Тепловая труба с применением трубчатых оптоволоконных структур



Тепловая труба с применением трубчатых оптоволоконных структур
Тепловая труба с применением трубчатых оптоволоконных структур

 


Владельцы патента RU 2524480:

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ "ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ" (ДГТУ) (RU)

Изобретение относится к устройствам для отвода тепла от компонентов радиоэлектроники с высокой мощностью тепловыделений, в частности к тепловым трубам, и может использоваться в различных областях электронной промышленности. Тепловая труба с применением трубчатых оптоволоконных структур, внутренняя боковая поверхность которой выложена трубчатыми оптическими стеклянными волокнами, а в качестве хладагента внутри нее используется легкоиспаряющаяся жидкость. Применение легкоиспаряющейся жидкости (спирт) в качестве хладагента позволяет интенсифицировать теплообмен в тепловой трубе за счет фазового перехода, создавая условия для термостатирования охлаждаемого объекта. Технический результат - обеспечение движения жидкости от зоны конденсации к зоне испарения и отвод инфракрасного излучения от охлаждаемого объекта. 2 ил.

 

Изобретение относится к устройствам для отвода тепла от компонентов радиоэлектроники с высокой мощностью тепловыделений, в частности к тепловым трубам, и может использоваться в различных областях электронной промышленности.

Наиболее близким к изобретению по достигаемому результату является тепловая труба [1, 2], состоящая из герметичного полого цилиндра, внутренняя поверхность которого выложена капиллярно-пористой структурой, насыщенной смачивающей жидкостью. Капиллярно-пористая структура может представлять собой металлическую сетку, спеченные шарики, металловолокна, стеклоткани и даже систему канавок на внутренней поверхности корпуса. Смачивающая жидкость является теплоносителем и в зависимости от уровня температуры в зоне нагрева выбираются жидкие металлы, ртуть, аммиак, вода, ацетон, спирты, фреоны и т.п.

Недостатком тепловой трубы можно считать неэффективный отвод инфракрасного излучения, а также невысокую точность термостатирования в случае применения тепловой трубы для охлаждения мощных теплонагруженных компонентов электронной аппаратуры.

Задача изобретения - улучшение теплообмена в тепловой трубе путем применения трубчатых оптоволоконных структур.

Для решения поставленной задачи предлагается тепловая труба, основанная на применении трубчатых оптоволоконных структур. Согласно изобретению, внутренняя боковая поверхность тепловой трубы выложена трубчатыми оптическими стеклянными волокнами, а в качестве хладагента внутри тепловой трубы используется легкоиспаряющаяся жидкость.

Устройство реализуется следующим образом.

Тепловую трубу изготавливают из кварцевого стекла в виде цилиндрической емкости, основание которой представляет собой плоскую поверхность, а противоположная сторона емкости выполняется в виде стеклянного радиатора. При изготовлении тепловой трубы ее внутреннюю боковую поверхность в направлении от основания к радиатору выкладывают трубчатой оптоволоконной структурой, которую насыщают смачивающей жидкостью. В качестве смачивающей жидкости используют легкоиспаряющуюся жидкость (спирт).

На фиг.1 приведена схема действия тепловой трубы 2 при охлаждении микросборки 1. В процессе отвода тепла от микросборки 1 в зоне испарения температура жидкости 6 повышается и она начинает испаряться. Пары достигают радиатора 3 (зона конденсации) и конденсируются. Образующаяся жидкость 6 по трубчатой оптоволоконной структуре 4 стекает обратно в зону испарения. Таким образом, происходит непрерывный перенос тепла 5 от зоны испарения к зоне конденсации. Одновременно по трубчатой оптоволоконной структуре 4 происходит отвод инфракрасного излучения 7 от микросборки 1.

На фиг.2 приведен фрагмент трубчатой оптоволоконной структуры. Здесь показано направление движения жидкости 1 и направление инфракрасного излучения 2.

Применение легкоиспаряющейся жидкости (спирт) в качестве хладагента позволяет интенсифицировать теплообмен в тепловой трубе за счет фазового перехода, создавая условия для термостатирования охлаждаемого объекта. Изменением характеристик хладагента можно регулировать процесс теплопереноса, усиливая его либо замедляя по мере необходимости. А использование трубчатой оптоволоконной структуры обеспечивает не только движение жидкости от зоны конденсации к зоне испарения, но и позволяет отводить инфракрасное излучение от охлаждаемого объекта.

