Способ получения фенилэтинил производных ароматических соединений



Способ получения фенилэтинил производных ароматических соединений
Способ получения фенилэтинил производных ароматических соединений
Способ получения фенилэтинил производных ароматических соединений
Способ получения фенилэтинил производных ароматических соединений
Способ получения фенилэтинил производных ароматических соединений
Способ получения фенилэтинил производных ароматических соединений
Способ получения фенилэтинил производных ароматических соединений
Способ получения фенилэтинил производных ароматических соединений
Способ получения фенилэтинил производных ароматических соединений
Способ получения фенилэтинил производных ароматических соединений
Способ получения фенилэтинил производных ароматических соединений
Способ получения фенилэтинил производных ароматических соединений
Способ получения фенилэтинил производных ароматических соединений
Способ получения фенилэтинил производных ароматических соединений
Способ получения фенилэтинил производных ароматических соединений
Способ получения фенилэтинил производных ароматических соединений
Способ получения фенилэтинил производных ароматических соединений
Способ получения фенилэтинил производных ароматических соединений
Способ получения фенилэтинил производных ароматических соединений
Способ получения фенилэтинил производных ароматических соединений
Способ получения фенилэтинил производных ароматических соединений
Способ получения фенилэтинил производных ароматических соединений

 


Владельцы патента RU 2524961:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" (RU)

Изобретение относится к способу получения фенилэтинил производных ароматических соединений. Способ характеризуется тем, что включает нагрев смеси компонентов 0,01 моль фенилацетилена, 0,01 моль иодбензола (арилиодида), 0,0006 г нанопорошка меди и 0,002 г CuI при температуре 110-120°C в течение 3 часов, после охлаждения реакционной массы ее выливают в 100 мл холодной воды при перемешивании, экстрагируют этилацетатом, затем очищают на колонке с силикагелем, элюируя смесью растворителей этилацетат : гексан в соотношении 1:6, далее отгоняют растворитель, получая чистые продукты. Использование настоящего способа позволяет получать целевые продукты с выходами 70-100 % при значительном упрощении технологического процесса. 1 табл.

 

Изобретение относится к методам органического синтеза, а именно к способу синтеза фенилэтинил производных ароматических соединений при замещении иода в молекулах на фенилацетилен, которые имеют широкое применение в различных областях, в том числе в изготовлении люминесцирующих материалов, и используются в химии, биологии, медицине.

Известны методы синтеза фенилэтинил производных ароматических соединений при замещении иода в молекулах на фенилацетилен - эта реакция с иодпроизводными происходит в присутствии основания и палладиевого катализатора (Соногашира) ().

Известны некоторые патенты в которых была использована реакция по типу Соногаширы (Производные бензодиазепина и лекарственное средство, их содержащее, № 2259360 RU, опубл. 27.08.05; Производные индола, содержащие ацетиленовую группу, в качестве PPAR активаторов, № 2387639 RU, опубл. 27.04.10; Способ получения ингибиторов поли(адф-рибоза)полимераз, №2344138 RU, опубл. 20.01.09; Триазолзамещенные аминобензофеноновые соединения, № 2394818 RU, опубл. 20.07.2010). Эти реакции сочетания по методу Соногаширы предпочтительно проводят с использованием известных каталитических смесей Pd(PPh3)4/CuI. B этих системах были использованы амины в качестве растворителей, такие как диэтиламин, триэтиламин, пиридин и др., которые при испарении взрывоопасны и токсичны.

Известен метод синтеза фенилэтинил производных ароматических соединений при замещении иода в молекулах на фенилацетилен (Catalytic Activity of Pd(II) Complexes with Triphenyl phosphito Ligands in the Sonogashira Reactionin Ionic Liquid Media, I.Błaszczyk A.M. Trzeciak J.J. Zio'łkowski, Catal. Lett. 2009, 133:262-266). При осуществлении синтеза необходим не только палладий, триэтиламин, но и ионная жидкость, а также инертная атмосфера. Для получения продукта этим способом требуется сложная установка, что является недостатком метода.

Известен метод синтеза фенилэтинил производных ароматических соединений при замещении иода в молекулах на фенилацетилен (Tandem Sonogashira Coupling: An Efficient Tool for the Synthesis of Diarylalkynes. Zolta'n Nova'k, Pe'ter Nemes, and Andra's Kotschy. Organic Letters, 2004 Vol.6, No. 26, 4917-4920). Но синтез необходимо проводить в две стадии, сначала в процессе образуется промежуточный продукт между иодбензолом и 2-метил-3-бутин-2-олом. Также выходы целевых продуктов невысокие и непостоянны от 17 до 84%.

