Рекомбинантная плазмидная днк pmind-vapc, содержащая нуклеотидную последовательность, кодирующую ген vapc msmeg_1284



Рекомбинантная плазмидная днк pmind-vapc, содержащая нуклеотидную последовательность, кодирующую ген vapc msmeg_1284
Рекомбинантная плазмидная днк pmind-vapc, содержащая нуклеотидную последовательность, кодирующую ген vapc msmeg_1284
Рекомбинантная плазмидная днк pmind-vapc, содержащая нуклеотидную последовательность, кодирующую ген vapc msmeg_1284
Рекомбинантная плазмидная днк pmind-vapc, содержащая нуклеотидную последовательность, кодирующую ген vapc msmeg_1284
Рекомбинантная плазмидная днк pmind-vapc, содержащая нуклеотидную последовательность, кодирующую ген vapc msmeg_1284
Рекомбинантная плазмидная днк pmind-vapc, содержащая нуклеотидную последовательность, кодирующую ген vapc msmeg_1284
Рекомбинантная плазмидная днк pmind-vapc, содержащая нуклеотидную последовательность, кодирующую ген vapc msmeg_1284

 

C12N15/00 - Получение мутаций или генная инженерия; ДНК или РНК, связанные с генной инженерией, векторы, например плазмиды или их выделение, получение или очистка; использование их хозяев (мутанты или микроорганизмы, полученные генной инженерией C12N 1/00,C12N 5/00,C12N 7/00; новые виды растений A01H; разведение растений из тканевых культур A01H 4/00; новые виды животных A01K 67/00; использование лекарственных препаратов, содержащих генетический материал, который включен в клетки живого организма, для лечения генетических заболеваний, для генной терапии A61K 48/00 пептиды вообще C07K)

Владельцы патента RU 2524143:

Федеральное государственное бюджетное учреждение науки Институт биохимии им. А.Н. Баха Российской академии наук (ИНБИ РАН) (RU)

Изобретение относится к микробиологии и генной инженерии и представляет собой рекомбинантную плазмидную ДНК pMind-vapC, представляющую собой плазмиду pMind, в которую клонирована последовательность, представленная на фиг.2. Рекомбинантная плазмидная ДНК pMind-vapC позволяет осуществлять гиперэкспрессию токсина VapC в штаммах Mycobacterium smegmatis и Mycobacterium tuberculosis. 6 ил.

 

Изобретение относится к микробиологии и генной инженерии и может быть использовано в фармакологии для тестирования противотуберкулезных препаратов.

