Способ вскрытия перовскитовых концентратов

Изобретение относится к способу вскрытия перовскитовых концентратов. Способ включает предварительную механообработку перовскитовых концентратов и последующую обработку активированных концентратов раствором азотной кислоты HNO3. При этом обработке HNO3 подвергают активированные перовскитовые концентраты с запасенным суммарным количеством энергии, соответствующим изменению поверхности областей когерентного рассеяния и микродеформаций, не менее 16 кДж/моль перовскита. Обработку активированных концентратов ведут 30%-ным раствором HNO3 при температуре 90-99°С. Техническим результатом является снижение энергозатрат за счет снижения температуры обработки активированных концентратов. 1 табл., 1 пр.

 

Изобретение относится к металлургии редких металлов, в частности к процессам вскрытия минералов тугоплавких металлов.

Перовскит относится к достаточно трудновскрываемым минералам. Наибольшие сложности связаны с извлечением редкоземельных металлов.

Известны различные способы комплексной гидрометаллургической переработки титанокальциевого сырья (Калинников В.Т., Николаев А.И., Захаров В.И. Гидрометаллургическая переработка нетрадиционного титано-редкометального и алюмосиликатного сырья. - Апатиты: Изд-во КНЦ РАН, 1999. - 225 с.). Для разложения такого сырья, к которому относится перовскит (CaTiO3), обычно используют автоклавное выщелачивание серной, азотной, соляной или фтористоводородными кислотами.

Разложение 75-85%-ной серной кислотой (жидкофазная сульфатизация) с расходом 3-4 т на 1 т перовскитового концентрата проводится при температуре 140-150°С в течение 1.0-1.5 ч (АС 1366476 СССР. Способ переработки перовскитового концентрата. Бюл. №2, 1988). Кальций после сернокислотного вскрытия минерала находится в твердой фазе в виде гипса. Полученную пульпу разбавляют водой до содержания 800-1000 г/л H2SO4, выдерживают в течение 1-2 ч, а затем фильтруют при температуре 60-90°С.

Недостатками сернокислотного способа переработки являются большие материальные потоки и объемы отходящих растворов.

Известен способ разложения минерального и техногенного сырья, в частности перовскитового концентрата (см. патент Германии №285083, МПК C01G 23/04, 1990), путем обработки 20-30%-ной соляной кислотой или 40-48%-ной азотной кислотой при 160-200°С в течение 1,0-2,5 часов в автоклаве.

Недостатками способа являются высокая температура разложения, повышенная энергоемкость и сложность аппаратурного оформления.

Разложение титанокальциевого сырья 35.5-40%-ной соляной кислотой в герметичном аппарате проводится при температуре 75-100°С и начальном давлении 0.2-0.5 МПа, процесс ведется в противотоке (Патент РФ №2149908 от 27.05.2000). Продолжительность вскрытия перовскитового концентрата 6-8 ч. В результате кальций переходит в раствор в виде хлорида кальция.

Недостатками способа являются проблемы с регенерацией соляной кислоты и утилизацией сбросных растворов.

Известен способ переработки перовскитового концентрата с извлечением ниобия и тантала (см. Николаев А.И. Азотнокислотно-гидрофторидная технология переработки перовскита / А.И. Николаев, Л.Г. Герасимова, В.Г. Майоров, В.Б. Петров // Цветные металлы. - 2002. - №9. - с.65-68), включающий загрузку измельченного до 0,1 мм перовскита в нагретую до 50°С азотную кислоту с концентрацией 48-69% при соотношении Т:Ж=1:1,75-3,5, нагрев образовавшейся пульпы до кипения, выдержку при температуре 115-120°С в течение 25-30 часов.

Недостатками данного способа являются необходимость использования повышенной температуры в режиме кипения, что сопряжено с дополнительными энергетическими затратами.

Общими недостатками известных гидрометаллургических способов вскрытия кальцийсодержащего минерального сырья являются низкая удельная производительность процессов и связанная с этим их большая длительность и периодичность, использование повышенного давления и автоклавного оборудования.

Изобретение решает задачу упрощения процессов вскрытия перовскитовых концентратов и снижения энергозатрат на стадии предварительного активирования вскрываемого материала.

Технический результат - эффективное вскрытие перовскитовых концентратов при температурах не более 100°С.

