Способ получения геля кремниевой кислоты


 


Владельцы патента RU 2525087:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ" (RU)

Изобретение может быть использовано в химической промышленности. Гель кремниевой кислоты получают подкислением раствора силиката щелочного металла добавлением природной сероводородной воды. Предложенное изобретение позволяет снизить энергозатраты. Полученный в ходе реакции продукт сульфид натрия Na2S может использоваться для осаждения ионов тяжелых металлов в гальваническом производстве. 2 табл., 3 пр.

 

Изобретение относится к области коллоидной химии, а точнее к синтезу гелей кремниевой кислоты из силикатов щелочных металлов, в частности из силиката натрия, как сравнительно дешевого и доступного сырья.

Известен способ получения геля кремниевой кислоты из раствора силиката натрия путем обработки его раствором серной кислоты. Полученный продукт промывают от сульфата натрия водным раствором аммиака при температуре 200°C. Образовавшийся гель содержит всего 3% SiO2, выпариванием доводят его содержание до 20-25% (Айлер Р.К. Химия кремнезема. Пер. с англ. - М.: Мир, ч.II, 1982, с.419-453).

Недостатки способа - использование повышенной температуры и применение ценного химического реагента - серной кислоты. Кроме того, образовавшийся при этом побочный продукт - сульфат натрия не находит широкого практического применения и является отходом.

Известен также способ, наиболее близкий к предлагаемому изобретению, заключающийся в получении геля кремниевой кислоты из силикатов щелочных металлов, который включает электрохимическую обработку водопроводной воды в проточном режиме с последующим смешиванием растворов силиката натрия с кислым анолитом, вытекающим из анодной камеры электролизера с pH 3-4 (Патент №2381991 от 27.06.1012, Хизриева И.Х., Алиев З.М., Аммаева Ш.Г. «Способ получения геля кремниевой кислоты»).

Недостаток метода - расход электроэнергии на электролиз водопроводной воды.

Задачей настоящего изобретения является снижение энергозатрат.

Технический результат достигается тем, что подкисление раствора силиката натрия и получение геля кремниевой кислоты проводится добавлением природной сероводородной воды.

Сущность способа получения геля кремниевой кислоты, включающего подкисление раствора силиката щелочного металла, отличается тем, что подкисление раствора и получение геля кремниевой кислоты проводят добавлением природной сероводородной воды.

Пример 1. В коническую колбу объемом 500 мл вносят 50 г сульфида натрия из воронки. В эту же колбу по каплям добавляют водный раствор серной кислоты в соотношении 1:1 и объемом 100 мл. Далее выделяющийся газ-сероводород пропускают в предохранительную склянку, в которой находится 200 мл водного раствора жидкого стекла в соотношении 1:4 (40 г жидкого стекла и 160 мл воды) до достижения pH 3-4 при постоянном перемешивании реакционной смеси. Полученный гидрогель кремниевой кислоты отфильтровывают и промывают.

Пример 2. В реакционный сосуд объемом 1 л, в качестве которого используют химический стакан, наливают 400 мл силиката натрия и различные количества природной сероводородной воды с исходной концентрацией 187 мг/л H2S в различных соотношениях соответственно с табл.1.

Таблица 1
Объем силиката натрия 400 400 400 400 400 400
Объем сероводородной воды 100 200 400 600 800 1000
pH 8,6 6,2 3,6 3,4 3,2 3,0

Пример 3. В стакане емкостью 1000 мл смешивают силикат натрия с дистиллированной водой в соотношении 1:4 (40 мл силиката натрия и 160 мл дистиллированной воды), затем при непрерывном перемешивании пропускают из баллона предварительно очищенный сероводород до выпадения гидрогеля и достижения pH 3-4 (Табл.3).