Туберкулез, как известно, ежегодно уносит около 2 миллионов жизней, но еще более впечатляющие цифры связаны с распространенностью его, так называемой, латентной формы. По данным ВОЗ, каждый третий житель Земли является носителем латентного туберкулеза, потенциально способного перейти в острую форму. Хотя латентный туберкулез может протекать бессимптомно в течение многих лет, однако сохраняется достаточно большой риск перехода к активному течению инфекционного процесса. Так, активация латентной инфекции происходит в течение жизни примерно у 5% инфицированных пациентов, что связано, в первую очередь, с ослаблением иммунной системы. Несмотря на всю остроту проблемы, в настоящее время ощущается нехватка современных антитуберкулезных лекарственных средств. При этом специализированные лекарственные средства, эффективные против латентной формы туберкулеза, на сегодняшний момент отсутствуют в принципе. Понятно, что для поиска таких соединений необходима адекватная модель in vitro, имитирующая состояние покоя микобактерий туберкулеза в макроорганизме. При всей актуальности проблемы до сих пор в литературе не описана такая модельная система in vitro. Ряд исследователей предпринимал попытки моделировать состояние покоя (латентности), используя для этого различные подходы (Hampshire Т., Soneji S., Bacon J., James В. W., Hinds J., Laing K., Stabler R. A., Marsh P.D., and Butcher P.D. Tuberculosis (2004) 84, 228-238; Betts J. С., Lukey P. Т., Robb L. C, McAdam R. A., and Duncan K. Mol. Microbiol. (2002) 43, 717-731; Voskuil M.I., Visconti K.C., Schoolnik G.K. Tuberculosis (2004) 84, 218-227.). Однако данные модели нельзя признать адекватными по той причине, что все они недостаточно полно имитируют латентное состояние и биохимические процессы, происходящие в клетках в состоянии латентной инфекции. В частности, покоящиеся клетки, получаемые в данных моделях, не снижают уровень метаболической активности, не меняют морфологию и не характеризуются снижением способности культивироваться на стандартных средах, то есть не удовлетворяют ключевым характеристикам латентной туберкулезной инфекции в живых организмах. В переходе бактерий в покоящееся состояние участвуют бактериальные токсины, компоненты ТА систем (Gerdes K, Christensen SK, Lebner-Olesen A, Nat Rev Microbiol. (2005) May;3(5):371-82). ТА система является двухкомпонентной, токсины нарушают такие важнейшие клеточные функции как трансляция, репликация, синтез компонентов клеточной стенки, антитоксины контролируют активность токсинов, связывая их в комплексы (Fozo ЕМ, Hemm MR, Storz G, Microbiol Mol Biol Rev. (2008) 72(4):579-89; Makarova Kira S, Wolf Yuri I and Koonin Eugene V Biol Direc (2009) 4:19; Fineran PC, Blower TR, Foulds IJ, Humphreys DP, Lilley KS, Salmond GP Proc Natl Acad Sci USA (2009) 106(3):894-9). Наиболее распространены ТА семейства VapBC. Мишенью токсина VapC является тРНК (Winther KS, Gerdes K. Proc Natl Acad Sci USA (2011) 108(18):7403-7). Гиперэкспрессия антитоксина VapC приводит к остановке клеточного роста (Robson J, McKenzie JL, Cursons R, Cook GM, Arcus VL.J Mol Biol. (2009) 390(3):353-67.).

Задачей изобретения является рекомбинантная плазмидная ДНК pMind-vapC, содержащая нуклеотидную последовательность, кодирующую VapC токсин (MSMEG_1284), штамма Mycobacterium smegmatis MC2155. Рекомбинантная плазмидная ДНК pMind-vapC обеспечивает гиперэкспрессию гена vapC в М smegmatis. Рекомбинантный штамм Mycobacterium smegmatis-VapC, полученный введением в штамм Mycobacterium smegmatis MC2155 рекомбинантной плазмидной ДНК pMind-vapC при индукции гиперэкспрессии токсина VapC, переходит в состояние покоя и образует дормантные формы, которые могут быть использованы для тестирования лекарственных препаратов, направленных на лечение латентного туберкулеза.

Рекомбинантная плазмида pMind получена и описана ранее (Blokpoel MC, Murphy HN, O'Toole R, Wiles S, Runn ES, Stewart GR, Young DB, Robertson BD, Nucleic Acids Res. 2005 Feb 1;33(2):e22).

Получение дормантных форм М. smegmatis основано на индукции экспрессии токсина VapC рекомбинантного штамма М. smegmatis-vapC.

