Способ управления током и устройство для его осуществления

Изобретение относится к области полупроводниковой электроники. Управление величиной тока в приборе с вертикальной структурой, содержащем проводящую область с n-типом проводимости (n-область), анод, который расположен на нижней стороне n-области, управляющий электрод, сформированный на верхней стороне n-области и образующий с ней барьер Шотки, и катод, расположенный на боковой поверхности n-области между анодом и управляющим электродом, осуществляется путем изменения площади и, следовательно, сопротивления омического контакта между катодом и n-областью. Прибор может содержать более одной единичной структуры, при этом соседние единичные структуры объединены в новую структуру с двумя катодами, единой n-областью с анодом и управляющим электродом. Изобретение позволяет повысить быстродействие и увеличить ток и выходную мощность прибора. 2 н. и 1 з.п. ф-лы, 5 ил.

 

Изобретение относится к области полупроводниковой микро- и наноэлектроники, а именно к приборам с полевым управлением, и может быть использовано в различных электронных устройствах и интегральных схемах, предназначенных для усиления, генерации и преобразования электрических сигналов.

В настоящее время в полупроводниковой электронике широко используются полевые транзисторы (ПТ), в которых применяется полевой способ управления величиной тока. В результате совершенствования технологии изготовления ПТ их характерные размеры существенно сократились, что находит свое отражение в смене названия микроэлектроники на наноэлектронику. Существуют различные типы ПТ [1-3], однако все они имеют характерную особенность: в ПТ управление значением тока стока осуществляется путем изменения сопротивления канала с помощью затвора, расположенного между истоком и стоком. В настоящее время ПТ работают на более высоких частотах, чем биполярные транзисторы, но и они имеют ряд ограничений. ПТ на сверхвысоких частотах (СВЧ) работают при небольших значениях ускоряющего напряжения, потому что между стоком и затвором возникает сильное электрическое поле, которое приводит к электрическому пробою. Кроме того, процессы, связанные с движением зарядов в канале, влияют на частотные свойства ПТ. Также на частотные свойства ПТ влияет проходная емкость, которая увеличивается при уменьшении расстояния между стоком и затвором.

Предлагаемый способ управления величиной тока в полупроводниковом приборе не имеет аналогов в электронике.

Техническим результатом предлагаемого изобретения являются повышение быстродействия и увеличение выходной мощности полупроводникового прибора.

Сущность изобретения заключается в том, что управление величиной тока в приборе с вертикальной структурой, содержащем проводящую область с n-типом проводимости (n-область), анод, расположенный на нижней стороне n-области, управляющий электрод (регулятор тока), расположенный на верхней стороне n-области и образующий с ней барьер Шотки, и катод, расположенный на боковой поверхности n-области между анодом и управляющим электродом, осуществляется путем изменения площади и, следовательно, сопротивления омического контакта между катодом и n-областью. Если обедненный слой барьера Шотки контактирует или частично перекрывает контакт катода с n-областью, то при увеличении обратного напряжения на управляющем электроде толщина обедненного слоя увеличивается, что приводит к уменьшению площади и, следовательно, увеличению сопротивления контакта катода с n-областью и уменьшению тока прибора. При полном перекрытии контакта катод отсекается от n-области обедненным слоем барьера Шотки, при этом ток прибора будет минимальным. Величина напряжения отсечки Uoтc зависит от длины контакта катода с n-областью, концентрации примеси, а также от характера распределения примеси вблизи катода.

Для изменения площади контакта могут быть использованы: барьер Шотки, структура металл - диэлектрик - полупроводник (изолированный управляющий электрод) или управляющий p-n-переход. Прибор может иметь планарную структуру, в которой все электроды расположены в горизонтальной плоскости.

