обеспечения потока воздуха в направлении от ближнего конца отделения для сгорания к дальнему концу в направлении, параллельном центральной оси этого отделения; топливную форсунку для аэрации жидкого топлива внутри отделения для сгорания; средство для подачи топлива для подачи жидкого топлива в топливную форсунку; средство обеспечения давления для приложения давления к жидкому топливу, поданному через средство для подачи топлива; слой тепловой изоляции, расположенный радиально между центральной осью отделения для сгорания и боковыми стенками отделения, уменьшающий передачу тепла в направлении от центральной оси отделения для сгорания к боковым стенкам; термопоглощающий слой, расположенный радиально между центральной осью отделения для сгорания и изолирующим слоем, обеспечивающий поглощение тепловой энергии, созданной внутри отделения для сгорания, и ее излучение назад в отделение для сгорания в направлении к центральной оси, когда между отделением для сгорания и термопоглощающим слоем достигнуто тепловое равновесие. Средство для подачи жидкого топлива содержит устройство для циркуляции топлива, это устройство содержит топливный резервуар, выпускную трубу из топливного резервуара, впускную трубу в топливный резервуар, приводное устройство для циркуляции жидкости, регулирующий клапан для регулирования давления внутри устройства для циркуляции топлива и средство ввода жидкости для увеличения количества жидкости внутри устройства для циркуляции топлива, при этом выпускная труба или впускная труба находится в сообщении по текучей среде с аэрационной форсункой упомянутого устройства для сжигания текучего топлива таким образом, что устройство для циркуляции может подавать определенное количество топлива в это устройство, и при этом любой избыток топлива рециркулируется в топливный резервуар. Изобретение позволяет повысить качество сжигания топлива, снизить вредные выбросы. 2 н. и 14 з.п. ф-лы, 7 ил.

Изобретение относится к энергетике. Способ регулировки мобильного топливного отопителя содержит следующие этапы: включение отопителя в работу; соединение диагностического прибора с отопителем; измерение фактического содержания СО2 в отработавших газах отопителя и/или фактического коэффициента λ избытка воздуха в камере сгорания отопителя; определение заданной величины содержания СО2 и/или λ в зависимости от по меньшей мере одного текущего рабочего параметра отопителя в устройстве управления отопителя или в диагностическом приборе и вывод заданной величины содержания СО2 и/или λ через интерфейс. Изобретение позволяет повысить надежность регулировки мобильного отопителя. 3 н. и 12 з.п. ф-лы, 1 ил.

Изобретение относится к энергетике. Работа печи контролируется посредством контроля за статистической переменной, вычисляемой из измерения тяги, и контроля за переменной процесса, связанной с работой печи. Аномальная работа печи определяется на основе статистической переменной и переменной процесса. Изобретение позволяет повысить эффективность контроля. 3 н. и 21 з.п. ф-лы, 16 ил.

Изобретение относится к области теплоэнергетики. Способ работы парового котла, по которому в топку котла подают воздух и используемый в качестве топлива природный газ, теплоту продуктов сгорания топлива отводят котловой воде и пару, после чего уходящие газы удаляют из котла в атмосферу, из барабана котла отводят продувочную воду. В топку котла впрыскивают продувочную воду, благодаря чему снижают температуру продуктов сгорания топлива в наиболее теплонапряженной части топки и подавляют образование оксидов азота в топке, количество впрыскиваемой продувочной воды регулируют по импульсу от датчика содержания оксидов азота в уходящих газах котла, уходящие газы охлаждают ниже температуры конденсации водяных паров, образующихся при впрыске в топку продувочной воды, а образовавшийся при охлаждении уходящих газов конденсат используют в пароводяном цикле котла, например, подают в деаэратор питательной воды. Изобретение направлено на снижение температуры в наиболее теплонапряженной части топки и предотвращение образования оксидов азота. 1 ил.

Изобретение относится к области теплоэнергетики. Способ работы парового котла, по которому в топку котла подают воздух и используемый в качестве топлива природный газ, теплоту продуктов сгорания топлива отводят котловой воде и пару, после чего уходящие газы удаляют из котла в атмосферу, из барабана котла отводят продувочную воду. В топку котла впрыскивают продувочную воду, благодаря чему снижают температуру продуктов сгорания топлива и подавляют образование оксидов азота в топке, количество впрыскиваемой продувочной воды регулируют по импульсу от датчика температуры продуктов сгорания топлива в наиболее теплонапряженной части топки, уходящие газы охлаждают ниже температуры конденсации водяных паров, образующихся при впрыске в топку продувочной воды, а образовавшийся при охлаждении уходящих газов конденсат используют в пароводяном цикле котла, например подают в деаэратор питательной воды. Изобретение направлено на повышение экологической безопасности работы котельной установки путем снижения температуры в наиболее теплонапряженной части топки. 1 ил.

Термостат // 2641177
Изобретение относится к области газовых бытовых кухонных плит и, в частности, к термостату для бытовых кухонных плит. Термостат для бытовых кухонных плит, работающих от газа, содержит корпус, в котором образованы впускной канал и выпускной канал, выполненные с возможностью получения газового потока от подающего источника и для подачи такого газового потока в газовую горелку. Также содержит камеру, имеющую цилиндрическую форму и сообщающуюся по текучей среде с впускным каналом. Камера выполнена с возможностью сообщения по текучей среде с выпускным каналом, либо непосредственно, через основное отверстие, образованное на ее одном конце, либо опосредованно, через вспомогательный канал, который образован в корпусе термостата и проходит в выпускной канал, обходя указанное основное отверстие. Указанные основное отверстие и вспомогательный канал соответственно имеют такие размеры, чтобы обеспечить максимальный и минимальный расходы газа. Термостат дополнительно содержит клапан, имеющий цилиндрическую форму и осуществляющий регулирование расхода газа. Указанный клапан представляет собой выполненный как одно целое клапан, размещенный в камере соосно с ней и перемещаемый между первым положением, в котором основное отверстие полностью освобождено, таким образом обеспечивая проход потока газа в выпускной канал, и вторым положением, в котором основное отверстие полностью закрыто клапаном, и газовый поток достигает выпускного канала только через вспомогательный канал. Клапан содержит пару фланцев, образованных на его свободных концах. Первый фланец обращен к основному отверстию камеры и имеет диаметр, обеспечивающий его закрывание в указанном втором положении. Второй фланец закрывает камеру на ее противоположном конце. Второй фланец имеет окружную канавку, выполненную с возможностью размещения уплотнительного элемента клапана, предотвращающего выпуск газа из камеры, при этом диаметры первого и второго фланцев, по существу, соответствуют диаметру камеры. Впускной канал и выпускной вспомогательный канал находятся в сообщении по текучей среде через цилиндрическую камеру для любого осевого положения клапана. Благодаря этим признакам, конструктивная конфигурация корпуса термостата и его каналов является гораздо более компактной, функциональной и дешевой, чем конструктивная конфигурация термостатов, известных в данной области техники. 11 з.п. ф-лы, 4 ил.
Наверх