Получение рекомбинантной плазмидной ДНК pMind-vapC, содержащей ген токсина VapC. pMind-vapC плазмида была получена на основе вектора pMind, позволяющего осуществлять контролируемую, индуцированную экспрессию под контролем тетрациклин-зависимого промотора. Клонированный ген vapC кодирует токсин VapC (MSMEG_1284) Mycobacterium smegmatis. Клонирование vapC осуществлено следующим образом. Выделенная с помощью Genomic DNA Purification Kit (Fermentas) ДНК М. smegmatis использовалась в качестве матрицы для амплификации гена vapC. ПЦР проводилась с использованием праймеров (рис.1). В праймеры были введены сайты рестрикции BamHI и PstI. Сайты выделены подчеркиванием. Амплификация проводилась в следующем режиме: шаг 1. 94°С - 5 минут, шаг 2. 94°С - 30 секунд, шаг 3. 56°С - 30 секунд, шаг 4. 72°С - 40 секунд; далее цикл шаг 2, шаг 3, шаг 4 - 25 раз, далее 72°С - 5 минут. Продукт амплификации выделялся согласно протоколу с помощью Gel and PCR Clean-up System (Promega) и клонировался в вектор pGEM-T (Promega) с помощью Т4 ligase (Promega). Трижды отмытые стерильным 10% C3H8O3 в деионизованной H2O клетки E.coli (штамм BMHI) были трансформированы лигазной смесью методом электропорации согласно протоколу Bio-Rad. Трансформированные клетки высевались на селективную агаризованную среду NB (Nutrient broth) (Himedia), содержащую 50 мкг/мл ампициллина, 0,2 mM IPTG, 0,004% X-Gal. Через 20 часов отбирались белые колонии и анализировались вышеописанным методом ПЦР. ПЦР-позитивные колонии инокулировали в 4 мл NB среды, содержащую 50 мкг/мл ампициллина. Вектор pGEM-vapC выделяли согласно протоколу с помощью DNA Purification Kit (Promega). Вектор pGEM-vapC был гидролизован по сайтам рестрикции BamHI и PstI, вектор pMind гидролизовали по тем же сайтам, в 1% агарозе электрофоретически была отделена часть, соответствующая гену vapC, фрагмент vapC был выделен с помощью Gel and PCR Clean-up System (Promega), затем лигирован и трансформирован в, как описано выше, E.coli (штамм BMHI). Трансформированные клетки высевались на селективную агаризованную среду NB, содержащую 50 мкг/мл ампициллина, колонии отбирались так же, как описано выше, по размеру амплифицированного фрагмента. Выделение вектора pGEM-vapB из ПЦР-позитивных колоний проводили так же, как описано выше. Выделенный вектор гидролизовали по сайтам рестрикции BamHI и SpeI, вектор pMind гидролизовали по тем же сайтам. Продукты гидролиза разделяли электрофоретически в 1% агарозе, нужные фрагменты выделяли с помощью Gel and PCR Clean-up System. После чего фрагмент гена vapC лигировали в вектор pMind. Лигазную смесь трансформировали, как описано выше, в E.coli штамм (BMHI). Полученные колонии анализировались вышеописанным методом ПЦР. Выделение вектора pMind-vapC из ПЦР-позитивных колоний проводили так же, как описано выше. Полученный вектор при введении в М. smegmatis обеспечивал гиперпродукцию токсина VapC указанными бактериями.

Клонированная в pMind vapC последовательность содержала 467 пар оснований (рис.2).

Аминокислотная последовательность клонированного в pMind белка VapC (92 аминокислоты) (рис.3).

Трансформация штамма М. smegmatis рекомбинантной плазмидной ДНК pMind-vapC.

Трансформация штамма М. tuberculosis (MTB) рекомбинантной плазмидной ДНК pMind-vapC проводилась согласно протоколу (Parish Tanya and Stoker Neil G Human press, Totowa, New Jersey. (1998)). После трансформации плазмиды pMind - vapC в клетки штамма дикого типа получали единичные колонии на чашках с агаризованной средой LB. Одиночные колонии ресуспендировали в 1 мл среды LB и разносили по 0.5 мл по двум лункам 48 планшета для клеточных культур. В одну из лунок добавляли 20 нг/мл тетрациклина для индукции токсина VapC. Культивировали 96 часов на качалке New Branswick Scientific (100 об/мин) при 37°С. В работе использовались лунки, соответствующие лункам, в которых под индукцией тетрациклина рост клеток был значительно снижен. Клетки из лунок использовались в качестве инокулята и подращивались в пробирках в течение 6 часов, после чего вносился Tc. Клетки контрольного штамма подращивались в тех же условиях. В дальнейшем количество клеток контрольного штамма и М. smegmatis - vapC выравнивались по оптической плотности.

Гиперэкспрессия токсина VapC в клетках приводит к остановке роста культуры и изменению морфологии клеток.