Таблица 2
Выход кремниевой кислоты при обработке силиката натрия сероводородом
№ опыта Масса теор., мг Масса практ., мг Выход, % Ср.выход, %
1 17,66 15,00 85,0 84,0
2 25,74 21,60 84,0
3 34,32 28.80 84.0
4 43.06 35.70 83.0

Раствор с осадком фильтруют и промывают дистиллированной водой до отрицательной реакции на сульфид ионы. Гель кремниевой кислоты высушивают при температуре 35-40°C, а фильтрат - раствор сульфида натрия используют для осаждения ионов тяжелых металлов из сточных вод. Полученный гель имеет практический выход 84%, достаточно однороден и может быть использован в технологии очистки природных вод, в частности для умягчения воды, для обработки виноматериалов, дистиллизации жидких сред (Патент №2272833 от 27.03.2006 Хизриева И.Х, Харламова Т.А., Алиев З.М. «Способ осветления и стабилизации виноматериалов»), а также для очистки природных и попутных нефтяных вод от сероводорода.

Преимуществами предложенного способа являются:

1. Снижение энергозатрат, которые связаны с отсутствием электролиза;

2. Полученный в ходе реакции продукт сульфид натрия Na2S может использоваться для осаждения ионов тяжелых металлов в гальваническом производстве.

Способ получения геля кремниевой кислоты, включающий подкисление раствора силиката щелочного металла, отличающийся тем, что подкисление раствора и получение геля кремниевой кислоты проводят добавлением природной сероводородной воды.



 

Похожие патенты:
Изобретение относится к способу получения минеральной кремниевой воды (МКВ), предназначенной для применения в медицинских целях. Способ получения включает гидролиз тетраэтоксисилана в смеси ТЭОС : этанол : вода, подкисленная HCl.

Изобретение относится к способу получения содержащих двуокись кремния полиольных дисперсий, используемых для получения полиуретановых материалов. Предложен способ получения силикатсодержащих полиолов, включающий стадии: (i) смешения водного кремнезоля (К) со средним диаметром частиц от 1 до 150 нм, содержанием кремневой кислоты, рассчитанной как SiO2, от 1 до 60 мас.% и показателем рН от 1 до 6 в зависимости от используемого содержания SiO2 и от 0,1- до 20-ти кратного количества в расчете на воду, по меньшей мере, одного органического растворителя (L); (ii) смешения полученной смеси с полиолом; (iii) по меньшей мере, частичной отгонки дистилляцией органического растворителя (L) и воды; (iv) смешения, по меньшей мере, с одним соединением (S), содержащим, по меньшей мере, одну по меньшей мере однократно алкоксилированную силильную группу и, по меньшей мере, один алкильный, циклоалкильный или арильный заместитель, который может содержать гетероатомы, причем этот заместитель содержит, при необходимости, группу, реакционноспособную по отношению к спирту, амину или изоцианату, в количестве от 0,1 до 30 мол.

Изобретение относится к способу получения содержащих двуокись кремния полиольных дисперсий, используемых для получения полиуретановых материалов. Предложен способ получения силикатсодержащих полиолов, включающий стадии: (i) смешения водного кремнезоля (К) со средним диаметром частиц от 1 до 150 нм, содержанием кремневой кислоты, рассчитанной как SiO2, от 1 до 60 мас.% и показателем рН от 1 до 6 в зависимости от используемого содержания SiO2 и от 0,1- до 20-ти кратного количества в расчете на воду, по меньшей мере, одного органического растворителя (L); (ii) смешения полученной смеси с полиолом; (iii) по меньшей мере, частичной отгонки дистилляцией органического растворителя (L) и воды; (iv) смешения, по меньшей мере, с одним соединением (S), содержащим, по меньшей мере, одну по меньшей мере однократно алкоксилированную силильную группу и, по меньшей мере, один алкильный, циклоалкильный или арильный заместитель, который может содержать гетероатомы, причем этот заместитель содержит, при необходимости, группу, реакционноспособную по отношению к спирту, амину или изоцианату, в количестве от 0,1 до 30 мол.