Вертикальная структура обеспечивает возможность уменьшения длины контакта катода с n-областью. При уменьшении длины контакта уменьшаются значение напряжения отсечки Uoтc и время, необходимое для полного перекрытия контакта катода с n-областью, что позволяет повысить быстродействие прибора. Концентрация примеси вблизи катода и управляющего электрода может быть небольшой, потому что в приборе изменяется не сопротивление канала, а площадь контакта катода с n-областью. При низкой концентрации примеси в n-области толщина обедненного слоя увеличивается, а электрическое поле в нем уменьшается, поэтому возможно повысить величину ускоряющего напряжения на аноде прибора. Прибор может иметь только одну единичную структуру или содержать достаточно большое число единичных структур, что позволит увеличить ток и выходную мощность. Предлагаемый новый способ управления величиной тока анода в полупроводниковом приборе позволяет получить заявленный технический результат.

На фигуре 1 изображены возможный вариант прибора с единичной вертикальной структурой и барьером Шотки в плане и его продольное сечение, где 1 - подложка, 2 - область с n+-типом проводимости (анод прибора), 3 - вывод анода, 4 - область с n-типом проводимости, 5 - катод прибора, 6 - управляющий электрод. Между катодом прибора 5 и n-областью 4 осуществлен омический контакт, а между управляющим электродом 6 и n-областью 4 сформирован барьер Шотки. Обедненный слой барьера Шотки 7 частично перекрывает контакт катода 5 с n-областью 4. Катод прибора 5 совмещен с n-областью 4 с помощью диэлектрической пленки 8. Вывод анода 3 соединен с шиной 9, катод 5 - с шиной 10, а управляющий электрод 6 - с шиной 11. Шины 10 и 11 расположены на диэлектрической пленке 8, а шина 9 - на подложке 1.

На фигуре 2 изображены возможный вариант прибора с единичной вертикальной структурой и изолированным управляющим электродом 6 в плане и его продольное сечение, где 12 - окисел, изолирующий управляющий электрод 6 от области 4 с n-типом проводимости, 13 - обедненный слой, образующийся при подаче отрицательного напряжения на управляющий электрод. Обедненный слой 13 частично перекрывает контакт катода 5 с n-областью 4.

На фигуре 3 изображены возможный вариант прибора с единичной вертикальной структурой и управляющим p+-n-переходом в плане и его продольное сечение, где 14 - область с p+-типом проводимости, 15 и 16 - обедненные области (области пространственного заряда) в p+- и n-областях соответственно.

Обедненная область 16 частично перекрывает контакт катода 5 с n-областью 4.

На фигуре 4 изображены возможный вариант прибора с четырьмя единичными вертикальными структурами и барьерами Шотки в плане и его продольное сечение.

На фигуре 5 изображены поперечные сечения прибора с четырьмя единичными вертикальными структурами и барьерами Шотки.

Прибор с барьером Шотки (фигура 1) работает следующим образом. На анод прибора 2 подают положительное напряжение U0 относительно катода 5. На управляющий электрод 6 подают обратное напряжение и Uy также относительно катода 5. Ток в каждой единичной структуре будет протекать от анода до катода через n-область 4. Величина тока анода Ia при постоянных значениях U0 и Uy определяется сопротивлением n-области 4, а также сопротивлением омического контакта между катодом 5 и n-областью 4, которое зависит от площади этого контакта. При увеличении обратного напряжения Uy на управляющем электроде увеличивается толщина обедненного слоя, и если он контактирует с катодом или частично перекрывает контакт, то площадь контакта между катодом 5 и n-областью 4 будет уменьшаться, что приведет к увеличению сопротивления контакта и, следовательно, уменьшению тока анода Ia. Когда обедненный слой полностью перекроет контакт между катодом 5 и n-областью 4, ток анода Ia будет минимальным и его величина будет определяться сопротивлением обедненного слоя.

Толщина обедненного слоя барьера Шотки L . при равномерном распределении примеси в n-области может быть определена по известному выражению [3, с.39]:

L 0 = 2 ε ε 0 ( ϕ k + U y ) e N d ,

где ε - относительная диэлектрическая проницаемость полупроводника n-области, ε0=8,85-14 Ф/см - диэлектрическая проницаемость вакуума, φk - высота барьера Шотки, e=1,6·10-19 Кл - заряд электрона, Nd - концентрация донорной примеси в n-области, Uy - обратное напряжение на управляющем электроде. Отрицательный знак обратного напряжения на управляющем электроде учтен в формуле для L . , поэтому в тексте приводятся положительные значения напряжения отсечки Uoтc.