Экспрессия токсина VapC в М. smegmatis приводит к остановке клеточного роста (рис.4).

Кроме того, обнаружено, что экспрессия токсина VapC приводит к образованию морфологически измененных овоидных клеток (рис.5). Количество измененных клеток в культуре варьировало от 90% примерно до 20% в зависимости от постановки эксперимента. Изменения происходили в течение 92 часов, далее, если клетки оставляли при комнатной температуре неподвижными, они сохраняли измененную морфологию более месяца наблюдений. При качании 100 об/мин при 37°С через 72 часа культивирования возобновлялся рост культуры за счет мутации в гене токсина VapC.

В клетки, экспрессирующие токсин, был введен меченный урацил (рис.6). Через 24 и 48 часов после индукции токсина, уровень включения падал до нуля, что свидетельствует об остановке процессов транскрипции в клетках, экспрессирующих токсин.

Таким образом, мы можем сделать вывод о том, что индукция токсина приводит к падению метаболической активности и к морфологическим изменениям бактериальной клетки. Данные признаки позволяют отнести клетки М. smegmatis-vapC с индуцированной экспрессией токсина VapC к покоящимся.

Краткое описание рисунков.

На рис.1 приведены последовательности праймеров, которые использовались для проведения ПЦР.

В праймеры были введены сайты рестрикции BamHI и PstI. Сайты выделены подчеркиванием.

На рис.2 приведена клонированная в вектор pMind vapC последовательность 636 пар оснований.

На рис.3 приведена аминокислотная последовательность клонированного в вектор pMind белка VapC (92 аминокислоты).

На рис.4 динамика роста клеток рекомбинантных штаммов контрольного М. smegmatis - pMind () и М. smegmatis - vapC ()на среде NB. Экспрессия токсина VapC в М. smegmatis приводит к остановке клеточного роста.

На рис.5 образование морфологически измененных овоидных форм клетками рекомбинантного штамма М. smegmatis - vapC.

На рис.6 включение метки клетками рекомбинантного штамма М. smegmatis - vapC. () - включение метки клетками рекомбинантного штамма Wt - pMind; () - включение метки клетками рекомбинантного штамма Wt - vapC.

Рекомбинантная плазмидная ДНК pMind - vapC, обеспечивающая гиперэкспрессию гена vapC в клетках M tuberculosis, представляющая собой плазмиду pMind, в которую клонирована нуклеотидная последовательность



 

Похожие патенты:

Изобретение относится к биотехнологии. Заявлены экспрессионные векторы, предназначенные для экспрессии человеческого дарбэпоэтина.

Изобретение относится к области биотехнологии и может быть использовано для получения наноструктурированного материала на основе рекомбинантных жгутиков архей H.

Изобретение относится к области генетической инженерии, молекулярной биологии и медицины. Предложен носитель для направленной доставки нуклеиновых кислот в клетки, экспрессирующие рецептор CXCR4, состоящий из последовательности-лиганда к рецептору CXCR4 с последовательностью аминокислот KPVSLSYRSPSRFFESH, линкерного участка из двух молекул ε-аминогексановой кислоты, соединяющей последовательность-лиганд с последовательностью для компактизации нуклеиновых кислот, последовательности, обеспечивающей компактизацию нуклеиновых кислот и выход комплекса из эндосом CHRRRRRRHC.

Изобретение относится к биохимии и биотехнологии и представляет собой рекомбинантную плазмиду pESAT6-DBD, состоящую из искусственного бактериального оперона химерного белка, включающего промоторную область раннего промотора бактериофага Т5, гена химерного белка, состоящего из последовательности белкового антигена ESAT6 из Mycobacterium tuberculosis, слитого с последовательностью декстрансвязывающего домена (DBD) декстрансукразы Leuconostoc citreum KM20 и терминатора транскрипции; бактериального оперона бета-лактамазы и бактериального участка инициации репликации типа ColEl.