Изобретение может быть использовано в лакокрасочной промышленности. Для получения водной дисперсии силанированных коллоидных частиц диоксида кремния в водной среде смешивают а) по меньшей мере одно силановое соединение с эпоксифункциональностью, b) по меньшей мере одно силановое соединение без эпоксифункциональности, способное модифицировать коллоидные частицы диоксида кремния, и с) коллоидные частицы диоксида кремния с образованием водной дисперсии силанированных коллоидных частиц диоксида кремния, включающей силановые соединения из а) и b).
Изобретение может быть использовано в химической и целлюлозно-бумажной отраслях промышленности. Золь на основе диоксида кремния имеет концентрацию растворимого диоксида кремния менее примерно 800 мг SiO2/л, содержание SiO2 по меньшей мере 3 масс.
Изобретение относится к стабилизированным гидроксонием наночастицам кремниевой кислоты, к составу, полученному из указанной разбавленной суспензии, к порошку, полученному из указанной дегидратированной суспензии, и к препарату или лекарственной форме, полученной из указанной суспензии, составу или порошку и их применению во всех типах применений в области пищевой промышленности, медицины, фармацевтики, косметики.

Изобретение относится к химической технологии получения коллоидных частиц кремнезема, а именно его золей (силиказолей), растворимых в безводных органических растворителях, и может найти применение в химической промышленности для получения различных наноструктурных полимерных композиционных материалов, при синтезе различных адсорбентов, различных связующих, носителей для катализаторов и т.п.
Изобретение относится к проблеме защиты окружающей среды и может быть использовано в производстве особо чистого кварцевого концентрата, которое является одним из основных источников загрязнения среды фтором, хлором и солями, их содержащими.

Изобретение относится к способу получения дисперсии частиц диоксида кремния с модифицированной поверхностью в органическом растворителе. .
Изобретение относится к нанокомпозиту на основе полиэтилена, к способам его получения и может быть использовано в пищевой, химической промышленности, в медицине при производстве новых материалов с улучшенными физико-механическими свойствами и с низкой газопроницаемостью (повышенными барьерными характеристиками).

Изобретение относится к химической промышленности и может быть использовано для получения композитов, которые применяются в фотокаталитических процессах, в качестве катализаторов олигомеризации олефинов и полимеризации этилена. Композиционный материал на основе силикагеля получают путем осаждения диоксида кремния из силиката натрия в присутствии диоксида титана или закиси меди барботированием углекислого газа через толщину суспензии при атмосферном давлении с образованием композиционного материала по типу «ядро (диоксид кремния)/оболочка (оксид металла)». Изобретение позволяет упростить процесс получения композита, так как отпадает необходимость сложного аппаратного оформления процесса, связанного с применением высоких давлений диоксида углерода при получении силикагеля, а также экологическая чистота технологии, которая связана с отсутствием выбросов диоксида углерода, достигаемая повторным его использованием. Способ может быть использован как в лабораторных, так и в промышленных условиях. 3 ил., 2 пр.
Настоящее изобретение относится к суспензиям, содержащим очень малое количество солей и содержащим, по меньшей мере, один осажденный оксид кремния. Предложен способ получения суспензий, имеющих низкое содержание соли и включающих, по меньшей мере, один осажденный оксид кремния, включающий стадии: обеспечение суспензии, содержащей, по меньшей мере, один осажденный оксид кремния; доведение рН суспензии до величины 0,5-5, если рН суспензии, полученной на предыдущей стадии, не находится в указанном интервале; очистка суспензии с помощью электродиализа, причем устройство для электродиализа включает одну или более ячейку электродиализа, в каждой из которых область, содержащая продукт, отделена от области, содержащей католит, с помощью катионообменной мембраны, а расстояние между электродами составляет от 2 до 200 мм, и применяют потенциал от 5 до 1000 В. Предложены также полученная указанным способом суспензия, ячейка для электродиализа и содержащее ее устройство, а также применение суспензии. Технический результат - способ позволяет эффективно получать суспензии, содержащие осажденный оксид кремния, в которых содержание сульфата натрия менее 1000 част./млн. Получаемые суспензии пригодны для получения покрытий бумаги при изготовления носителей информации с использованием струйной печати или для получения высушенных осажденных оксидов кремния. 5 н. и 16 з.п. ф-лы, 1 табл., 2 пр.

