Упругодемпферная опора ротора турбомашины


 


Владельцы патента RU 2525373:

Открытое акционерное общество "Уфимское моторостроительное производственное объединение" ОАО "УМПО" (RU)

Изобретение относится к области турбомашиностроения, а именно к конструкции упругодемпферных опор роторов турбомашин. Техническим результатом, достигаемом при использовании заявленной упругодемпферной опоры ротора турбомашины, является снижение напряжений в упругом элементе опоры и, как следствие, снижение вероятности ее разрушения в случае возникновения дефекта подшипника опоры ротора при работе турбомашины в несколько раз. Указанный технический результат достигается тем, что в упругодемпферной опоре ротора турбомашины, содержащей радиальный подшипник, установленный на валу, статорный элемент и закрепленную на наружном кольце радиального подшипника обечайку, соединенную со статорным элементом посредством упругого кольцевого элемента и образующую с ним демпфирующую полость, упругий кольцевой элемент выполнен в виде гофрированной втулки, гофры которой направлены перпендикулярно продольной оси вала. 1 ил.

 

Изобретение относится к области турбомашиностроения, а именно к конструкции упругодемпферных опор роторов турбомашин.

Известна упругодемпферная опора ротора турбомашины, содержащая радиальный подшипник, установленный на валу, статорный элемент и закрепленную на наружном кольце подшипника обечайку, соединенную со статорным элементом посредством разрезной втулки и образующую с ним демпфирующую полость (RU №2265728, опубл. 10.12.2005).

В известной опоре необходимая жесткость конструкции обеспечивается геометрическими параметрами разрезной втулки, а именно длиной и поперечным сечением балочек, образованных продольными прорезями. В такой конструкции радиусы скруглений балочек являются концентраторами напряжений, особенно в случае восприятия опорой крутящего момента, направленного по оси двигателя. Такая дополнительная нагрузка, возникающая при дефекте подшипника опоры ротора в виде подклинки тел качения, передается с ротора на статор, что приводит к мгновенному разрушению опоры.

Задачей заявленного изобретения является повышение надежности упругодемпферной опоры в процессе эксплуатации.

Техническим результатом, достигаемым при использовании заявленной упругодемпферной опоры ротора турбомашины, является снижение напряжений в упругом элементе опоры при действии на нее описанной выше дополнительной нагрузки, и, как следствие, снижается вероятность ее разрушения в случае возникновения дефекта подшипника опоры ротора при работе турбомашины в разы.

Указанный технический результат достигается тем, что в упругодемпферной опоре ротора турбомашины, содержащей радиальный подшипник, установленный на валу, статорный элемент и закрепленную на наружном кольце радиального подшипника обечайку, соединенную со статорным элементом посредством упругого кольцевого элемента и образующую с ним демпфирующую полость, согласно заявленному изобретению, упругий кольцевой элемент выполнен в виде гофрированной втулки, гофры которой направлены перпендикулярно продольной оси вала.

Выполнение упругого кольцевого элемента в виде гофрированной втулки без прорезей позволяет достичь вышеприведенного технического эффекта за счет того, что отсутствие прорезей, которые являлись концентраторами напряжений, снижает значения напряжений от описанной выше дополнительной нагрузки, тем самым снижая вероятность разрушения упругого элемента в опоре ротора турбомашины в разы. При этом функциональность, то есть необходимая радиальная податливость упругого элемента, достигается за счет геометрических параметров гофрированной втулки.

На чертеже представлен продольный разрез упругодемпферной опоры с упругим элементом в виде гофрированной втулки.

Упругодемпферная опора ротора турбомашины содержит радиальный подшипник 1, установленный на валу 2, статорный элемент 3 и закрепленную на наружном кольце радиального подшипника обечайку 4, соединенную со статорным элементом 3 посредством упругого кольцевого элемента 5 и образующую с ним демпфирующую полость 6, ограниченную уплотнениями 7, 8. При этом упругий кольцевой элемент 5 выполнен в виде гофрированной втулки, гофры которой направлены перпендикулярно продольной оси вала 2.

Во время работы турбомашины в демпфирующую полость 6 подается под давлением масло. При колебаниях вала 2 происходит смещение обечайки 4 относительно статорного элемента 3 и масло перетекает из области с повышенным давлением в область с более низким давлением, вследствие чего происходит демпфирование колебаний ротора. Максимальная величина смещения обечайки 4 относительно статорного элемента 3 ограничивается радиальными зазорами между уплотнениями 7 и 8 и статорным элементом 3, обеспечивающими допустимые напряжения в гофрированной втулке 5.