Группа изобретений относится к области биотехнологии. Способ модульного конструирования ДНК аптамеров, способных специфически и высокоаффинно связывать тромбин, имеющих стабилизированную основную субструктуру, предусматривает сборку их структуры моделированием из комбинации трех структурных модулей, содержащих квадруплексный модуль нуклеиновой кислоты, дуплексный модуль нуклеиновой кислоты и соединяющий их модуль нуклеиновой кислоты, имеющий неканоническую структуру, путем определения третичной структуры его спектральным методом кругового дихроизма с подтверждением факта образования более стабильного G-квадруплекса, отличного от квадруплексной структуры исходного структурного квадруплексного модуля.

Изобретение относится к области биотехнологии. Способ лечения или профилактики заражения PCV2 или снижения клинических симптомов, вызываемых или ассоциированных с заражением PCV2, у животных, которые имеют антитела к PCV2, предусматривает однократное введение эффективного количества антигена PCV2 животным, нуждающимся в таком лечении или профилактическом лечении.

Изобретение относится к биохимии и биотехнологии и представляет собой штамм Escherichia coli M15 [pREP4, pAg85A-DBD] - продуцент химерного белка Ag85A-DBD, а также способ иммобилизации, концентрирования и очистки полученного белка на декстране.

Изобретение относится к области биохимии, в частности к способу селекции аптамеров к клеточным рецепторам и поверхностным белкам, который включает проведение раундов селекции, каждый из которых включает стадии: позитивной селекции с дальнейшим удалением несвязавшаяся ДНК; негативной селекции с последующим отделением связавшихся с негативной мишенью последовательностей; амплификацию полученных в ходе селекции аптамеров с получением ПЦР-продукта.

Изобретение относится к области молекулярной биологии, биохимии и медицины. Предложена L-нуклеиновая кислота - антагонист MCP-1 и способ её детектирования.

Изобретение относится к биотехнологии, конкретно к использованию микроРНК (miRNA) для лечения патологической гипертрофии сердца, инфаркта миокарда или сердечной недостаточности.

Изобретение относится к микробиологии и генной инженерии и представляет собой рекомбинантную плазмидную ДНК pMind-vapB, представляющую собой плазмиду pMind, в которую клонирована последовательность, представленная на рис.2. Рекомбинантная плазмидная ДНК pMind-vapB позволяет осуществлять гиперэкспрессию антитоксина VapB в штаммах Mycobacterium tuberculosis. 6 ил.
Изобретение относится к области биотехнологии, конкретно к молекулярной биологии и онкологии, и может быть использовано для диагностики терминальных мутаций в гене RET, ассоциированных с наследственной предрасположенностью к раку щитовидной железы (РЩЖ). Набор последовательностей олигонуклеотидов имеет следующий нуклеотидный состав: 5'-CATGGCCACTCCCAGTGC-3', 5'-CACAGGGACTCCTCAGCAC-3', 5'-CACCCCCACCCACAG-3',5'-GAGATGGGTGGCTTGTG-3', 5'-GGCTAGTGCTGTCAGGCC-3', 5'-CTAAGCACCCTAGACGCG-3', 5'-CAGGGATAGGGCCTGG-3', 5'-CCCCAAGAGAGCAACACC-3', TACGAGCCGTGCCT, GATGGGCTGCGCAG, CACGTGCTGGGCCT, TAGAAGCTGTACAT, CACGAGAAGTGGAG, TACGAGCTGAGCTG, GGAAATGGATGGGATTTG, CCATATGGACGGCAATTC. Изобретение позволяет провести эффективную диагностику герминальных мутаций в гене RET, ассоциированных с наследственной предрасположенностью к РЩЖ, исходя из частот мутаций среди пациентов в российской популяции. 4 табл., 2 пр.

