Способ определения степени повреждения силосного корпуса элеватора из сборного железобетона

Изобретение относится к пищевой и мукомольно-элеваторной промышленности и используется для оценки степени повреждения швов наружного силоса элеватора из сборного железобетона. Согласно заявленному способу устанавливают тепловизионное устройство с чувствительностью ±0,1°С и длиной волны 2-12 мкм на расстоянии 1-100 м от поверхности элеватора под углом не более 20° при положительной температуре наружного воздуха и разности температур внутри и снаружи силоса не менее 4°С. Далее осуществляют тепловизионную съемку наружной поверхности силосного корпуса. Затем результаты тепловизионной съемки обрабатывают на компьютере и получают термографический отчет, по которому устанавливают максимальную и минимальную температуру на поверхности наружных стен силосного корпуса элеватора и вычисляют разность указанных температур. Устанавливают место и степень повреждения швов наружного силоса элеватора по приведенной методике. Технический результат: повышение точности и информативности получаемой информации о дефектах швов наружного силоса элеватора из сборного железобетона.

 

Изобретение относится к пищевой и мукомольно-элеваторной промышленности и используется для оценки степени повреждения швов наружного силоса элеватора из сборного железобетона.

Известен способ определения наличия повреждений по водонепроницаемости наружных стен сборных железобетонных силосов с помощью искусственного дождевания, предусматривающий поверхностное орошение наружных стен силоса водой со свободным отеканием воды по стенке силоса и установление места повреждения по протеканию воды с внутренней стороны. Дождевание проводится захватками шириной 2 м. Испытанию одновременно подвергаются вертикальные и горизонтальные стыки расположенные в зоне захватки. Захватка включает одну полосу вертикальных стыков шириной 0,5 м и полосу горизонтальных стыков шириной 1,5 м. Испытаниям подвергаются 20% силосов, расположенных по периметру корпуса («Временная методика производственных испытаний на водопроницаемость стен сборных железобетонных силосов» ЦНИИЭПсельстрой, ЦНИИПромзернопроект, НИИМосстроя. - М.: 1977.)

К недостаткам известного способа относятся:

- громоздкость конструкции;

- необходимость большого количества водных ресурсов;

- значительные затраты ручного труда на перемещение захватки (трудоемкость) и необходимость проведения высотных работ, опасных для жизни;

- длительность проведения испытания (5-7 суток);

- субъективность оценки факта протечки;

- недостаточно высокая точность, т.к. невозможно количественно оценить степень повреждения.

Технический результат изобретения заключается в повышении точности определения степени повреждения элеватора, сокращении длительности проведения испытания и снижении трудоемкости.

Для достижения указанного технического результата способ определения степени повреждения силосного корпуса элеватора из сборного железобетона, характеризующийся тем, что устанавливают тепловизионное устройство с чувствительностью ±0,1°С и длиной волны 2-12 мкм на расстоянии 1-100 м от наружной поверхности силосного корпуса элеватора под углом не более 20° при положительной температуре наружного воздуха и разности температур внутри и снаружи силоса не менее 4°С, осуществляют тепловизионную съемку исследуемой поверхности, получают термографический отчет (термограмму), по которому устанавливают максимальную и минимальную температуру на поверхности наружных стен силосного корпуса элеватора и по разности указанных температур определяют место и степень повреждения швов наружного силоса элеватора.

Сущность способа заключается в следующем.

Силосные корпуса из сборного железобетона имеют квадратное сечение силосов, стены которых монтируют из объемных блоков, располагаемых в шахматном порядке, и плоских панелей. При эксплуатации силосов вследствие воздействия неблагоприятных факторов появляются горизонтальные трещины в стыках и разрушения вертикальных швов, что снижает водонепроницаемость стен силосов. Вода, проникающая через стыки, ухудшает санитарно-гигиенические условия, вызывает усиленную коррозию арматуры, разрушение стыков и самих блоков при низких температурах, вследствие чего сокращается срок службы здания. Установление места повреждения наружных стен силоса, степени его повреждения позволяет определить необходимость проведения работ по герметизации дефектных швов, а также спрогнозировать объем и время наступления таких работ в будущем.