Изобретение относится к области получения силикатных материалов. Предложен способ получения обращенно-фазовых гидрофобизированных полисиликатных сорбентов, включающий взаимодействие в водной среде гидрофильного силикатного компонента с амфифильным силикатным компонентом. Реакцию соконденсации упомянутых компонентов осуществляют при мольном отношении воды к сумме силикатных компонентов, равном от 124 до 250. В реакционную смесь вводят также кислотный и/или щелочной компонент до образования полисиликатного гидрогеля. Полученный сорбент предложен к использованию в качестве фильтрующей среды и в качестве энтеросорбента. Технический результат заключается в возможности получения в водной среде трехмерного гидрогеля поликремневой кислоты, содержащего гидрофильные и гидрофобные группы. 3 н. и 14 з.п. ф-лы, 3 табл., 1 ил., 16 пр.
Гибридный золь, содержащий нано- и микрочастицы, получают смешением силиказоля, содержащего нано- и микрочастицы и золя оксида тугоплавкого металла, содержащего микрочастицы, в соотношении, при котором оксид тугоплавкого металла в гибридном золе составляет от 0,1 до 20 масс. %. Образование нано-микроразмерного силиказоля осуществляют методом гидролитической поликонденсации тетраэтоксисилана при температуре от 20°С до 40°С, водный раствор аммиака добавляют в тетраэтоксисилан со скоростью 1-10 мл/мин с последующей выдержкой от 5 до 24 часов и концентрированием полученного золя до содержания твердой фазы 25-40 масс. %. Золь оксида тугоплавкого металла получают гидролитической конденсацией, добавляя спиртовой раствор алкоксидов тугоплавких металлов в водно-спиртовой раствор со скоростью 1-10 мл/мин с последующей выдержкой от 5 до 24 часов и концентрированием полученного золя до содержания твердой фазы не менее 3 масс. %. Изобретение позволяет получить нано-, микроструктурированные гибридные золи на основе тетраалкоксилана и гидролизуемых алкоксидов тугоплавких металлов. 2 пр.

Настоящее изобретение относится к способам получения коллоидных частиц оксида металла (варианты), в частности диоксида кремния, а также к самим коллоидным частицам. Способ включает добавление химически активного оксида металла в реакционную емкость при оптимальной массовой скорости добавления оксида металла, которая основывается на математической модели, которая учитывает (i) скорость нуклеации частиц, (ii) скорость осаждения оксида металла на существующие частицы оксида металла и (iii) рост частиц оксида металла в реакционной емкости. Массовая скорость добавления оксида металла увеличивается как функция времени реакции. Введение затравочных частиц оксида металла в реакционную емкость осуществляют перед стадией добавления химически активного оксида металла. Оптимальная массовая скорость добавления оксида металла, q, представлена формулой: q = ( 3 m o G r / D p o       3 ) ( D p o + G r t ) 2 , где: mo представляет собой массу частиц оксида металла в реакционной емкости в граммах; Gr представляет собой скорость роста частиц оксида металла для частиц оксида металла в реакционной емкости, как определяется по увеличению диаметра частиц, в нанометрах в час; Dpo представляет собой средний диаметр частиц оксида металла в нанометрах; t представляет собой время в часах. Gr находится в пределах от примерно 10 до примерно 50 нм/час и q находится в пределах от примерно 10,6 до примерно 52,8 г/1000 м2-час в течение, по меньшей мере, части периода реакции. Способы по изобретению являются более эффективными благодаря уменьшению периодов реакции, необходимых для получения коллоидных частиц оксида металла 5 н. и 20 з.п. ф-лы, 5 ил., 1 пр.

Изобретение может быть использовано в области цветной металлургии. Способ переработки алюмосиликатного сырья включает его термическую обработку и последующее взаимодействие с раствором соляной кислоты с выделением нерастворимого кека, очистку раствора и его переработку с получением оксида алюминия и регенерацией соляной кислоты. Термическую обработку сырья ведут путем спекания в смеси с натрийсодержащим реагентом, а полученный спек обрабатывают раствором соляной кислоты концентрацией 180-250 г/дм3 в две стадии при отношении Ж:Т, равном (0,5-0,7):1, и температуре 120-200°C на первой стадии и при отношении Ж:Т, равном (3,3-3,5):1, и температуре, не превышающей температуру кипения раствора, на второй стадии. Изобретение позволяет повысить извлечение алюминия в раствор при солянокислом выщелачивании, повысить интенсивность выщелачивания и упростить его технологии, а также извлекать кремнезем в виде чистого аморфного высокодисперсного кремнезема. 8 з.п. ф-лы, 3 пр.