Изобретение относится к области биохимии и представляет собой плазмиду 40NaGal, определяющую синтез α-N-ацетилгалактозаминидазы α-AlNaGal, включающую NcoI/SalI-фрагмент плазмиды pET-40b(+) (Novagen) и фрагмент ДНК размером 1299 пар оснований, содержащий химерный ген, состоящий из структурной части гена α-AlNaGal, адаптированной по N-концу для экспрессии в клетках E.coli, и нуклеотиды, кодирующие специфическую последовательность для протеазы TEV. Изобретение относится также к штамму E.coli Rosetta(DE3), трансформированному указанной плазмидой, - продуценту химерного белка, включающего аминокислотную последовательность рекомбинантной α-N-ацетилгалактозаминидазы α-AlNaGal. Предложен также способ получения рекомбинантной α-N-ацетилгалактозаминидазы α-AlNaGal с использованием штамма согласно изобретению. Изобретение позволяет получать α-N-ацетилгалактозаминидазу с высокой степенью эффективности. 3 н.п. ф-лы, 1 ил., 3 пр.

Изобретение относится к микробиологии и биотехнологии и касается рекомбинантной плазмидной ДНК pEst877, детерминирующей экспрессию полипептида с активностью эстеразы P. cryohalolentis К5Т на поверхности клеток, с мол. массой 3,64 Md (5,519 т.п.о.), состоящей из NcoI/XhoI - фрагмента ДНК плазмиды pET20b(+) длиной 3,654 т.п.о., включающего промотор T7lac, терминатор транскрипции бактериофага Т7, ген bla β-лактамазы, определяющий устойчивость трансформированных плазмидой pEst877 клеток к ампициллину, участок ori инициации репликации, сигнальную последовательность pelB пектатлиазы В Erwinia carotovora; и NcoI/XhoI - фрагмента ДНК размером 1,865 т.п.о., содержащего гибридный ген Est877, кодирующий аминокислотные последовательности эстеразы P. cryohalolentis К5Т с дополнительным аминокислотным остатком аспарагиновой кислоты после сайта отщепления сигнального пептида и аутотранспортера P. cryohalolentis K5T в единой рамке считывания. Изобретение также касается штамма бактерий Е. coli BL21(DE3)pLysS/pEst877 - продуцента полипептида с активностью эстеразы P. cryohalolentis К5Т на поверхности клеток. Изобретение позволяет получать высокоактивную эстеразу с широкой субстратной специфичностью. 2 н.п. ф-лы, 3 ил., 7 пр.

Изобретение относится к области молекулярной биологии и медицины. Предложена генетическая конструкция на основе векторной плазмиды pEGFP-N1 с геном устойчивости к неомицину, содержащая под контролем терморегулируемого промотора гена белка теплового шока hsp70 Drosophila melanogaster ген человеческого нейротрофического фактора GDNF с элементами теплового шока HSE 4-8 и ген зеленого флуоресцентного белка GFP. Изобретение может быть использовано при терапии нейродегенеративных заболеваний, травматических нарушениях иннервации, а также при ишемическом инсульте головного мозга млекопитающих (в том числе и человека), поскольку понижение температурного порога активации (от 39 до 42 градусов цельсия) экспрессии терапевтического гена GDNF позволяет снизить негативное воздействие высоких температур на человеческий организм при применении для лечения нейродегенеративных заболеваний конструкции, включающей терапевтический ген GDNF, что достигается использованием hsp 70 Drosophilla melanogaster. Таким образом достигается температурорегулируемая временная активация GDNF для стимуляции нейральной дифференцировки нейральных предшественников, а также предотвращает негативные последствия от гиперэкспрессии трансгенного фактора. 26 ил., 7 пр.

Изобретение относится к биотехнологии и представляет собой рекомбинантные плазмидные ДНК, кодирующие гибридные полипептиды со свойствами красного флуоресцентного белка mCherry. Рекомбинантная плазмидная ДНК pChFN3 кодирует гибридный белок ChFN3, который имеет свойства красного флуоресцентного белка mCherry и 10 домена фибронектина человека III типа, и рекомбинантная плазмидная ДНК pChTNF кодирует гибридный белок ChTNF, который имеет свойства красного флуоресцентного белка mCherry и TNF. Настоящее изобретение обеспечивает эффективную продукцию гибридных белков pChFN3 и ChTNF со свойствами красного флуоресцентного белка mCherry в штамме E.coli BL21(DE3). Изобретение позволяет получить целевой белок с высоким выходом при добавлении меньшего количества индуктора. 2 н.п. ф-лы, 3 ил., 8 пр.