Разработанное устройство использовалось для охлаждения компьютерного процессора (Pentium IV). Испытания показали приемлемые эксплуатационные характеристики применения разработанной тепловой трубы для охлаждения и термостатирования процессора.

Литература

1. Пат. 3229759 (США). Evaporation - condensation heat transfer device / G.M.Grover. - Опубл. 1966.

2. Алексеев В.А., Арефьев В.А. Тепловые трубы для охлаждения и термостатирования радиоэлектронной аппаратуры. - M.: Энергия, 1979. - 128 с.

Тепловая труба с применением трубчатых оптоволоконных структур, представляющая собой цилиндрическую емкость, выполненную из кварцевого стекла, основание емкости, плоская поверхность, является зоной испарения, а противоположная сторона емкости, зона конденсации, представляет собой кварцевый стеклянный радиатор, отличающаяся тем, что внутренняя боковая поверхность емкости выложена трубчатыми оптическими стеклянными волокнами, а в качестве хладагента используется легкоиспаряющаяся жидкость.



 

Похожие патенты:

Изобретение относится к электротехнике, к динамоэлектрическим машинам с системой охлаждения. Технический результат состоит в улучшении отвода тепла без усложнения конструкции.

Изобретение относится к области приборостроения и может быть использовано при регулировании расхода и температуры текучей среды. Материалы, компоненты и способы согласно настоящему изобретению направлены на изготовление и использование макромасштабных каналов, содержащих текучую среду, температура и расход которой регулируется с помощью геометрических размеров макромасштабного канала и конфигурации по крайней мере части стенки макромасштабного канала и потока составных частиц, образующих текучую среду.

Система охлаждения относится к области теплотехники, а именно к тепломассообмену, и может быть использована для охлаждения различных тепловыделяющих элементов путем отвода от них тепла по тепловой трубе к охладителю любого типа.

Изобретение относится к энергетике, преимущественно к технике конденсации пара, отработанного в паровой турбине АЭС или ТЭС. В конденсаторе в качестве средства охлаждения отработанного пара использованы теплообменные трубы, выполненные из термостойкого и теплоизолирующего материала, в которые вмонтированы термобатареи, холодные спаи которых обращены внутрь трубы, а горячие - наружу.

Изобретение относится к системам термостатирования (СТС) энергоемкого оборудования космических объектов (КО). СТС содержит две двухполостные жидкостные термоплаты (22), на которые устанавливается оборудование.

Изобретение относится к области теплотехники и может использоваться в теплообменных устройствах для отопления помещений. .

Изобретение относится к области теплотехники и может быть использовано при создании регулируемых теплопередающих устройств и систем терморегулирования на их основе, в частности в космической технике, а также для обеспечения теплового режима оборудования, работающего в суровых климатических условиях.

Изобретение относится к кожухотрубчатым теплообменным аппаратам и может использоваться в химической, нефтехимической и других отраслях промышленности. .

Изобретение относится к области энергетического машиностроения и может быть использовано, в частности, в качестве двигателя летательного аппарата (Л.А.). .

Теплопередающая панель космического аппарата относится к космической технике и может быть использована в системах терморегулирования космических аппаратов (КА) при обеспечении теплового режима оборудования, установленного на искусственных спутниках Земли, межпланетных станциях, спускаемых аппаратах и других космических объектах. Теплопередающая панель КА содержит металлическую обшивку и встроенные тепловые трубы. Панель выполнена секционной и состоит из жестко соединенных друг с другом отдельных пустотелых секций с тепловыми трубами. Каждая секция панели, включая тепловые трубы, выполнена в виде единой монолитной конструкции. Предлагаемая панель позволяет повысить эффективность теплового контакта между охлаждаемым оборудованием и встроенными тепловыми трубами, унифицировать составные элементы конструкции, повысить надежность и долговечность панели, снизить загрязнение собственной атмосферы КА за счет изъятия клея из применяемых материалов, а также существенно упростить технологию изготовления приборной панели, которая сочетает в себе тепловые и прочностные функции. 10 з. п. ф-лы, 7 ил.

