Способ обеспечения однородного распределения напряжений в плоской составной конструкции при ее растяжении-сжатии



Способ обеспечения однородного распределения напряжений в плоской составной конструкции при ее растяжении-сжатии
Способ обеспечения однородного распределения напряжений в плоской составной конструкции при ее растяжении-сжатии
Способ обеспечения однородного распределения напряжений в плоской составной конструкции при ее растяжении-сжатии
Способ обеспечения однородного распределения напряжений в плоской составной конструкции при ее растяжении-сжатии
Способ обеспечения однородного распределения напряжений в плоской составной конструкции при ее растяжении-сжатии

 


Владельцы патента RU 2524041:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Пермский государственный национальный исследовательский университет" (RU)

Изобретение относится к способу стыкового соединения различных материалов, обеспечивающему однородное распределение напряжений в составной конструкции при растяжении-сжатии. Сущность: для каждой пары скрепляемых материалов определяют угол наклона скрепляемых материалов относительно горизонтальной оси, при этом линия наклона соединяемых деталей зависит от механических свойств материалов. Технический результат: в результате скрепления материалов в соответствии с описанной процедурой напряженное состояние в сборной конструкции оказывается однородным. 2 з.п. ф-лы, 5 ил., 2 пр.

 

Изобретение относится к способу стыкового соединения различных материалов, обеспечивающему однородное распределение напряжений в составной конструкции при растяжении-сжатии.

В элементах конструкций, полученных соединением встык посредством пайки, сварки или склеивания, подвергаемых нагружению растяжения-сжатия, возможно возникновение значительной концентрации напряжений в окрестности крайней точки линии соединения различных материалов (край поверхности соединения). Распределение напряжений вблизи такой особой точки изучалось многими авторами. При этом предметом исследования была возможность управления концентрацией напряжений а) путем оптимизации формы поверхности соединения [Рябов И.А. Безопасность механически неоднородных элементов конструкций нефтегазового комплекса. / Автореферат диссертации на соискание ученой степени кандидата техн. наук. Уфа. - 2009. - 26 с], б) поиском новой геометрии скрепляемых деталей вблизи особой точки [Матвеенко В.П., Федоров А.Ю. Оптимизация геометрии составных упругих тел как основа совершенствования методик испытаний на прочность клеевых соединений. // Вычислительная механика сплошных сред. - 2011. - Т.4, №4. - С.64-70.], в) изменением толщины посредника [Федоров А.Ю. Влияние клеевой прослойки на напряженное состояние в образцах для испытания на прочность клеевых соединений // Вестник Пермского университета. Математика. Механика. Информатика. - 2011. - Вып.5 (9). - С.183-186.], г) «выявлением области изменения упругих постоянных соединяемых материалов, в которой при определенных наклонах краевой полоски поверхности контакта к примыкающим элементам поверхности составного тела окрестность края поверхности контакта будет малонапряженной» [Чобанян К.С. Напряжения в составных упругих телах. Изд-во АН Арм. ССР, Ереван. - 1987 - 338 с].

К настоящему времени проведены и теоретические, и экспериментальные исследования данной задачи, при этом показано, что концентрация напряжений вблизи рассматриваемой особой точки поддается управлению всеми указанными способами. Однако решений, обусловливающих однородное распределение напряжений в конструкции, не было найдено.

Известен способ [Матвеенко В.П., Федоров А.Ю. Оптимизация геометрии составных упругих тел как основа совершенствования методик испытаний на прочность клеевых соединений. // Вычислительная механика сплошных сред. - 2011. - т.4, №4. - С.64-70], в котором решается задача соединения двух различных материалов применительно к испытанию клеевых соединений. За счет выбора формы образующей боковой поверхности составной конструкции изучается возможность получения более однородного распределения в ней напряжений. Решается задача оптимизации. Данный способ взят за прототип. Такой подход имеет следующие недостатки:

1. Получение оптимизационного решения достаточно трудоемко и доступно лишь высокопрофессиональному специалисту.