С целью повышения точности, сокращения длительности проведения испытания и снижения трудоемкости место и степень повреждения силосного корпуса элеватора из сборного железобетона устанавливают по разнице максимальной и минимальной температуры на поверхности наружных стен силосного корпуса элеватора, измеряемых тепловизионным устройством, действие которого основано на измерении инфракрасного излучения объектов и преобразовании его в видимое изображение. Уровень инфракрасного излучения зависит от температуры поверхности объекта и от его излучательной способности. Это позволяет камере через формулу рассчитать и отобразить такую температуру.

Для определения степени повреждения силосного корпуса элеватора из сборного железобетона устанавливают тепловизионное устройство с чувствительностью ±0,1°С и длиной волны 2-12 мкм на расстоянии 1-100 м от поверхности элеватора под углом не более 20°. При этом температура наружного воздуха должна быть положительная, а разница внутренней и наружной температур стен пустого силоса должна быть не менее 4°С, улучшая тем самым, условия обнаружения и выявления участков ограждающих конструкций, обладающих пониженными изолирующими свойствами. При превышении угла наклона тепловизионного устройства более 20° происходит изменение коэффициента излучения, и как следствие возрастание погрешности измерения температурного поля. С увеличением расстояния до объекта измерения более чем на 100 м ухудшается детальность осмотра и искажаются истинные значения температуры. При чувствительности тепловизионного устройства более ±0,1°С и длины волны, выходящей за диапазон 2-12 мкм, снижается точность измерений.

Далее осуществляют тепловизионную съемку наружной поверхности силосного корпуса. Термографирование наружных стен силосного корпуса можно ограничить общим панорамным снимком, охватывающим всю стену, если невозможно произвести его покадровую съемку из-за малого доступного расстояния до этого объекта.

Обнаружение скрытых дефектов основано на использовании принципа сравнения текущей зоны контроля с эталонной (бездефектной) зоной и определение ее теплотехнических характеристик. Эталонная зона указывается из технологических соображений или определяется в ходе тепловизионного осмотра. При этом тепловизор (инфракрасный сканер) используют для измерения поверхностной температуры.

Затем результаты тепловизионной съемки обрабатывают на компьютере и получают термографический отчет (термограмму), по которому устанавливают максимальную и минимальную температуру на поверхности наружных стен силосного корпуса элеватора и вычисляют разность указанных температур.

Экспериментально установлено, что при герметичных швах вся наружная поверхность стены силоса должна находится в интервале температур от 1 до 2°С и степень повреждения при этом составляет от 0 до 5%, обусловленная разными коэффициентами излучения герметизирующего раствора и бетонной поверхностью согов, поскольку температура воздуха внутри силоса отличается от температуры снаружи. В случае не герметичности швов, воздух с более низкой температурой изнутри сога проникает на наружную поверхность шва и понижает его температуру. При таких условиях интервал температур увеличивается от 3°С и выше с характерной степенью повреждения швов от 25 до 75%. Опытным путем также установлено, что интервал температур с разницей в 4°С свидетельствует о значительной (практически полной) разгерметизации швов и возможности проникновения в силос атмосферной влаги, и как следствие необходимости проведения работ по герметизации дефектных швов.

Далее устанавливают место и степень повреждения швов наружного силоса элеватора по следующим признакам:

Разница максимальной и минимальной температуры на поверхности наружных стен силосного корпуса Количественная характеристика степени повреждения швов наружного Качественное состояние швов (стыков) наружного силоса элеватора
элеватора, °С силоса элеватора, %
от 1 до 2 0-5 Хорошее (нет повреждений)
от 2 до 3 5-25 удовлетворительное (начало процесса разгерметизации)
от 3 до 4 25-75 глубоко развившийся процесс разгерметизации швов
от 4 и выше 75-100 полная разгерметизация швов и как следствие необходимость проведения работ по их герметизации

Место повреждения силосного корпуса элеватора устанавливают по термограмме на участке с наружной температурой поверхности наружных стен силоса ниже их максимальной температуры на этой же термограмме более, чем на 2°С.

Предлагаемое изобретение поясняется на следующих примерах.