Изобретение относится к теплотехнике и может быть использовано в теплообменниках с тепловыми трубами. Теплообменник с тепловыми трубами для передачи тепла от горячего газа холодному газу содержит корпус с первой камерой для подачи через нее горячего газа, второй камерой для подачи через нее холодного газа и множеством тепловых труб, простирающихся между первой камерой и второй камерой. В камерах расположены перегородочные панели для деления камер на отсеки с тепловыми трубами, причем перегородочные панели расположены в плоскости, по существу параллельной потоку газа через камеры, причем направление потока газа через один отсек с тепловыми трубами является параллельным направлению газа через соседний отсек с тепловыми трубами. Тепловые трубы собраны в один или несколько расположенных с возможностью удаления из соответствующих отсеков картриджей. Каждый картридж с тепловыми трубами содержит раму с опорной панелью, которая при установке картриджа в отсек взаимодействует с разделительной стенкой между первой камерой и второй камерой, чтобы образовывать газонепроницаемое разделение между первой и второй камерами. Тепловые трубы пересекают опорную панель и прикреплены к ней газонепроницаемым образом. Технический результат - расширение акустических характеристик теплообменника за счет уменьшения наводимой потоками вибрации. 10 з.п. ф-лы, 4 ил.

Изобретение относится к области энергетического машиностроения и может быть использовано, в частности, в качестве двигателя летательного аппарата. Двигатель внешнего сгорания содержит герметичный корпус в форме усеченного конуса, частично заполненный теплоносителем. Корпус содержит испаритель и конденсатор, теплоизоляционное кольцо, жестко скрепленное как с испарительным участком, так и конденсационным участком корпуса двигателя. К теплоизоляционному кольцу жестко крепятся рабочие колеса турбины с рабочими лопатками, охваченными ободом. Рабочие колеса турбины жестко крепятся к валу двигателя. На вал установлены колеса турбины с направляющими лопатками, охваченными ободом, представляющими собой кольцевой магнит. Ободья всех колес установлены с образованием кольцевого зазора с корпусом. Колеса с направляющими лопатками установлены с возможностью вращения по отношению к валу на подшипниках. Над внутренним кольцевым магнитом установлен внешний кольцевой магнит, жестко связанный с кожухом. На вал двигателя жестко крепится винт. В конденсаторе содержатся полые стержни. Вокруг испарителя расположена спиральная камера сгорания, содержащая форсунку. К стержням крепятся радиаторы как с внешней, так внутренней стороны корпуса, представляющие собой радиально установленные трапецеидальные пластины с втулками, охватывающими стержни с зазором, заполненным теплопроводной пастой. Изобретение направлено на уменьшение массогабаритных характеристик двигателя. 6 ил.

Изобретение относится к двум вариантам выполнения гравитационной тепловой трубы, предназначенной для замораживания и предотвращения оттаивания грунта под сооружениями, возводимыми в зоне вечной мерзлоты. Труба по обоим вариантам содержит корпус 2 с зоной 3 испарения, транспортной зоной 4 и зоной 5 конденсации. В зоне конденсации на корпусе установлены термоэлектрические преобразователи 9, охлаждающие их радиаторы 14 и элементы для теплового контакта преобразователей с корпусом и радиаторами. Общей особенностью трубы по обоим вариантам является то, что каждый преобразователь 9 с относящимися к нему упомянутыми элементами заключен в кожух 7 и вместе с радиатором 14 выполнен в виде установленного на корпусе 2 съемного теплоотводящего модуля 6. Свободный объем внутри кожуха 7 заполнен отвержденным при изготовлении модуля 6 водонепроницаемым теплоизоляционным материалом. В трубе по второму варианту зона конденсации наряду с описанным выше может содержать участок с радиатором, непосредственно контактирующим с корпусом. Технический результат - упрощение технического обслуживания трубы, повышение надежности и расширение возможностей ее использования. 2 н. и 11 з.п. ф-лы, 6 ил.

Изобретение относится к теплотехнике и может применяться в теплообменных устройствах, действующих по принципу «тепловой трубы» и используемых для отопления помещений. Радиатор отопления состоит из пустотелого корпуса, образованного участком трубы, заглушенной с одной стороны и представляющей камеру испарения. С камерой испарения соединяется камера конденсации, образованная размещенной над ней профилированной оболочкой. В оболочке грани профиля размещают горизонтально. Камера испарения содержит внутри себя коаксиально размещенную трубу, верхний конец которой выступает за ее пределы, а нижний установлен с зазором относительно ее дна, на верхнем конце трубы размещен раструб, при этом раструб установлен под гранями профиля. Площадь входного отверстия раструба больше площади наименьшего поперечного сечения камеры конденсации. Технический результат - повышение эффективности радиатора. 1 з.п. ф-лы, 1 ил.