2. По мнению самих авторов изготовление образцов с геометриями, найденными путем решения оптимизационной задачи, может иметь определенные технические трудности.

3. Полученное решение не оказывается однородным, а лишь приближается к нему.

Задачей создания изобретения является разработка способа, исключающего концентрацию напряжений вблизи крайней точки линии соединения деталей различных конструкций, предложить способ стыкового соединения различных материалов, обеспечивающий однородное распределение напряжений в составной конструкции при ее растяжении-сжатии.

Поставленная задача решается с помощью признаков, указанных в 1-м пункте формулы изобретения, общих с прототипом, таких как: способ обеспечения однородного распределения напряжений в элементах конструкций, полученных соединением встык посредством, например, пайки, сварки или склеивания, подвергаемых нагружению растяжения-сжатия, путем выбора геометрии скрепляемых деталей, и отличительных существенных признаков, таких как: для каждой пары скрепляемых материалов определяют угол наклона линии скрепляемых материалов относительно горизонтальной оси, при этом наклон линии соединяемых деталей зависит от механических свойств материалов.

Согласно п.2 формулы изобретения угол наклона kij=tgαij при плосконапряженном состоянии конструкции определяют по формуле:

k i j 2 = E i v j E j v i E i E j

Согласно п.3 формулы изобретения угол наклона при плоско-деформированном состоянии конструкции определяют по формуле:

k i j 2 = E i v j ( 1 + v j ) E j v i ( 1 + v i ) E i ( 1 v j 2 ) E j ( 1 v i 2 )

Вышеперечисленная совокупность существенных признаков дает следующий технический результат - напряженное состояние в сборной конструкции является однородным при растяжении-сжатии.

Цель создания изобретения - предложить способ стыкового соединения различных материалов, обеспечивающий однородное распределение напряжений в составной конструкции при растяжении-сжатии.

Рассматривается соединение встык двух или нескольких различных материалов с посредником (скрепляющим материалом) или без посредника. Сборная конструкция предназначена для работы на растяжение-сжатие в условиях плосконапряженного или плоскодеформированного состояния. Предлагается способ выбора линии соединения материалов таким образом, чтобы напряженное состояние во всей конструкции было однородным.

Операции процесса выбора поверхности скрепляемых материалов:

1. Определяются механические характеристики скрепляемых материалов: Ei - модуль Юнга, vi - коэффициент Пуассона, i - номер, приписываемый участвующему в процедуре материалу.

2. Для каждой пары скрепляемых материалов с номерами i и j определяется kij - тангенс угла наклона с горизонтальной осью х1 линии mn их скрепления (Фиг.1) по формуле для плоского напряженного состояния (ПНС):

k i j 2 = E i v j E j v i E i E j , ( 1 )

для плоского деформированного состояния (ПДС):

k i j 2 = E i v j ( 1 + v j ) E j v i ( 1 + v i ) E i ( 1 v j 2 ) E j ( 1 v i 2 ) ( 2 )

k i j = t g α i j ( 3 )

3. Детали с номерами i и j скрепляются по линии mn.

Технический результат

В результате скрепления материалов в соответствии с описанной процедурой напряженное состояние в сборной конструкции оказывается однородным. Концентрация напряжений вблизи особых точек (края линии соединения) отсутствует.

Изобретение иллюстрируется следующими примерами и фиг.2-5.