Пример 1. Напротив стены силосного корпуса элеватора устанавливают тепловизионное устройство с чувствительностью ±0,1°С и длиной волны 2-12 мкм на расстоянии 50 м от поверхности элеватора под углом 3° при температуре наружного воздуха 23°С и разности температур внутри и снаружи силоса 7°С. Осуществляют тепловизионную съемку, результаты обрабатывают на компьютере и получают термографический отчет, по которому устанавливают максимальную и минимальную температуру на поверхности наружных стен силосного корпуса элеватора, составляющие 21,9 и 20,3°С соответственно. Из полученных результатов вычисляют разность указанных температур - 1,6°С. Затем устанавливают место и степень повреждения швов наружного силоса элеватора по заявленным признакам. Делают вывод об отсутствии места повреждения, хорошем состоянии швов наружного силоса элеватора и, что степень их повреждения не превышает 5%. Это свидетельствует о хорошей герметичности швов.

Пример 2. Напротив стены силосного корпуса элеватора устанавливают тепловизионное устройство с чувствительностью ±0,1°С и длиной волны 2-12 мкм на расстоянии 25 м от поверхности элеватора под углом 5° при температуре наружного воздуха 24°С и разности температур внутри и снаружи силоса 8°С. Осуществляют тепловизионную съемку, результаты обрабатывают на компьютере и получают термографический отчет, по которому устанавливают максимальную и минимальную температуру на поверхности наружных стен силосного корпуса элеватора, составляющие 21,8 и 19,1°С соответственно. Из полученных результатов вычисляют разность указанных температур - 2,7°С. Затем устанавливают место и степень повреждения швов наружного силоса элеватора по заявленным признакам. Место повреждения силоса устанавливают по термограмме на участке с его наружной температурой 19,1°С, которая ниже максимальной более, чем на 2°С. Делают вывод об удовлетворительном состоянии швов наружного силоса элеватора и, что степень их повреждения не превышает 25%. Такое температурное поле свидетельствует об ослаблении герметизации швов, но не достигшего критического значения.

Пример 3. Напротив стены силосного корпуса элеватора устанавливают тепловизионное устройство с чувствительностью ±0,1°С и длиной волны 2-12 мкм на расстоянии 25 м от поверхности элеватора под углом 5° при температуре наружного воздуха 25°С и разности температур внутри и снаружи силоса 12°С. Осуществляют тепловизионную съемку, результаты обрабатывают на компьютере и получают термографический отчет, по которому устанавливают максимальную и минимальную температуру на поверхности наружных стен силосного корпуса элеватора, составляющие 14,1 и 23,0°С соответственно. Из полученных результатов вычисляют разность указанных температур - 8,9°С. Затем устанавливают место и степень повреждения швов наружного силоса элеватора по заявленным признакам. Место повреждения силоса устанавливают по термограмме на участке с его наружной температурой 14,1°С, которая ниже максимальной более, чем на 2°С. Делают вывод о полной разгерметизации швов наружного силоса элеватора и, что степень их повреждения составляет более 75%.

Таким образом, изобретение позволяет повысить точность, сократить длительность, снизить трудоемкость способа определения степени повреждения наружных стен силоса элеватора из сборного железобетона, а также оценить ее количественно.

Способ определения степени повреждения силосного корпуса элеватора из сборного железобетона, характеризующийся тем, что устанавливают тепловизионное устройство с чувствительностью ±0,1°С и длиной волны 2-12 мкм на расстоянии 1-100 м от наружной поверхности силосного корпуса элеватора под углом не более 20° при положительной температуре наружного воздуха и разности температур внутри и снаружи силоса не менее 4°С, осуществляют тепловизионную съемку исследуемой поверхности, получают термографический отчет (термограмму), по которому устанавливают максимальную и минимальную температуру на поверхности наружных стен силосного корпуса элеватора и по разности указанных температур определяют место и степень повреждения швов наружного силоса элеватора.



 

Похожие патенты:

Изобретение относится к способам теплового контроля герметичности и может быть использовано для контроля герметичности крупногабаритных сосудов, например котлов железнодорожных цистерн.

Изобретение относится к способам воспроизведения аэродинамического теплового воздействия на обтекатель ракеты в наземных условиях и может быть использовано при наземных испытаниях элементов летательных аппаратов.

Изобретение относится к области неразрушающего контроля и может быть использовано при диагностике неразъемных соединений, в частности для контроля качества паяных соединений камер сгорания и сопел жидкостных ракетных двигателей.