Поставленная задача решается в способе вскрытия перовскитовых концентратов, включающем предварительную механообработку перовскитовых концентратов и последующую обработку активированных перовскитовых концентратов 30% раствором HNO3 при температуре 99°С. Последующей обработке подвергают активированные перовскитовые концентраты с запасенным суммарным количеством энергии, соответствующим поверхности областей когерентного рассеяния и микродеформаций, не менее 16 кДж/моль перовскита.

Оценка степени деформации кристаллической решетки перовскита проводилась по количеству усвоенной энергии с помощью методики, изложенной в работе Е.В. Богатыревой, А.Г. Ермилова «Оценка доли энергии, запасенной при механической активации минерального сырья» Неорганические материалы, 2008, том 44, с.242-247:

ΔEΣ=ΔEd+ΔES+ΔEε,

где ΔEd - количество энергии, усвоенной в виде изменения межплоскостных расстояний кристаллической решетки минерала:

ΔEd=K Elatt.

К - коэффициент относительного изменения объема элементарной ячейки фазы концентрата (по модулю);

Elatt - энергия кристаллической решетки минерала.

ΔEs - количество энергии, усвоенной в виде поверхности областей когерентного рассеивания (ОКР):

Δ E s = 6 E s u r f V m o l ( 1 D i 1 D o ) .

Esurf - поверхностная энергия минерала до активации;

Vmol - мольный объем минерала;

Di, D0 - размеры областей когерентного рассеивания минерала после МА и до обработки, соответственно.

ΔЕε - количество энергии, усвоенной в виде микродеформаций:

Δ E ε = 3 2 E Y ( ε i 2 ε 0 2 ) V m o l .

EY - модуль Юнга минерала;

εi, ε0 - среднеквадратичная микродеформация минерала после и до МА, соответственно.

Предварительную обработку проводят до суммарного количества энергии, запасенной в виде поверхности областей когерентного рассеивания и микродеформаций, не менее 16 кДж/моль перовскита, а последующую обработку проводят 30%-ным раствором HNO3 при температуре 90-99°С.

Оценка количества усвоенной энергии позволяет не только оценить, но и контролировать реакционную способность активированного материала не по степени или скорости его реагирования, то есть на конечном этапе вскрытия, а по степени его структурных нарушений сразу после извлечения из активатора.

Технический результат - снижение энергозатрат достигается за счет снижения температуры процесса выщелачивания (до 100°С).

Наибольший эффект активирования проявляется при количестве энергии усвоенной в виде суммарного количества энергии, запасенного в виде поверхности областей когерентного рассеивания и микродеформаций, не менее 16 кДж/моль перовскита. Степень извлечения РЗМ в азотнокислый раствор при этом составляет 98,5%. У неактивированного перовскита, в тех же условиях вскрытия, она составила 7,86%.

Снижение суммарного количества энергии, усвоенной в виде областей когерентного рассеивания и микродеформации, до 9,36 кДж/моль перовскита сопровождается снижением степени извлечения РЗМ до 85,21% (в тех же условиях выщелачивания).

Снижение суммарного количества энергии, усвоенной в виде областей когерентного рассеивания и микродеформации, до 6,3 кДж/моль перовскита сопровождается снижением степени извлечения РЗМ до 77, 91% (в тех же условиях выщелачивания).

Механоактивации подвергали перовскитовый концентрат крупностью 11,88% фракции +0,125 мм; 22,83% - (-0,125+0,100) мм; 16,56% - (-0,100+0,08) мм; 20,06% - (-0,080+0,063) мм; 16,64% - (-0,063+0,040) мм; 12,03% фракции -0,040 мм, содержащий, %: 2,498 РЗМ; 28,700 Ti; 0,675 Nb; 0,032 Та; 25,720 Са; 2,620 Fe; 1,970 Si; 0,337 Al; 0,220 Sr; 0,091 Th.

Активацию проводили в центробежной планетарной мельнице марки ЛАИР-0.015 с развиваемым ускорением 25 g.

Усвоенное суммарное количество энергии, соответствующее изменению поверхности областей когерентного рассеивания и микродеформаций, может быть оценено в процессе механообработки на периодически отбираемых пробах перовскитового концентрата, либо может быть спрогнозировано заранее путем проведения пробной механоактивации при различных режимах.

Конкретные примеры исполнения представлены в таблице. Обозначения в таблице: Мш:Мк - соотношение массы мелющих тел и массы загруженного концентрата.

Z - степень заполнения барабана мельницы шарами, %.

τа - продолжительность механообработки (активации).

Т:Ж - соотношение твердой и жидкой составляющих в пульпе при выщелачивании.