Таблица 1
Механические характеристики скрепляемых материалов
№ п/п Материал Модуль Юнга, ГПа Коэффициент Пуассона
1 Чугун 110 0.22
2 Стекло 70 0.25
3 Сталь 210 0.28
Таблица 2
Тангенсы углов наклона для плоского напряженного состояния (ПНС) и плоской деформации (ПДС) для скрепления пары материалов по формулам (1) и (2) соответственно
ПНС ПДС Пара материалов
0.550000 0.653367 Чугун-стекло
0.484768 0.553404 Стекло-сталь
0.154000 0.172050 Чугун-сталь

Пример 1

На Фиг.2, 3, а показано скрепление чугуна (1) с помощью стекла (2) в конструкции, работающей при плосконапряженном состоянии. В случае невыполнения условия (1) при tgα=0 в окрестности краев линии соединения материалов возникает концентрация напряжений. Напряженное состояние во всей конструкции неоднородное (Фиг.2, б). Если же условие (1) выполняется, tgα=0.55, концентрация напряжений вблизи края линии соединения материалов отсутствует, напряженное состояние в конструкции однородное (Фиг.3, б).

Пример 2

При скреплении двух различных материалов с помощью третьего (посредника) параметры kij - тангенсы углов наклона линий скрепления оказываются разными для каждой пары материалов (табл.2). На Фиг.4, 5, а показано скрепление чугуна (1) и стали (3) с помощью стекла (2) в конструкции, работающей при плосконапряженном состоянии. В случае невыполнения условия (1) при tgα=0 в окрестности краев линий соединения материалов возникает концентрация напряжений. Напряженное состояние во всей конструкции неоднородное (Фиг.4, б). Если же условие (1) выполняется, наклоны линий скрепления пары материалов (1)-(2) и (2)-(3) выбираются из табл.2 удовлетворяющими условию (1), концентрация напряжений вблизи края линий соединения материалов отсутствует, напряженное состояние в конструкции однородное (Фиг.5, б).

Литература

1. Рябов И.А. Безопасность механически неоднородных элементов конструкций нефтегазового комплекса. / Автореферат диссертации на соискание ученой степени кандидата техн. наук. Уфа. - 2009. - 26 с.

2. Матвеенко В.П., Федоров А.Ю. Оптимизация геометрии составных упругих тел как основа совершенствования методик испытаний на прочность клеевых соединений. // Вычислительная механика сплошных сред. - 011. - Т.4, №4. - С.64-70.

3. Федоров А.Ю. Влияние клеевой прослойки на напряженное состояние в образцах для испытания на прочность клеевых соединений. // Вестник Пермского университета. Математика. Механика. Информатика - 2011. - Вып. 5 (9). - С.183-186.

4. Чобанян К.С.Напряжения в составных упругих телах. Изд-во АН Арм. ССР, Ереван. - 1987. - 338 с.

1. Способ обеспечения однородного распределения напряжений в элементах конструкций, полученных соединением встык посредством, например, пайки, сварки или склеивания, подвергаемых нагружению растяжения-сжатия, путем выбора геометрии скрепляемых деталей, отличающийся тем, что для каждой пары скрепляемых материалов определяют kij=tgαij - угол наклона скрепляемых материалов относительно горизонтальной оси, при этом линия наклона соединяемых деталей зависит от механических свойств материалов.

2. Способ по п.1, отличающийся тем, что угол наклона при плосконапряженном состоянии конструкции определяют по формуле:
k i j 2 = E i v j E j v i E i E j .

3. Способ по п.1, отличающийся тем, что угол наклона при плоско-деформированном состоянии конструкции определяют по формуле:
k i j 2 = E i v j ( 1 + v j ) E j v i ( 1 + v i ) E i ( 1 v j 2 ) E j ( 1 v i 2 ) .



 

Похожие патенты:

Изобретение может быть использовано при сварке изделий из трудно свариваемых сплавов, в частности, в труднодоступных местах изделий и при сварке на монтаже. Последовательно получают участки сварного шва возвратным каскадным перемещением электрода или сварочной головки.

Изобретение относится к способу сварки трубопроводов без предварительного подогрева стыков. Способ включает в себя соединение 2-х и более цилиндрических металлических труб, трубных секций, трубных плетей сварным кольцевым стыком с применением дуговой сварки по всему периметру трубы.

Изобретение относится к стыковым сварным соединениям, в частности к соединениям арматурных стержней, и может быть использовано при строительно-монтажных работах, а также при изготовлении строительных железобетонных конструкций различного назначения, преимущественно сборных и монолитных.