Для частного случая при Uy=0, Nd=1014 см-3, φk=0,8 В, ε=12 получим L . =3,3 мкм, а при Nd=1013 см-3 толщина обедненного слоя =10,3 мкм. Толщина обедненного слоя определяет возможную длину контакта катода с n-областью Dk. Минимальную длину контакта D . _ целесообразно выбирать равной приращению толщины обедненного слоя Δ L = L max L . , где L _ - максимальная толщина обедненного слоя при Uy=Uoтc. Если обедненный слой при Uy=0 контактирует с катодом, то в этом случае поверхность контакта катода с n-областью будет максимальной: F . _ = W k Δ L , где Wk - ширина катода. При этом ток прибора будет также максимальным. Для улучшения частотных свойств прибора длину контакта катода с n-областью целесообразно уменьшать, тогда будет уменьшаться Uoтc. Например, если Nd=1014 см-3, длина контакта Dk=5,5 мкм, то Uoтc=5 В, а при Dk=1 мкм напряжение отсечки изменится до Uoтc=0,6 В. Уменьшение напряжения отсечки позволяет работать при небольших значениях обратного напряжения Uy на управляющем электроде.

Максимальная длина контакта катода с n-областью D . _ должна быть меньше L _ , чтобы катод не касался управляющего электрода, но может быть больше ΔL. В этом случае при Uy=0 часть поверхности катода, равная Δ F k = W k ( D . _ Δ L ) , будет перекрыта от n-области обедненным слоем.

В общем случае Dk может быть меньше ΔL, тогда при Uy=0 обедненный слой барьера Шотки может не контактировать с катодом и при увеличении обратного напряжения Uy на управляющем электроде ток прибора вначале не изменится, его величина будет определяться значением ускоряющего напряжения U0, сопротивлением n-области и площадью контакта катода с n-областью. При некотором значении Uy обедненный слой достигнет катода, затем при дальнейшем увеличении Uy площадь контакта катода с n-областью будет уменьшаться, что приведет к увеличению сопротивления контакта и, следовательно, к уменьшению тока прибора.

Таким образом, изменяя напряжение на управляющем электроде, можно изменять величину тока прибора. При увеличении ширины катода и использовании более одной единичной структуры ток прибора будет увеличиваться. Для уменьшения сопротивления катода толщина его в средней части может быть больше, чем на краю, контактирующем с n-областью.

Если при Uy=0 обедненный слой полностью перекрывает контакт катода с n-областью, то в этом случае на управляющий электрод необходимо подавать небольшое прямое напряжение для уменьшения толщины обедненного слоя.

Приборы с изолированным управляющим электродом (фигура 2) и управляющим p+-n-переходом (фигура 3) работают аналогично. При подаче отрицательного напряжения на управляющий электрод толщина обедненного слоя в n-области будет увеличиваться, что приведет к уменьшению площади контакта катода с n-областью и тока прибора.

При использовании более одной единичной структуры в приборе (фигура 4) соседние единичные структуры объединены в новую структуру с двумя катодами 5, единой n-областью 4 с анодом 2 и управляющим электродом 6. Внутренние катоды контактируют обеими боковыми сторонами с n-областями новых соседних структур.

Прибор может быть изготовлен из кремния или из полупроводниковых материалов группы AIII BV, обладающих более высокой подвижностью электронов.

Предлагаемый способ управления величиной тока и полупроводниковый прибор с вертикальной структурой для его осуществления позволят:

- повысить быстродействие прибора;

- увеличить ток и выходную мощность при использовании более одной единичной структуры в приборе.

Источники информации

1. Базовые лекции по электронике. Том 2. // Твердотельная электроника: сборник под общ. ред. В.М. Пролейко. - М.: Техносфера, 2009. - С.76-77.

2. Зебров Г.И. Физические основы кремниевой наноэлектроники: учеб. пособие. - М.: БИНОМ. Лаборатория знаний, 2011. - С.159-163, 172-173.

3. Гуртов В.А. Твердотельная электроника: учеб. пособие. - 2-е изд., доп. - М.: Техносфера, 2005. - С.39, 194-195, 211-213, 235-243.