Elatt=15858,5 кДж/моль (определена методом Ферсмана); Vmol=34 см3/моль=1,449 Дж/м2 и EY=211,29 ГПа (определены по методике, изложенной в работе Зуев В.В., Аксенова Г.А., Мочалов Н.А. и др. Исследование величин удельных энергий кристаллических решеток минералов и неорганических кристаллов для оценки их свойств // Обогащение руд. 1999. №1-2. С.48-53).

Представленные данные показывают, что количество усвоенной энергии в виде областей когерентного рассеивания и микродеформаций коррелируется со степенью извлечения ценного компонента. Данные по условиям механоактивации приведены, поскольку это единственные реперы на сегодняшний день, используемые большинством исследователей.

Способ вскрытия перовскитовых концентратов, включающий предварительную механообработку перовскитовых концентратов и последующую обработку активированных концентратов раствором азотной кислоты HNO3, отличающийся тем, что обработке азотной кислотой HNO3 подвергают активированные перовскитовые концентраты с усвоенным суммарным количеством энергии, которое соответствует изменению поверхности областей когерентного рассеивания и микродеформаций, не менее 16 кДж/моль перовскита, при этом обработку активированных концентратов ведут 30%-ным раствором HNO3 при температуре 90-99°С.



 

Похожие патенты:
Изобретение относится к способу извлечения редкоземельных (РЗЭ) из азотно-фосфорнокислых растворов переработки апатита. Способ включает растворение апатита в азотной кислоте, вымораживание нитрата кальция(стронция), осаждение гидрато-фосфатов РЗЭ и кальция(стронция), растворение осадка в азотной кислоте, введение в раствор нагретого до 40-50°С полученного на стадии вымораживания нитрата кальция(стронция) с концентрацией 800-1000 г/л, при этом содержание РЗЭ (в расчете на оксиды) поддерживают равной 40-60 г/л, а избыточной азотной кислоты 1-2 моль/л, последующую экстракцию РЗЭ трибутилфосфатом в присутствии нитрата кальция, промывку и реэкстракцию, причем промывку экстракта осуществляют упаренным реэкстрактом до концентрации по РЗЭ 250-300 г/л.
Изобретение относится к очистке фосфатно-фторидного концентрата редкоземельных элементов (РЗЭ), получаемого при комплексной переработке апатита. Способ очистки фосфатно-фторидного концентрата РЗЭ, содержащего примеси кальция и тория, включает обработку концентрата раствором серной кислоты концентрацией 4-6 мас.% в присутствии сульфоксидного катионита, при этом РЗЭ, примеси тория и кальция сорбируются сульфоксидным катионитом, перевод фтора наряду с фосфором в сернокислый раствор, отделение сернокислотного раствора от сульфоксидного катионита, десорбцию из катионита РЗЭ и примеси тория и кальция раствором соли аммония с получением десорбата и его нейтрализацию аммонийным соединением в три стадии, при этом на первой стадии нейтрализацию ведут до обеспечения pH 4,2-5,0 с образованием и отделением торийсодержащего осадка, на второй стадии - до обеспечения pH 7,0-7,5 с образованием и отделением концентрата РЗЭ, а на третьей стадии - до рН не менее 8,5 с образованием и отделением кальцийсодержащего осадка.
Изобретение относится к способу переработки эвдиалитового концентрата. Способ включает разложение концентрата минеральной кислотой с получением геля, термическую обработку геля, регенерацию кислоты, водное выщелачивание геля с переводом в раствор редкоземельных элементов (РЗЭ), а в нерастворимый остаток - соединения циркония.

Изобретение относится к способу переработки фосфогипса для производства концентрата редкоземельных металлов (РЗМ) и гипса. Способ включает приготовление пульпы фосфогипса, выщелачивание РЗМ и фосфора серной кислотой.
Изобретение относится к способу извлечения РЗЭ из твердых материалов, например из твердых ископаемых, а также техногенных материалов. Способ включает кислотное выщелачивание измельченных до менее 100 мкм твердых материалов смесью серной и азотной кислот при соотношении между ними в пределах от 6:1 до 1:1 мас.
Изобретение может быть использовано в химической промышленности. На первой стадии извлечения гадолиния из смеси редкоземельных элементов в органическую фазу извлекают тербий, диспрозий и более тяжелые РЗЭ.