Изобретение относится к способу сварки труб большого диаметра, в частности к сварке сформованных цилиндрических заготовок для улучшения эксплуатационных характеристик труб и повышения производительности сварки.

Способ предназначен для изготовления тонкостенных конических обечаек с ребрами жесткости методом сварки. Производят формирование сегментов обечайки.

Изобретение относится к области сварки, в частности к электронно-лучевой сварке в вакууме разнотолщинных деталей. Стыковое замковое соединение осуществляется между деталью с большей толщиной, на торце свариваемой кромки которой выполняют основание замка, и деталью с меньшей толщиной, которая пристыковывается к ней.

Изобретение относится к машиностроению и может быть использовано в станках для снятия скосов при обработке поверхности под сварной шов, выполненных с возможностью регулирования глубины резки скосов посредством операции в одно касание.

Изобретение может быть использовано для изготовления сваркой труб большого диаметра, например стальных труб, преимущественно спиральных сварных труб. Выполняют однослойную дуговую сварку под флюсом со стороны внутренней поверхности и со стороны наружной поверхности листа.
Изобретение относится к изготовлению электросваркой, преимущественно, тонколистовых изделий из разнотолщинных и разнородных по химическому составу труб. Трубы соосно устанавливают.

Изобретение относится к области сварки, в частности к способу подготовки кромок деталей под дуговую сварку стыкового соединения. Выполняют двухсторонние скосы и притупления кромок свариваемых деталей для выполнения двухстороннего шва. Скосы выполняют несимметричными по толщине деталей с соотношением высот меньшего скоса к большему 0,2…0,6 при суммарной высоте скосов, не превышающей 50% от толщины свариваемых деталей. Меньший скос располагают со стороны выполнения сварки в потолочном положении. Технический результат заключается в экономии материалов, затрачиваемых для заполнения кромок при сварке и времени на подготовку сварочных кромок. 8 ил.

Изобретение относится к области сварки, в частности, к области придания особого профиля отдельных участков кромок при изготовлении стыковых сварных соединений, и может найти применение при автоматической аргонодуговой сварке встык труб и пластин из стали, снабженных плакирующим слоем. Способ включает механическую обработку кромок с получением скоса кромок по трубе или листу с радиусным переходом 2-3 мм в плакирующий слой и притуплением из плакирующего слоя в виде прямоугольного выступа. Скос кромок по трубе или листу к притуплению выполняют ломаным с углами 1-2° и 4-8°. Притупление из плакирующего слоя выполняют высотой 2,5-3,5 мм и длиной 3,4-4,7 мм. Способ по второму варианту включает механическую обработку кромок с получением скоса кромок, притуплением по трубе или листу и расточкой со скосом со стороны плакирующего слоя на глубину большую, чем толщина плакирующего слоя. Скос кромок по трубе или листу к притуплению выполняют с углом 1-2°. Притупление выполняют в виде прямоугольного выступа высотой 1,8-2,3 мм и длиной 3,2-5,2 мм, а расточка - с углом скоса 52-57°. Техническим результатом изобретения является уменьшение объема сварочного материала при сварке стыка, упрощение конструкции сварочного автомата, улучшение обзора зоны сварки при обеспечении требований к качеству металла шва и сварного соединения в целом. 2 н. и 1 з. п. ф-лы, 2 ил.

Изобретение относится к области корпусного судостроения и может быть применено при соединении сваркой деталей большой толщины. Способ формирования стыка соединяемых деталей большой толщины из титановых сплавов при электронно-лучевой сварке включает образование подкладки из припуска одной из деталей. Подкладку удаляют при механической обработке после сварки стыка при вертикальном положении луча. Толщину и ширину подкладки выполняют равной соответственно 0,25-0,35 и 0,10-0,15 от толщины стыка. С обратной стороны подкладки напротив стыка выполняют риску глубиной 0,004-0,006 от толщины стыка, по которой визуально оценивают отсутствие непровара по выходу проплава. Предлагаемая технология обеспечивает получение высококачественного сварного соединения.2 ил.