Известен метод синтеза фенилэтинил производных ароматических соединений при замещении иода в молекулах на фенилацетилен с использованием CuI (Copper(I) Iodide Polyphosphine Adducts at Low Loading for Sonogashira Alkynylation of Demanding Halide Substrates: Ligand Exchange Study between Copper and Palladium, Matthieu Beaupérin, Andre Job, Hélène Cattey, Sylviane Royer, Philippe Meunierand Jean-Cyrille Hierso; Organometallics, 2010, 29(12), pp. 2815-2822), в этом случае была использована очень сложная система катализаторов, так как CuI сокатализатор в системе [PdII(η3-allyl)Cl]2, что является недостатком метода.

Известен метод синтеза фенилэтинил производных ароматических соединений при замещении иода в молекулах на фенилацетилен по типу Соногаширы с использованием Cu(I) (Copper-Catalyzed Synthesis of 1,3-Enynes. Craig G. Bates, Pranorm Saejueng, and D. Venkataraman. Organic Letters, 2004, Vol.6, No.9, 1441-1444). При этом была использована система Cu(I) как главный катализатор (например [Cu(bipy)PPh3Br]), Cs2CO3, толуол, 110°C, 24 часа. Это тоже сложная система, что является недостатком метода.

Задачей изобретения является разработка эффективного метода получения фенилэтинил производных ароматических соединений при замещении иода в молекулах на фенилацетилен с использованием нанопорошка меди.

Нанопорошок меди приготовлен по известному методу электрического взрыва проволоки в атмосфере инертного газа аргона (Яворовский Н.А., Пустовалов А.В., Лобанова Г.Л., Журавков С.П. Исследование свойств порошков алюминия, полученных в аргоне с добавками кислорода. // Известия вузов. Физика. 2012, Т.55, №6/2, с.236-244). Для получения нанопорошка меди использовалась установка УДП-4Г, медная проволока марки «ММ» диаметром 0,25 мм. Длина взрываемого за один импульс отрезка проволоки - 105 мм, напряжение зарядки U=21 кВ, емкость конденсаторной батареи C=2,24 µкФ. Давление аргона в установке 2,5 атм. Для получения нанопорошков электровзрывным методом, через металлическую проволочку пропускают импульсный ток большой плотности (1010А/м2), вследствие чего проводник взрывообразно разрушается, продукты взрыва конденсируются в атмосфере инертного газа и образуют наноразмерные частицы. Порошок, полученный таким способом, имеет величину удельной поверхности Sуд=8м2/г, что соответствует среднеарифметическому размеру частиц 84 нм (размеры агломератов до 150-300 нм), и обладает высокой химической активностью. Порошок темно-бурого цвета. Форма частиц сферическая. Насыпная плотность - около 5 г/см3. Порошок содержит металлическую медь (Cu) около 98% масс.; остальное - сорбированные газы, оксид меди CuO менее 1%, Cu2O менее 1% и H2O.

Известно, что нанопорошок меди реагирует с фенилацетиленом в диметилформамиде (ДМФА), образуя желтый осадок - комплекс дифенилбутадиина и меди. (Copper and Copper Oxides Nanopowders in the Oxidative Condensations of Phenylacetylene and tert-Butylacetylene. O.A. Kuznetsova, E.F. Khmara, V.I. Filyakova, M.A. Uimin, A.E. Ermakovb, С.K. Rheec, and V.N. Charushin. Zhurnal Obshchei Khimii, 2007, Vol.77, No. 3, pp.439-443. Нанопорошки на основе меди и ее оксидов в окислительной конденсации фенилацетилена и трет-бутилацетилена, О. А. Кузнецова, Е. Ф. Хмара, В. И. Филякова, М. А. Уймин, А. Е. Ермаков, С.К. Rhee, В. Н. Чарушин. Журнал общей химии. 2007, Т.77, вып.3, с.439-443).(Synthesis and crystal structure of tetranuclear nickel(0) complex with 1,4-diphenylbutadiyne in the η2, η2-bridging mode. Maekawa, M., Munakata, M., Kuroda-Sowa, Т., and Hachiya, K., Inorg.Chim.Acta, 1995, vol.231, p.213.) (Synthesis and crystal structure of unsymmetrical trinuclearnickel(0) complexes with the 1,3-butadiynes in the monodentate and µ2-η2, η2-bridgin mode [Ni3(L)(cod)3] (L=tmsb and dpbd) Maekawa, M., Munakata, M., Kuroda-Sowa, Т., and Hachiya, K., Polyhedron, 1995, vol.14, p.2879).