1. Способ управления током в полупроводниковом приборе с вертикальной структурой, содержащем анод, проводящую область с n-типом проводимости (n-область), катод и управляющий электрод, заключающийся в том, что в приборе формируют омические контакты между анодом и n-областью, катодом и n-областью, а между управляющим электродом и n-областью формируют обедненный слой, причем катод размещают между анодом и управляющим электродом.

2. Прибор с вертикальной структурой, содержащий анод, n-область, катод и управляющий электрод, причем анод расположен на нижней стороне n-области, управляющий электрод размещен на верхней стороне n-области, при этом между управляющим электродом и n-областью сформирован барьер Шотки, а катод расположен на боковой поверхности n-области между анодом и управляющим электродом, причем обедненный слой барьера Шотки контактирует с катодом.

3. Прибор по п.2, отличающийся тем, что при наличии более одной структуры в приборе катоды контактируют обеими боковыми сторонами с n-областями соседних структур.



 

Похожие патенты:

Изобретение относится к микроэлектронике, а именно к вертикальным полевым транзисторам с р-n переходом. .

Изобретение относится к криоэлектронике и может быть использовано при создании элементной базы сверхпроводниковой микроэлектроники, в частности полностью сверхпроводниковых интегральных схем.

Изобретение относится к полевым транзисторам и предназначено для работы в преобразователях частоты миллиметрового диапазона длин волн. .

Изобретение относится к полупроводниковым приборам, а более конкретно к полевым транзисторам с управляющим p-n-переходом (ПТУП). .

Изобретение относится к микроэлектронике, а именно к конструкции интегральных схем на основе полевых транзисторов. .

Изобретение относится к микроэлектронике, а именно к конструкции полевых транзисторов с управляющим p-n-переходом (ТПУП). .

Изобретение относится к микроэлектронике, а именно к конструкции полевых транзисторов с управляющим р-n-переходом (ПТУП). .

Изобретение относится к полупроводниковой электронике и может быть использовано в усилителях и генераторах несинусоидальной формы. .

Изобретение относится к электронной технике СВЧ. В мощном полевом транзисторе СВЧ на полупроводниковой гетероструктуре упомянутая гетероструктура выполнена в виде последовательности следующих основных слоев: по меньшей мере одного буферного слоя GaAs толщиной не менее 200 нм, группы проводящих слоев, формирующих канал полевого транзистора, в составе собственно канального слоя InyGa1-yAs толщиной 12-20 нм и по меньшей мере двух δn-слоев, легированных донорной примесью, и двух спейсерных i-слоев AlxGa1-xAs, толщиной каждый 1-3 нм, двух групп барьерных слоев AlxGa1-xAs, одна из которых расположена с одной стороны группы проводящих слоев - подложечная, другая - с противоположной стороны - затворная, при этом подложечная группа барьерных слоев выполнена в виде акцепторно-донорной p-i-δn системы барьерных слоев, затворная группа барьерных слоев - в виде донорно-акцепторной δn-i-p системы барьерных слоев, при этом в каждой группе барьерных слоев i-слой выполнен толщиной 0,5-10 нм, p-слой выполнен с уровнем легирования, обеспечивающим высоту потенциальных барьеров 0,4-0,8 ширины запрещенной зоны AlxGa1-xAs, δn-слой выполнен с избыточным уровнем легирования, обеспечивающим разницу поверхностной плотности донорной и акцепторной примеси равной (1-10)×1012 см-2. Технический результат - повышение выходной мощности и коэффициента усиления. 2 з.п. ф-лы, 2 ил, 1 табл.