Упругий элемент 5, выполненный в виде гофрированной втулки, необходим для получения необходимой жесткости опоры за счет своих геометрических параметров, что позволяет отстроить с рабочих режимов критические частоты вала 2.

В случае увеличения трения в радиальном подшипнике 1 или заклинки тел качения в гофрированной втулке 5 возникают дополнительные касательные напряжения, которые суммируются с напряжениями, возникающими от действия радиальной силы, приходящей с радиального подшипника 1, что при отсутствии концентраторов напряжений в виде прорезей, как в разрезной втулке подобной жесткости, в разы увеличивает прочность упругого элемента 5 опоры вала 2 и снижает вероятность его разрушения при возникновении дефектов в радиальном подшипнике во время работы турбомашины.

Упругодемпферная опора ротора турбомашины, содержащая радиальный подшипник, установленный на валу, статорный элемент и закрепленную на наружном кольце радиального подшипника обечайку, соединенную со статорным элементом посредством упругого кольцевого элемента и образующую с ним демпфирующую полость, отличающаяся тем, что упругий кольцевой элемент выполнен в виде гофрированной втулки, гофры которой направлены перпендикулярно продольной оси вала.



 

Похожие патенты:

Способ технического обслуживания газотурбинного двигателя, включает разборку его подшипникового отсека и осуществление доступа из передней части газотурбинного двигателя к редуктору, находящемуся в подшипниковом отсеке.

Газотурбинный двигатель содержит опору центрального узла, узел зубчатой передачи и гибкую опору. Опора центрального узла образует внутреннюю кольцевую стенку для осевого контура и содержащую первые элементы шлицевого соединения.

Изобретение относится к области турбомашиностроения, а именно к конструкции упругодемпферных опор роторов турбомашин. Техническим результатом, достигаемым при использовании заявленной упругодемпферной опоры ротора турбомашины, является существенное снижение напряжений в балочках разрезной втулки при возникновении дефекта подшипника опоры ротора в виде подклинки тел качения и, как следствие, повышение надежности и долговечности опоры.

В упругодемпферной опоре турбомашины щелевая масляная полость разделена уплотнительными кольцами на глухую демпферную щелевую полость, расположенную с внешней стороны от подшипника, и жиклерную щелевую полость, расположенную с внешней стороны от масляного жиклера между диском турбомашины и демпферной полостью.

Изобретение относится к турбомашине, имеющей корпус, вал ротора с установленным, по меньшей мере, одним лопастным колесом, подшипниковый узел, имеющий, по меньшей мере, один активный магнитный подшипник, по меньшей мере, один датчик зазора и контроллер, подключенный к датчику зазора для управления активным магнитным подшипником, в которой для определения положения при помощи датчиков зазора на валу ротора выполнена контрольная поверхность, взаимодействующая с датчиком зазора.

Изобретение относится к области машиностроения, а именно к подшипниковым узлам турбокомпрессора. Подшипник включает моновтулку с центральным маслоподводящим каналом и маслораспределительной полостью, на концах которой выполнены опорные пояски.

Изобретение относится к двум подшипниковым устройствам из магнитного радиального и поддерживающего подшипников для бесконтактного опирания и поддержания вала ротора турбомашины мощностью 1000 кВт и более.

Турбомашина включает статор, ротор, вращающийся в одном заданном направлении, и узел подшипника. Узел подшипника содержит первую часть, присоединенную к статору турбомашины при помощи набора болтов и гаек, вторую часть, присоединенную к ротору, и подшипник качения, расположенный между первой и второй частями узла подшипника.

Устройство соединения радиальных стоек с круглой обечайкой при помощи осей и распорок содержит круглую обечайку, в основном радиальные стойки, соединяющие обечайку с другой концентричной обечайкой, и соединения стоек с обечайкой или с внутренней ступицей.

Изобретение относится к газотурбинным машинам и может быть использовано при монтаже их роторов. При монтаже ротора газотурбинного двигателя его устанавливают в подшипниковых опорах качения. В одной из опор ротора используют роликовый подшипник с овальной беговой дорожкой кольца подшипника, связанного силовыми элементами со статором двигателя. Установку подшипника на опоре осуществляют таким образом, что большая ось овала беговой дорожки кольца совпадает с направлением силы тяжести ротора, при этом жесткость опоры и параметр овала дорожки качения кольца подшипника выбирают из соотношений, защищаемых настоящим изобретением. Изобретение позволяет предотвратить резонанс ротора на критической частоте его вращения. 2 ил.