Изобретение относится к области измерительной техники и может быть использовано для технической диагностики неоднородных конструкций. Устройство для определения сопротивления теплопередачи многослойной конструкции включает датчики температуры и теплового потока и тепловизионное устройство.

Изобретение относится к области неразрушающего контроля материалов и может быть использовано для контроля скрытых дефектов. Согласно заявленному способу активного одностороннего теплового контроля скрытых дефектов в твердых телах нагревают одну из поверхностей объекта контроля в течение фиксированного времени оптическим излучением источника нагрева и регистрируют нестационарное температурное поле этой поверхности в виде последовательности термограмм.

Изобретение относится к области измерительной техники и может быть использовано для оценки надежностей конструкций из полимерных композиционных материалов. Способ включает силовое воздействие на поверхность конструкции и регистрацию обусловленных им изменений.

Использование: для неразрушающего контроля качества поверхностного слоя металла. Сущность: заключается в том, что используют две группы одинаково нагретых электродов из одного материала, устанавливают одну группу нагреваемых электродов на контролируемое изделие, а другую па эталонный образец, измеряют разностную термоЭДС, возникающую при контакте первой группы нагреваемых электродов с контролируемым изделием и второй группы нагреваемых электродов с эталоном, о качестве поверхностного слоя судят по ее величине, при этом сначала измеряют температуру контролируемого изделия, используя которую изменяют температуру групп нагреваемых электродов таким образом, чтобы используемая при измерении термоЭДС разностная температура между первой группой нагреваемых электродов и контролируемым изделием, а также между второй группой нагреваемых электродов и эталоном оставалась одинаковой при любых колебаниях температуры контролируемого изделия и эталона, после чего измеряют разностную термоЭДС.

Изобретение относится к области управления промышленной безопасностью и технической диагностики, в частности к контролю напряженно-деформированного состояния таких объектов, как сосуды, аппараты, печи, строительные конструкции, трубопроводы, находящихся под действием механических и/или термомеханических нагрузок, с использованием анализа распределения температурных полей на поверхности объекта и связанного с ними распределения механических напряжений.
Изобретение относится к области исследования качества деталей с гальваническими покрытиями, в частности к оценке степени газосодержания поверхностей деталей с защитными гальваническими покрытиями.

Изобретение относится к области измерительной техники, в частности к тепловому неразрушающему контролю объектов, и может быть использовано для технической диагностики неоднородных конструкций, например зданий и сооружений, по сопротивлению теплопередаче.

Изобретение относится к области измерительной техники, в частности к тепловому неразрушающему контролю объектов, и может быть использовано для определения теплового сопротивления и теплопроводности строительных конструкций. Согласно заявленному способу определения теплопроводности и теплового сопротивления строительной конструкции на сторонах строительной конструкции 1 устанавливают теплоизолированные нагревательные элементы 2, 3. С помощью нагревательных узлов 8, 9 и систем термостабилизации 10, 11 стороны конструкции 1 термостатируются при температурах Т1 и Т2 в течение времени τ. Время τ определяется по формуле τ=4·105·h2, где h - толщина конструкции 1. По истечении времени τ датчиками теплового потока 6 и 7 измеряют тепловые потоки q1 и q2 через строительную конструкцию. Далее определяют теплопроводность λ материала конструкции по формуле λ = ( q 1 + q 2 ) ⋅ h 2 ⋅ ( T 1 − T 2 )                             ( 1 ) , а тепловое сопротивление R - по формуле R = 2 ⋅ ( T 1 − T 2 ) q 1 + q 2                             ( 2 ) . Технический результат - повышение точности данных исследований. 5 ил.
Изобретение относится к области стендовых тепловых испытаний и может быть использовано для диагностики характеристик термопрочности и термостойкости эксплуатируемых металлов. Сущность предложенного изобретения заключается в том, что способ тепловых испытаний материалов и изделий включает размещение и регулировку положения нагревателей относительно поверхностей объекта до их облучения, а в процессе облучения поверхностей объекта по результатам контроля температурными датчиками параметров теплового воздействия осуществляют управление ими. Согласно изобретению нагреватели размещают набором отдельных модулей относительно облучаемых поверхностей объекта до их облучения, а в процессе облучения параметрами теплового воздействия их положение регулируют как индивидуально, так и взаимным расположением отдельных модулей. При этом осуществляют контролируемые и управляемые воздействия силовыми и динамическими нагрузками, а также воздействие окислительной средой на облучаемые поверхности объекта. Технический результат - повышение достоверности результатов диагностики. 3 з.п. ф-лы.