Изобретение относится к электронной технике СВЧ. В мощном полевом транзисторе СВЧ на полупроводниковой гетероструктуре упомянутая полупроводниковая гетероструктура выполнена в виде последовательности следующих основных слоев, по меньшей мере, одного буферного слоя GaAs толщиной не менее 200 нм, группы проводящих слоев, формирующих канал полевого транзистора, в составе собственно канального слоя InyGa1-yAs толщиной 12-18 нм и, по меньшей мере, двух δn-слоев, легированных донорной примесью, и двух спейсерных i-слоев AlxGa1-xAs толщиной каждый 1-3 нм, попарно расположенных по обе стороны собственно канального слоя, двух групп барьерных слоев AlxGa1-xAs, каждая в виде i-p-i системы барьерных слоев, одна из которых расположена с одной стороны группы проводящих слоев - подложечная, другая - с противоположной стороны - затворная, при этом барьерные слои в каждой i-p-i системе имеют толщину (100-200, 4-15, 2-10) нм в подложечной, (2-10, 4-10, 4-15) нм в затворной соответственно, уровень легирования акцепторной примесью (4-20)×1018 см-2 соответственно, барьерного слоя i-GaAs толщиной 5-30 нм, слоя омического контакта n+-GaAs толщиной (10-60) нм электродов истока и стока, при этом электрод затвора выполнен длиной не более 0,5 мкм. Технический результат - повышение выходной мощности и коэффициента усиления. 2 з.п. ф-лы, 2 ил., 1 табл.

Изобретение относится к области полупроводниковой электроники. В полупроводниковом полевом регуляторе тока, содержащем анод с n+-типом проводимости, катод также с n+-типом проводимости, проводящую область с n-типом проводимости между анодом и катодом, а также управляющий электрод, причем все электроды расположены в горизонтальной плоскости, при этом катод размещен между анодом и управляющим электродом ближе к управляющему электроду, между управляющим электродом и n-областью сформирован обедненный слой, управление величиной тока осуществляется путем изменения площади и, следовательно, сопротивления контакта между катодом и n-областью на участке между катодом и управляющим электродом. Прибор может содержать одну или более единичных структур. Изобретение позволяет упростить конструкцию и технологию изготовления прибора, повысить быстродействие и увеличить ток и выходную мощность. 2 з.п. ф-лы, 4 ил.

Изобретение относится к электронной технике СВЧ, а именно к мощным полевым транзисторам на полупроводниковой гетероструктуре. В мощном полевом транзисторе СВЧ на полупроводниковой гетероструктуре, содержащем полупроводниковую подложку и последовательность по меньшей мере одного слоя широкозонного и одного слоя узкозонного материала полупроводниковой гетероструктуры с заданными характеристиками и электроды истока, затвора, стока, выполненные согласно заданной топологии полевого транзистора, упомянутая полупроводниковая гетероструктура выполнена в виде последовательности по меньшей мере одного буферного слоя GaAs, группы проводящих слоев, формирующих канал полевого транзистора, в составе собственно канального слоя InyGa1-yAs по меньшей мере двух дельта-легированных донорной примесью δn-слоев и двух не легированных примесью спейсерных i-слоев AlxGa1-xAs, попарно расположенных по обе стороны собственно канального слоя, двух групп барьерных слоев AlxGa1-xAs, каждая в виде системы барьерных слоев, одна из которых расположена с одной стороны группы проводящих слоев - подложечная, другая - с противоположной стороны - затворная, при этом подложечная группа барьерных слоев выполнена в виде акцепторно-донорной i-p-i-δn системы барьерных слоев AlxGa1-xAs, затворная группа барьерных слоев - в виде донорно-акцепторной δn-i-p-i системы барьерных слоев AlxGa1-xAs, при этом прилегающий δn-слой, легированный донорной примесью, каждой группы барьерных слоев является одновременно δn-слоем, легированным донорной примесью, для соответствующей группы проводящих слоев, электрод затвора выполнен планарно на наружном не легированном примесью i-слое AlxGa1-xAs затворной группы барьерных слоев, либо планарно в любом другом возможном слое полупроводниковой гетероструктуры выше последнего, электроды истока и стока выполнены каждый в соответствующем дополнительно сформированном углублении в полупроводниковой гетероструктуре, при этом дно каждого упомянутого углубления расположено вровень с нижней границей легированного акцепторной примесью р-слоя затворной группы барьерных слоев либо ниже в любом другом слое полупроводниковой гетероструктуры вплоть до полупроводниковой подложки. Технический результат изобретения - повышение выходной мощности, коэффициента усиления и коэффициента полезного действия. 3 з.п. ф-лы, 3 ил., 1 табл.
Наверх