Изобретение относится к способу получения материала на основе кремниевого золя и к материалу, полученному этим способом. Способ включает контролируемое соединение водного раствора кислоты и гидролизуемого соединения кремния при изотермических условиях. Последующее выпаривание в однофазный раствор с вязкостью в диапазоне от 0,5 до 30 Па·с при скорости сдвига 10 с-1 при 4°С. Созревание полученного однофазного раствора в материал на основе кремниевого золя с вязкостью от 30 до 100 Па·с при скорости сдвига 10 с-1 при 4°С и коэффициенте потерь от 2 до 5 проводят при перемешивании. Причем все ступени проводят в одном реакторе. Обеспечивается возможность гомогенного внесения в золь чувствительных к температурам фармацевтических биологически активных веществ и упрощение технологии за счет использования одного-единственного реактора. 2 н. и 3 з.п. ф-лы, 1 ил., 3 пр.
Изобретение относится к стабильным дисперсиям силанизированных частиц коллоидного диоксида кремния, используемым для получения полимерных материалов и композиций для покрытий. Предложен способ получения дисперсии, включающий а) смешивание водной дисперсии силанизированных частиц коллоидного диоксида кремния с по меньшей мере одним органическим соединением, включающим по меньшей мере две гидроксильные группы, выбранным из этиленгликоля и полиолов, в отсутствие какого-либо однофункционального спирта и b) удаление воды из образовавшейся водной дисперсии до тех пор, пока остаток воды в дисперсии не составит ниже примерно 10 мас.%. Предложена также получаемая заявленным способом дисперсия и варианты ее использования. Технический результат - предложенный способ позволяет получать дисперсию, которая остается стабильной при хранении и транспортировке без введения отдельного стабилизатора. 5 н. и 11 з.п. ф-лы, 5 табл., 46 пр.

Изобретение относится к нанотехнологии и может быть использовано при изготовлении спазеров, плазмонных нанолазеров, при флуоресцентном анализе нуклеиновых кислот, высокочувствительном обнаружении ДНК, фотометрическом определении метиламина. Сначала приготавливают первый раствор, содержащий наночастицы золота с оболочкой из оксида кремния. Затем приготавливают второй раствор, включающий квантовые точки, покрытые лигандами, содержащими различные функциональные группы. Смешивают указанные растворы для получения результирующего раствора, содержащего наночастицы золота с оболочкой из оксида кремния, покрытой квантовыми точками. Количество квантовых точек определяют отношением диаметра оболочки к диаметру квантовой точки. Для получения требуемого количества квантовых точек на поверхности оболочки её толщину увеличивают после смешивания первого и второго растворов путём смешивания результирующего водного раствора с этанолом и добавления аммония и тетраэтоксисилана. Изобретение позволяет управлять количеством квантовых точек на поверхности оболочки. 11 з.п. ф-лы, 1 ил.

Изобретение относится к модифицированным частицам коллоидного диоксида кремния. Предложена модифицированная частица диоксида кремния, ковалентно связанная с по меньшей мере одним полиалкиленокси-фрагментом, имеющим по меньшей мере 3 алкиленокси-звена и концевую алкильную группу. Предложен также способ получения указанной частицы и содержащие указанные частицы композиция и водная дисперсия для использования в качестве эмульгатора и диспергатора. Технический результат - предложенные частицы можно получать промышленным способом, а их использование минимизирует воздействие на окружающую среду без снижения поверхностной активности или эмульгирующего эффекта частиц в дисперсии. 6 н. и 15 з.п. ф-лы, 4 ил., 4 табл., 19 пр.
Наверх