Это значит, что в ДМФА в присутствии нанопорошка меди фенилацетилен может димеризоваться. Но перед образованием дифенилбутадиина появляются радикальные частицы типа фенилацетиленил [PhC≡C].

Приготовим смесь двух катализаторов - нанопорошок Cu и CuI, при этом нанопорошок Cu реагирует с фенилацетиленом, чтобы образовалась радикальная частица фенилацетиленила, и одновременно CuI реагирует с иодбензолом (арилиодидом), при этом активируя его. В результате две переходные частицы реагируют между собой образуя дифенилацетилен.

Поставленная задача достигается тем, что производят нагрев смеси компонентов 0,01 моль фенилацетилена, 0,01 моль иодбензола (арилидида), 0,0006 г нанопорошка меди и 0,002 г CuI при температуре 110-120°C в течение 3 часов. После охлаждения реакционной массы ее выливают в 100 мл холодной воды при перемешивании, экстрагируют этилацетатом. Затем очищают на колонке с силикагелем, элюируя смесью растворителей этилацетат : гексан в соотношении 1:6. Далее отгоняют растворитель, получая чистые продукты. Смесь реагентов нанопорошка меди и CuI играет роль катализатора, который реагирует с двумя субстратами по механизму на основе реакции Соногаширы.

Таким образом, предлагаемый способ позволяет получать фенилэтинил производные ароматических соединений при замещении иода в молекулах на фенилацетилен с использованием нанопорошка меди. Метод дает выходы целевых продуктов от 70 до 90%, значительно упрощает технологический процесс (см. таблицу).

Таблица
Способ получения фенилэтинил производных ароматических соединений
Субстраты Продукты Выход, % (время) Т пл (р-ль)/ %C %H
95 (0.5 час) 248-250°C (AcOBu) %C 94,92 %H 4,83
90 (1 час) 188-190°C (AcOEт) %C 94,69 %H 5,25
87 (2 час) 155-156°C (AcOBu) %C 94,95 %H 4,75
85 (2 час) 338-341°C (AcOBu) %C 94,90 %H 4,93
87 (2 час) 186-188°C (AcOBu) %C 90,82 %H 4,82 %O 4,32
82 (2.5 час) 242-244°C (AcOBu) %C 94,92 %H 4,85
75 (3 час) 253-254°C (AcOEт)%C 94,91 %H 5,00
77 (3 час) 136-137°C (AcOEт) %C 94,82 %H 5,15
72 (3 час) 176-178°C (AcOEт) %C 94,96 %H 4,95
70 (3 час) 62-63°C (EтOH) %C 94.34 %H 5.66

Способ получения фенилэтинил производных ароматических соединений, включающий нагрев смеси компонентов 0,01 моль фенилацетилена, 0,01 моль иодбензола (арилиодида), 0,0006 г нанопорошка меди и 0,002 г CuI при температуре 110-120°C в течение 3 часов, после охлаждения реакционной массы ее выливают в 100 мл холодной воды при перемешивании, экстрагируют этилацетатом, затем очищают на колонке с силикагелем, элюируя смесью растворителей этилацетат : гексан в соотношении 1:6, далее отгоняют растворитель, получая чистые продукты.



 

Похожие патенты:

Изобретение относится к усовершенствованному способу получения фторсодержащего соединения, использующегося как сырье для получения различных фторполимеров с высоким выходом при осуществлении короткого процесса и использовании недорогих и легкодоступных исходных веществ.

Изобретение относится к новому способу получения галоидзамещенных соединений гидроксидифенила, которые применяются для борьбы с микроорганизмами. .

Изобретение относится к новому способу получения галоген-о-гидроксидифениловых соединений формулы (1), в которых Х- -О- или -СН2-, m = от 1 до 3, n = 1 или 2, которые применяются для защиты органических материалов от микроорганизмов, и к новым ацильным соединениям формулы (8), которые являются промежуточными продуктами, в которых R - незамещенный C1-С8алкил, замещенный 1-3 атомами галогена или гидрокси; или незамещенный С6-С12арил или С6-С12арил, замещенный 1-3 атомами галогена, С1-С5алкилом или C1-С8алкокси.

Изобретение относится к способу и промежуточным соединениям для получения фторолефиновых соединений формулы I, используемых в качестве пестицидных агентов. .

Изобретение относится к новым жидким в нормальных условиях омега-гидрофторалкиловым эфирам, которые обладают свойствами поверхностно-активных веществ и могут быть использованы для вытеснения воды с поверхности, в композициях для удаления загрязнителя с изделия, в композициях для пожаротушения, для изготовления пенопласта, при пайке в паровой фазе.

Изобретение относится к органической химии, точнее к способу получения бромированных производных дифенилового эфира. .