Заявленное изобретение относится к космической технике и может быть использовано для контроля теплообмена космического аппарата. Указанное устройство выполнено из сборок, в каждой из которых чувствительный элемент размещен на электроизолирующей подложке. Указанные сборки выполнены в виде установленных в параллельных плоскостях напротив друг друга n панелей (где: n>=2), скрепленных между собой и закрепленных посредством нитей в рамке-каркасе. В каждой панели чувствительный элемент прикреплен с тепловым контактом к тонкостенной пластине. Панели установлены с зазором между соседними панелями с помощью точечных контактов. Также заявлен способ измерения плотности падающих тепловых потоков при наземных тепловакуумных испытаниях космических аппаратов, основанный на измерении значений температур на тепловых приемниках, в котором производят непрерывное измерение по времени температуры Тл и Тт для расположенных в параллельных плоскостях лицевой и тыльной тонкостенных панелей. Определяют значения градиентов для Тл и Тт и фиксируют квазистационарное тепловое состояние устройства. При достижении значений градиентов ∂T/∂τ≤1°/ч фиксируют конечные значения температуры, с учетом которых определяют плотности падающих тепловых потоков. Технический результат - повышение точности данных испытаний. 2 н.п. ф-лы, 5 ил.

Изобретение относится к области тепловых испытаний и может быть использовано при наземных испытаниях элементов летательных аппаратов. Способ тепловых испытаний керамических обтекателей ракет включает нагрев и контроль температуры обтекателя в зоне узла соединения керамической оболочки со шпангоутом. Нагреву до заданной температуры подвергается металлический шпангоут изнутри обтекателя с одновременным контролем температуры шпангоута. Технический результат - повышение достоверности результатов испытаний. 1 ил.

Изобретение относится к области измерительной техники и может быть использовано для оценки надежности сложных пространственных конструкций из полимерных композиционных материалов (ПКМ) на основе результатов теплового контроля при нагружении изделий статической или динамической нагрузкой. Способ включает регистрацию пространственной термограммы объекта контроля и ее обработку для обнаружения дефектов. Одновременно с регистрацией пространственной термограммы осуществляют регистрацию видеоизображения объекта контроля для уточнения его местоположения. Устройства регистрации термограмм и регистрации видеоизображения располагают перед объектом контроля с возможностью совмещения полей обзора объекта контроля. Видеоизображение объекта контроля регистрируют в тех же пространственных координатах, что и термограмму. Строят матрицу совмещенной термограммы и осуществляют обработку ее элементов для получения информации о состоянии объекта. Система включает устройство регистрации термограмм, устройство регистрации видеоизображения, блок визуализации и обработки термограмм, коммутатор, счетчик сигналов, инвертор сигналов, первый и второй сумматоры, пороговое устройство и блок формирования матрицы сигналов. Технический результат заключается в повышении достоверности обнаружения локальных участков пониженной прочности, повышении достоверности результатов оценки технического и эксплуатационного состояния сложных конструкций и их элементов из ПКМ. 2 н. и 5 з.п. ф-лы, 5 ил.

Изобретение относится к области неразрушающего контроля и может быть использовано для идентификации близких к поверхности дефектов в контролируемом объекте. Согласно заявленному термографическому способу область поверхности контролируемого объекта нагревают, например, индуктивно. Далее регистрируют последовательность следующих друг за другом с временным интервалом термографических изображений в пределах фазы распространения тепла. Каждое термографическое изображение представляет локальное распределение температуры в зарегистрированной термографическим изображением области поверхности контролируемого объекта. Из термографических изображений определяют расположенные в правильном позиционном положении температурные профили. Каждый расположенный в правильном позиционном положении температурный профиль относится к одной и той же области измерений поверхности контролируемого объекта. Для множества зарегистрированных температурными профилями позиций измерений в области измерений из температурных профилей определяют процесс изменения во времени температурных значений. Их оценивают по меньшей мере по одному из критериев оценки, характеризующему тепловой поток в области измерений. Также заявлена термографическая контрольная установка, реализующая указанный способ. Технический результат - повышение четкости разделения действительных дефектов и псевдодефектов. 2 н. и 8.з.п. ф-лы, 11 ил.