Изобретение относится к области биотехнологии, в частности к молекулярной медицине, и может быть использовано в медицинской практике для лечения патологий, связанных с избыточным ангиогенезом, включая рост злокачественных опухолей, ревматоидный артрит, псориаз и диабетическую ретинопатию. Способ включает введение в область избыточного ангиогенеза эффективного количества протеолитически неактивных рекомбинантных форм активатора плазминогена урокиназного типа (урокиназы) в сочетании с рекомбинантным крингл-доменом активатора плазминогена урокиназного типа, конкурентно подавляющих протеолитическое действие нативного активатора плазминогена урокиназного типа и пространственно разобщающих рецепторные белки, опосредующие регуляторные эффекты системы урокиназы. Способ позволяет локально подавлять рост кровеносных сосудов. 3 н. и 1 з.п. ф-лы, 9 ил., 5 пр.

Изобретение относится к области биотехнологии, конкретно к выявлению рака легкого с помощью аптамеров, и может быть использовано в диагностике. Аптамеры получают в результате селекции, включающей чередование раундов позитивной селекции аптамеров к измельченным опухолевым тканям легкого человека, забиравшимся после операции у онкологических больных, и негативной селекции к здоровым тканям легкого и цельной крови здоровых людей, с выявлением пула аптамеров с наибольшей аффинностью, его клонирования, секвенирования, проверки на специфичность связывания с опухолевыми клетками легкого. Полученные аптамеры обладают высокой чувствительностью к продуктам распада опухоли и циркулирующим раковым клеткам в периферической крови больных раком легкого, что позволяет повысить эффективность диагностики рака легкого человека. 2 з.п. ф-лы, 2 ил., 1 пр.

Изобретение относится к области молекулярной биологии, биохимии и генной инженерии. Предложены нуклеиновая кислота, характеризующаяся нуклеотидной последовательностью, кодирующей белок, который состоит из аминокислотной последовательности с делецией, заменой или добавлением одной или более аминокислот в аминокислотной последовательности SEQ ID NO: 2 или SEQ ID NO: 7 и обладает активностью фосфатазы фосфатидной кислоты, соответствующий белок, рекомбинантный вектор, клетка для экспрессии белка и способ получения композиции жирной кислоты. Изобретение может быть использовано для получения полиненасыщенных жирных кислот в пищевой промышленности. 8 н. и 1 з.п. ф-лы, 6 табл., 7 ил., 8 пр.

Изобретение относится к области биоинженерии, молекулярной биологии и биотехнологии. Предложена дрожжевая клетка, предназначенная для детекции взаимодействия между белками и их доменами, котрансформированная двумя плазмидами, модифицированными для экспрессии в клетках дрожжей двух белков, где нуклеотидная последовательность, кодирующая первый белок, клонирована в одну плазмиду, а нуклеотидная последовательность, кодирующая второй белок, - в другую плазмиду, где нуклеотидные последовательности, кодирующие белки, слиты с нуклеотидными последовательностями, кодирующими активационный и ДНК-связывающий домены белка GAL4, при этом нуклеотидные последовательности, кодирующие исследуемые белки, отделены от нуклеотидных последовательностей, кодирующих активационный или ДНК-связывающий домен белка GAL4, при помощи нуклеотидной последовательности, кодирующей пептид, представляющий собой последовательность GluLeuGluAlaAlaAlaLysGluAlaAlaAlaLysGluAlaAlaAlaLysGluAlaAlaAla, который экспрессируется в виде белкового мостика между исследуемым белком и доменами белка GAL4. Изобретение позволяет свести к минимуму взаимовлияние доменов тестируемых белков и ДНК-связывающего/активационного доменов вектора и может быть использовано для детекции взаимодействия между белковыми молекулами в медицинских и исследовательских целях. 4 ил., 2 пр.
Наверх