Изобретение относится к теплотехнике и может быть использовано при создании калориферов, работающих на электроэнергии и на продуктах сгорания газа. Универсальный калорифер, содержащий трубы, закрепленные в коллекторе с образованием одной полости испарительно-конденсационного цикла. Коллектор выполнен из двух расположенных одна в другой труб большего Д1 и меньшего Д2 диаметров. Внутри трубы меньшего диаметра Д2 расположена дополнительная труба диаметром Д3 с образованием коллектора горячих газов. По периметру коллектора расположены сопла газовых горелок с электрическими регуляторами расхода газа, а в полости между трубами большего и меньшего диаметров расположены электронагреватели. По длине трубы большего диаметра с двух сторон в ее верхней части закреплены паропроводы, присоединенные к паровым коллекторам, а в ее нижней части - конденсатопроводы. Теплообменники присоединены сверху парового коллектора и закрыты кожухом, количество их рядов n2=2-5. В кожухе расположен вентилятор для подвода воздуха. Наружная поверхность паропроводов и труба коллектора большего диаметра покрыта слоем теплоизоляции. В баке установлен датчик уровня теплоносителя. Калорифер снабжен системой автоматического управления. Подводимая мощность электронагревателей N определяется зависимостью Nk=αF1(tт-tв)nm , где F1 - поверхность одного теплообменника, α - коэффициент теплоотдачи воздуха, tт - средняя температура поверхности теплообменника, tв - средняя температура воздуха, n - количество теплообменников, k=0,8-0,97 - коэффициент преобразования электрической энергии в тепловую, m=1,05-1,15 - коэффициент неучтенных потерь тепла. Технический результат - повышение эффективности передачи тепла, снижение металлоемкости и расширение области применения калорифера. 2 ил.

Изобретение относится к области тепловых труб, а именно к гравитационным тепловым трубам, и может быть использовано для охлаждения и замораживания грунтов оснований зданий и сооружений в районах распространения многолетнемерзлых пород. Гравитационная тепловая труба содержит частично заправляемый теплоносителем корпус с зонами испарения, конденсации и транспортной зоной между ними. В транспортной зоне расположена вставка, образующая кольцевой карман со стенкой корпуса и имеющая радиальные каналы с открытым срезом со стороны их концов, обращенных к продольной оси корпуса. По периферии вставка имеет, по крайней мере, одну проточку, в которой расположен кольцеобразный элемент, контактирующий со стенкой корпуса, и полый хвостовик, сообщающийся с радиальными каналами. На хвостовик надета трубка, предназначенная для стекания конденсата. Нижний конец трубки прикреплен к выступу, расположенному на заглушке-конусе, которой снабжен торец корпуса в зоне испарения. Технический результат состоит в упрощении конструкции устройства и его монтажа, удешевлении стоимости устройства при одновременном повышении эксплуатационной надежности и эффективности работы устройства. 3 ил.

Изобретение относится к области энергетического машиностроения и может быть использовано в качестве двигателя летательного аппарата (ЛА). Двигатель внешнего сгорания содержит герметичный корпус (1) в форме усеченного конуса, частично заполненный теплоносителем. Корпус содержит испаритель (2) и конденсатор (3). В корпусе содержится теплоизоляционное кольцо (4), являющееся элементом корпуса и жестко скрепленное как с испарителем, так и с конденсатором двигателя. К теплоизоляционному кольцу жестко крепится рабочее колесо (5) турбины с рабочими лопатками, охваченными ободом (6). Рабочее колесо турбины жестко крепится к полому валу (7) двигателя. На полый вал установлено сопловое колесо (8) турбины, охваченное ободом (9), представляющим собою внутренний кольцевой магнит. Ободья обоих колес установлены с образованием кольцевого зазора (10) с корпусом. Колесо с сопловыми лопатками установлено с возможностью вращения по отношению к полому валу - на подшипниках (11). Над внутренним кольцевым магнитом установлен внешний кольцевой магнит (12), жестко связанный с корпусом (13) ЛА. На полый вал двигателя жестко крепится винт (14). В корпусе двигателя, в зоне конденсации, содержатся теплопроводные стержни (15), на которых жестко закреплены тарелки (16), профиль которых образован технологической операцией “накатка” с обеих сторон. Вокруг испарителя расположена спиральная камера сгорания (17) с форсунками (18). Внутри испарителя содержится металлическая мелкопористая губка (19). Достигается повышение мощности двигателя, безопасность его транспортировки в нерабочем состоянии, а также уменьшение массогабаритных характеристик. 2 з.п. ф-лы, 8 ил.
Наверх