Изобретение относится к машиностроению и судостроению, поскольку в этой области чаще всего встречаются стыковые соединения с двухсторонним доступом. Технический результат изобретения - снижение затрат на дополнительный металл при сварке и повышение ее производительности. Способ сварки заключается в двустороннем одновременном проплавлении противоположных сторон стыка. Свариваемые детали устанавливают в горизонтальной плоскости. Выполняют разделку кромок со скосом и с притуплением 8…12 мм. С каждой стороны стыка устанавливают по одному сварочному электроду, которые смещают относительно друг друга в продольном направлении. Дистанцию между электродами выбирают равной 1,0…1,5 длины сварочной ванны передней дуги. Мощность сварочных дуг регулируют раздельно на каждом из электродов. Скорость перемещения сварочных электродов и дуг одинакова. Сварку в потолочном положении осуществляют со стороны притупления кромок неплавящимся электродом, который располагают впереди по отношению к направлению скорости сварки. Скорость и мощность сварки сварочной дуги выбирают из условия обеспечения 25-35% провара от притупления скошенных свариваемых кромок. Сварку в нижнем положении осуществляют со стороны скоса кромок плавящимся электродом. Мощность сварочной дуги при сварке в нижнем положении выбирают из условия обеспечения 85-75% провара притупления. Диаметр плавящегося электрода выбирают из условия обеспечения максимального заполнения сечения разделки. 7 ил.

Изобретение относится в общем к медицинским стентам, в частности к устройству для изготовления стентов, используемому в способе изготовления стентов. Устройство для изготовления стентов содержит сердечник и рукав. Сердечник имеет жесткую и, по существу, цилиндрическую внешнюю поверхность. Рукав окружает сердечник и имеет изменяемый внутренний диаметр. Рукав имеет внутренний диаметр в покое. Сердечник имеет внешний диаметр. Внутренний диаметр в покое меньше внешнего диаметра. В результате чего обеспечено расширение рукава при облегании сердечника и, по существу, его возврат к внутреннему диаметру в покое после удаления сердечника. Во втором варианте выполнения устройства для изготовления стентов рукав имеет изменяемый диаметр в покое и рабочий диаметр. Рабочий диаметр меньше, чем диаметр в покое. Рукав окружает сердечник и контактирует с ним, когда рукав принимает диаметр в покое. Вспомогательное устройство для изготовления стентов содержит рукав, имеющий внутренний диаметр и выполненный с возможностью расширения от диаметра в покое до рабочего диаметра после приложения к нему усилия расширения. Рабочий диаметр больше диаметра в покое, который рукав имеет в состоянии в покое. Рукав выполнен с возможностью возврата к диаметру в покое после удаления от него усилия расширения. Способ изготовления стента посредством устройства для изготовления стентов по первому варианту, согласно которому обеспечивают контакт рукава с сердечником для закрепления рукава на сердечнике. После чего обеспечивают контакт рукава с металлическим рельефным листом. Затем оборачивают указанный лист вокруг устройства и сваривают края листа для формирования стента. Изобретение обеспечивает защиту внутренней поверхности стента в ходе процесса его изготовления. 4 н. и 26 з.п. ф-лы, 9 ил.
Изобретение относится к способу сварки нахлесточных соединений из разнородных металлов и может быть использовано в энергетике, автомобилестроении, судостроении и вагоностроении. Изобретение позволяет получить прочное сварное соединение из разнородных металлов. Подключают источник питания. Подают плазмообразующий защитный газ. Возбуждают дугу на верхнем элементе и проплавляют оба элемента. При этом сверху располагают элемент из металла с плотностью большей, чем плотность металла нижнего элемент. Толщину верхнего и толщину нижнего элементов выбирают из соотношения их толщин 1:3. При этом элементы собирают внахлест с величиной нахлеста, равной не менее десяти толщин нижнего элемента, а время сварки задают равным (2…4)δ секунд, где δ - суммарная толщина соединяемых элементов, мм.