Изобретение относится к экстракционной очистке нитратных растворов, содержащих редкоземельные металлы (РЗМ), от примесей, в частности от Fe, Al, Ca, Mg и радиоактивных примесей, в том числе от тория.
Изобретение относится к способу извлечения металлов, в частности редкоземельных металлов и марганца, из силикатных шлаков. Способ включает измельчение шлака и выщелачивание.
Изобретение относится к переработке лопаритового концентрата. Заявляемый способ пирометаллургической переработки лопаритового концентрата включает три этапа: восстановительный, плавильный и окислительный.
Изобретение может быть использовано в химической промышленности для извлечения редкоземельных элементов из фосфогипса. Способ включает карбонизацию фосфогипса с получением осадка фосфомела, растворение его в азотной кислоте с образованием продукционной суспензии и последующее отделение нерастворимого остатка - чернового концентрата редкоземельных элементов фильтрацией.
Изобретение относится к способу переработки эвдиалитового концентрата. Способ включает разложение концентрата минеральной кислотой с получением геля, термическую обработку геля, регенерацию кислоты, водное выщелачивание геля с переводом в раствор редкоземельных элементов (РЗЭ), а в нерастворимый остаток - соединения циркония.
Изобретение относится к горно-перерабатывающей промышленности и может быть использовано при утилизации отходов добычи и обогащения магнезитовых руд. Способ переработки магнезитодоломитового сырья включает измельчение сырья, классификацию и последующее выщелачивание магния кислотой.
Изобретение относится к способу извлечения РЗЭ из твердых материалов, например из твердых ископаемых, а также техногенных материалов. Способ включает кислотное выщелачивание измельченных до менее 100 мкм твердых материалов смесью серной и азотной кислот при соотношении между ними в пределах от 6:1 до 1:1 мас.

Изобретение относится к способу переработки кремнийсодержащего химического концентрата природного урана с повышенным содержанием кремния. Способ включает выщелачивание концентрата водным раствором азотной кислоты при повышенной температуре с получением пульпы, состоящей из твердой и водной фаз, отделение фильтрацией водной фазы в виде азотнокислого раствора нитрата уранила от твердой фазы, экстракционный аффинаж урана с применением трибутилфосфата в углеводородном разбавителе.
Изобретение относится к технологии получения наночастиц золота. Способ получения наночастиц золота из сырья, содержащего железо и цветные металлы, включает получение царсководочного раствора золота с использованием царской водки.
Изобретение относится к способу извлечения металлов, в частности редкоземельных металлов и марганца, из силикатных шлаков. Способ включает измельчение шлака и выщелачивание.

Изобретение относится к переработке урансодержащего сырья, а именно к способу подготовки сырья к экстракционной переработке. Способ включает выщелачивание урана азотной кислотой и отделение водной фазы от нерастворенного остатка.

Изобретение относится к области очистки серебросодержащих материалов гидрометаллургическим методом, например вторичных материалов, какими являются лом и отходы некоторых видов микроэлектроники.

Изобретение относится к области гидрометаллургии рассеянных элементов, а именно к способу извлечения висмута и германия из вторичных источников сырья, образующегося при механической обработке оксидных материалов, в частности к способу извлечения висмута и германия из масло-абразивных отходов производства кристаллов ортогерманата висмута.
Изобретение может быть использовано в химической промышленности для извлечения редкоземельных элементов из фосфогипса. Способ включает карбонизацию фосфогипса с получением осадка фосфомела, растворение его в азотной кислоте с образованием продукционной суспензии и последующее отделение нерастворимого остатка - чернового концентрата редкоземельных элементов фильтрацией.
Изобретение относится к способу извлечения редкоземельных металлов (РЗМ) и строительного гипса из фосфогипса - отхода сернокислотной технологии получения фосфорной кислоты из апатита. Способ включает последовательные стадии перекристаллизации фосфогипса и растворения РЗМ. При этом перекристаллизацию полугидрата или ангидрита сульфата кальция в дигидрат осуществляют в присутствии растворимой соли кальция в концентрации 0,075-3,75 М в пересчете на Ca2+ в слабокислой среде при pH>1. Растворение проводят cильной кислотой c рКа<0 в концентрации 0,2-8 М в пересчете на H+. Степень извлечения РЗМ в раствор составляет до 95%, остаточное содержание примесей фосфора, фтора и щелочных металлов в дигидрате сульфата кальция не превышает 0,3 вес.%, 0,1 вес.%, 0,05 вес.% соответственно. Техническим результатом является повышение эффективности извлечения РЗМ с одновременной очисткой сульфата кальция от фосфора и фтора. 2 з.п. ф-лы, 3 табл., 7 пр.
Наверх