Изобретение относится к экспериментальной технике и может быть использовано для теплопрочностных статических испытаний конструкций летательных аппаратов, в частности к средствам, обеспечивающим воспроизведение нестационарных температурных полей в испытываемых конструкциях воздушно-космических самолетов (ВКС). Блок-имитатор температурных полей содержит инфракрасные ламповые излучатели и рефлектор. Корпус рефлектора изготовлен из установленных на стальной плите охлаждаемых водой стальных труб прямоугольного сечения. К облучаемой поверхности труб прикреплены отражатели в виде пластин, изготовленных из никеля и имеющих золотое покрытие. Причем пластины установлены так, что между ними образованы щели, через которые проходят струи воздуха, обдувающие кварцевые колбы излучателей и испытываемый объект. Технический результат - повышение достоверности воспроизведения в объекте испытаний нестационарных температурных полей, возникающих в нем при последовательном воздействии глубокого охлаждения и аэродинамического высокотемпературного нагревания. 3 ил.
Изобретение относится к космической технике и может быть использовано при наземных тепловакуумных испытаниях бортовой радиоэлектронной аппаратуры (РЭА) негерметичных космических аппаратов (КА). Предложен способ измерения тепловых полей электрорадиоизделий, включающий использование интегрированных программных средств и стенда тепловакуумных испытаний. Температуру поверхности прибора измеряют с помощью термодатчиков вблизи контрольных точек. Одновременно измеряют температуру всей поверхности панели или блока радиоэлектронной аппаратуры с установленными электронными компонентами с помощью тепловизионной измерительной системы через иллюминатор, обладающий высокой степенью пропускания излучения в инфракрасном диапазоне, с записью информации в цифровом виде. Технический результат - повышение точности получаемых данных.
Изобретение относится к тепловым способам неразрушающего контроля и диагностики дефектов в стенках элементов конструкции и может быть использовано для дефектоскопии различных объектов. Способ включает подготовку двух эталонных образцов, имеющих участок, идентичный по материалу и по размерам проверяемому участку поверхности элемента конструкции. На этом участке первый эталонный образец не имеет дефектов, а на внутреннюю или внешнюю поверхность второго эталонного образца наносят ступенчато увеличивающиеся по глубине дефекты. Их размеры вводят в банк данных компьютера. Наружные поверхности проверяемого элемента конструкции, первого и второго эталонных образцов зачищают и наносят покрытие с равномерным и высоким коэффициентом излучения. Первый и второй эталонные образцы и проверяемый участок элемента конструкции подвергают тепловому воздействию в выбранном режиме. Через выбранные интервалы времени проводят регистрацию интенсивностей ИК излучения наружных поверхностей проверяемых участков и записывают в банк данных компьютера. Далее вычисляют сначала разности интенсивностей ИК излучения для соответствующих выбранных интервалов времени для первого и второго эталонных образцов, а затем разности для проверяемого элемента конструкции и второго эталонного образца с последующим их сравнением. Технический результат - повышение точности получаемых данных.

Изобретение относится к измерительной технике и может быт использовано при испытаниях изделий на термическую стойкость. Заявлен способ испытаний полых изделий на термостойкость, заключающийся в нагреве изделия изнутри и охлаждении снаружи. Согласно изобретению внутрь изделия помещают нагреватель из теплоемкого материала, а изделие с нагревателем помещают в заполненную инертным газом капсулу из жаростойкого материала. Капсулу с изделием герметизируют, после чего полученную сборку нагревают до температуры не более допустимой температуры капсулы и осуществляют выдержку при указанной температуре до состояния выравнивания температуры всех составляющих изделия. Затем сборку охлаждают до заданной температуры с заданной скоростью, изделие извлекают из капсулы, а о термостойкости изделия судят по наличию в нем дефектов сверх допустимых величин. Технический результат - повышение достоверности получаемых результатов. 2 з.п. ф-лы, 2 ил.
Наверх