Изобретение относится к получению биологически активных соединений, в частности к получению резвератрола формулы (1) из растительного сырья, в качестве которого используют кору кедра сибирского.

Изобретение относится к биарильным соединениям или замещенным пиридинам формулы (I), где Х обозначает N или CR8, где R8 обозначает водород, галоген, фенил, алкил, алкокси, алкоксикарбонил, карбокси, формил или -NR4R5, где R4 и R5 обозначают водород, алкил, алкенил, циклоалкил, фенил, нафтил; R1a и R1в обозначают трифторметил, алкил, алкенил, алкинил, циклоалкил, алканоил; R2 обозначает алкил, алкенил, алкинил, циклоалкил; R3 обозначает гидрокси, трифторацетил, алканоил, алкенил; Аr обозначает ароматическое или гетероароматическое кольцо, например фенил, нафтил, пиридил, фуранил, тиофенил.

Изобретение относится к способу получения 1-алкиниладамантанов из производных адамантана и ацетиленовых соединений при катализе кислотой Льюиса, взятых в эквимольных количествах.

Изобретение относится к способу синтеза 1,2,6,7-бис-(9H,10H-антрацен-9,10-диил)пирена 1 путем взаимодействия генерируемого in situ аринового производного пирена с антраценом в атмосфере аргона Предлагаемое изобретение предоставляет способ синтеза указанного соединения, которое может использоваться в качестве мономолекулярного оптического сенсора для обнаружения нитроароматических соединений.
Изобретение относится к способу подготовки газа и газового конденсата к трубопроводному транспорту. .

Изобретение относится к способу синтеза 2,3,6,7,10,11-трис-(9Н,10Н-антрацен-9,10-диил)трифенилена 1-мономолекулярного оптического сенсора для обнаружения нитроароматических соединений путем взаимодействия генерируемого in situ аринового производного трифенилена с антраценом в атмосфере аргона Использование настоящего способа позволяет получать целевое соединение с выходом 69%.

Изобретение относится к области нефтехимии, точнее к устройствам, используемым в производстве мономеров для синтетического каучука. .

Изобретение относится к способу получения 1,4-дизамещенных [1.1.1b.1.1] пентиптиценов R = С С-Аr; тиенил-2. .
Изобретение относится к способу переработки метилгидропирана и/или побочных продуктов синтеза изопрена из изобутилена и формальдегида путем термокаталитического разложения их над алюмосиликатсодержащим катализатором с предварительным нагревом (или без него) исходного сырья в присутствии водяного пара с последующей конденсацией полученного контактного газа с образованием водного и масляного слоев.

Изобретение относится к органическому соединению, представленному общей формулой (1) где каждый из R1-R8, R10 и R13 представляет собой атом водорода; каждый из R9 и R14 представляет собой группу, выбранную из атома водорода, трет-бутильной группы, фенильной группы и нафтильной группы, причем фенильная группа содержит, по меньшей мере, один заместитель, выбранный из метальной группы, трет-бутильной группы и фенильной группы, или является незамещенной; один из R11 и R12 представляет собой атом водорода, а другой из R11 и R12 представляет собой группу, выбранную из нафтильной группы, фенантренильной группы, антраценильной группы, периленильной группы, хризенильной группы, бензо-с-фенантренильной группы, флуоренильной группы, флуорантенильной группы, бензофлуорантенильной группы и нафтофлуорантенильной группы, причем нафтильная группа содержит в качестве заместителя фенильную группу или является незамещенной, антраценильная группа содержит в качестве заместителя фенильную группу или является незамещенной, хризенильная группа содержит в качестве заместителя фенильную группу или является незамещенной, флуоренильная группа содержит в качестве заместителя метальную группу, флуорантенильная группа содержит, по меньшей мере, один заместитель, выбранный из трет-бутильной группы и фенильной группы, или является незамещенной, и бензофлуорантенильная группа содержит, по меньшей мере, один заместитель, выбранный из фенильной группы, фенильной группы, замещенной метальной группой, и фенильной группы, замещенной трет-бутильной группой, или является незамещенной.
Изобретение относится к способу получения изопрена, включающему жидкофазную конденсацию изобутилена в виде изобутиленсодержащей фракции C4 с водным раствором формальдегида в присутствии кислотного катализатора при повышенных температуре и давлении с образованием 4,4-диметил-1,3-диоксана и смеси высококипящих побочных продуктов, с последующим жидкофазным разложением полученного 4,4-диметил-1,3-диоксана в изопрен в присутствии триметилкарбинола и/или изобутилена и водного раствора кислотного катализатора при повышенных температуре и давлении.
Наверх