Изобретение может быть использовано при изготовлении крупногабаритных конструкций из молибдена или его сплавов, например, при сварко-пайке обечаек экранов муфелей высокотемпературных газостатических установок. Осуществляют формовку и отбортовку кромок листов конструкции. Между отбортованными кромками укладывают Т-образную медную вставку с образованием зазора между кромками, соответствующего толщине ее ножки. Осуществляют соединение отбортованных кромок путем сварки электронным лучом с их неполным проплавлением по высоте. Производят пайку повторным нагревом непроваренной части отбортованных кромок с заполнением зазора между ними за счет использования упомянутой медной вставки. Способ обеспечивает снижение образования закалочных структур и уменьшение хрупкости конструкции. 3 ил., 2 табл.

Изобретение относится к способу изготовления из разнородных материалов высокопрочной тонкостенной сварной конструкции, работающей под давлением, состоящей из обечайки со сферическим дном и горловины. Предварительно из кружка высокопрочной стали типа СП-28 или ВП-30 листового проката формируют обечайку с наружным концевым утолщением цилиндрической части и сферическим дном переменного сечения. Из углеродистой стали 35 формируют усиленную горловину. Толщину сварочной кромки горловины выбирают в соотношении 2:1 к толщине сварочной кромки обечайки. Осуществляют сборку конструкции в сварочно-сборочном приспособлении со съемной подкладкой с обеспечением соосности и кольцевого технологического зазора в стыке, равного 0,10…0,16 толщины сварочной кромки обечайки. Сварку выполняют в среде защитных газов. Изобретение обеспечивает качество сварного соединения из разнородных сталей и равнопрочность сварного соединения. 6 з.п. ф-лы, 10 ил.

Изобретение относится к области сварочного производства, в частности к способу получения сварного сталеалюминиевого соединения, и может быть использовано в судостроении, при строительстве железнодорожного транспорта и автомобилестроении. Сталеалюминиевое соединение получают сваркой плавлением переходного двухслойного элемента сталь-алюминий с элементами из одноименных материалов угловыми швами. Сварку ведут с неполным проплавлением каждого из слоев переходного элемента. Катеты швов, прилегающих к переходному двухслойному элементу, составляют со стороны алюминиевого слоя не менее 1,5 и не более 2,0 его толщины, со стороны стального слоя не менее 1,0 и не более 1,5 его толщины, а катет шва, прилегающий к привариваемому алюминиевому элементу, находится в пределах от 1,0 до 1,5 от величины катета шва, прилегающего к алюминиевому слою переходного элемента. Способ позволяет исключить образование расслоений на границе раздела слоев элемента алюминий-сталь и обеспечивает достижение усталостной прочности и эксплуатационной надежности сварных соединений.2 ил., 1 пр., 2 табл.

Способ сварки деталей 1 и 2 разной толщины из разнородных металлов может быть использован в авиастроении, приборостроении, в атомной энергетике. Формируют технологические бурты 3 и 4 на толстостенной 2 и тонкостенной 1 деталях. Высота бурта 3 в 3-4 раза больше толщины детали 1. Высота бурта 4 равна высоте бурта 3. Толщину бурта 4 определяют по формуле S2=(1+Δ)·S1. Поверхности контакта буртов 3 и 4 обрабатывают ультразвуком в этиловом спирте. Детали 1 и 2 закрепляют в сварочном приспособлении. Обеспечивают зазор в стыке и смещение буртов 3 и 4 менее 10% толщины детали 1. Лазерный луч 5 направляют на стык буртов 3 и 4. Изобретение позволяет повысить прочность сварного шва за счет выполнения рациональной конструкции технологических буртов 3 и 4. 2 з.п. ф-лы, 4 ил.
Наверх