Турбина для расширения газа и пара содержит корпус со спиралью, выполненные с возможностью прохождения текучей среды из впускного в выпускной канал через статорную и роторную группы, наружную трубу, а также может содержать торцевой щит, отходящий в радиальном направлении от упомянутой спирали в сторону оси турбинного вала. Наружная труба прикреплена к передней стороне щита или спирали и служит опорой для турбинного вала посредством расположенного между ними опорного элемента. Турбинный вал имеет головку, на которую опирается роторная группа, причем турбинный вал вместе с роторной группой выполнены с возможностью осевого перемещения между рабочим положением и втянутым положением. В рабочем положении головка вала отстоит на расстоянии от внутреннего конца наружной трубы и обращена в сторону статорной группы, а во втянутом положении головка вала или часть роторной группы опирается на внутренний конец наружной трубы посредством установленного между ними переднего уплотнения. Изобретение позволяет обеспечить возможность замены опоры вала турбины с герметизацией внутреннего объема турбины от окружающей среды во время замены такой опоры. 9 з.п. ф-лы, 3 ил.

Газотурбинный двигатель, на цилиндрической втулке которого, со стороны, прилегающей к колесу турбины, надета соосно с цилиндрической втулкой первая чашеобразная цапфа-пята первого магнитного подшипникового узла, ориентированная своим днищем к колесу турбины, при этом на участке ротора, прилегающем к колесу компрессора, непосредственно на вал надета соосно с ним, с упором в колесо компрессора и торец втулки ротора, вторая чашеобразная цапфа-пята второго магнитного подшипникового узла, ориентированная своим днищем к колесу компрессора. Магнитные узлы обеих чашеобразных цапф-пят содержат конструктивно одинаковые магнитные элементы, составляющие магнитные радиальные и упорные подшипники. Для этого донные части выемок чашеобразных цапф-пят выполнены плоскими, а внешней и внутренней поверхностям их боковых стенок придана цилиндрическая форма, при этом на донных частях выемок чашеобразных цапф-пят жестко закреплены составные постоянные магниты одинаковой высоты, каждый из которых содержит, как минимум, три кольцевых коаксиальных постоянных магнита, нечетные из которых, начиная с крайнего, намагничены радиально и обращены друг к другу одноименными полюсами, а четные выполнены с осевым намагничиванием. На внутренней поверхности боковых стенок чашеобразных цапф-пят жестко закреплены друг за другом, как минимум, три кольцевых постоянных магнита с одинаковыми внешним и внутренним диаметрами колец, при этом нечетные кольца, начиная с крайнего, намагничены по оси ротора и обращены друг к другу одноименными полюсами, а четные кольца намагничены в радиальном направлении. Кольцевые выступы первой и второй чашеобразных цапф-пят, охвачены кольцевыми выточками, выполненными в проставке, изготовленной из немагнитного материала, размещенной между корпусами турбины и компрессора, при этом поверхности кольцевых пазов проставки, обращенные к донным частям чашеобразных цапф-пят, выполнены плоскими и на них, напротив донных участков чашеобразных цапф-пят, содержащих магниты, жестко закреплены составные постоянные магниты, каждый из которых содержит, как минимум, три кольцевых коаксиальных постоянных магнита одинаковой высоты, нечетные из которых, начиная с крайнего, намагничены радиально и обращены друг к другу одноименными полюсами, а четные выполнены с осевым намагничиванием. Число, размеры и направление намагниченности этих магнитных колец аналогичны числу, размерам и направлению намагниченности постоянных магнитов, закрепленных на донных частях выемок чашеобразных цапф-пят. На цилиндрических поверхностях кольцевых выточек проставки, обращенных к внутренним поверхностям боковых стенок соответствующих чашеобразных цапф-пят, напротив участков боковых стенок чашеобразных цапф-пят, содержащих магниты, жестко закреплены друг за другом, как минимум, три кольцевых постоянных магнита с одинаковыми внешним и внутренним диаметрами колец, при этом нечетные кольца, начиная с крайнего, намагничены по оси ротора и обращены друг к другу одноименными полюсами, а четные кольца выполнены с радиальным намагничиванием, причем число, размеры и направление намагниченности этих магнитных колец аналогичны числу, размерам и направлению намагниченности постоянных магнитов, закрепленных на внутренней поверхности боковых стенок соответствующих чашеобразных цапф-пят. Обращенные друг к другу поверхности постоянных магнитов обработаны с образованием соответственно плоской или цилиндрической поверхности высокой чистоты, с образованием рабочих зазоров. Магнитный подшипниковый узел, размещенный со стороны турбины, выполнен с использованием магнитного материала с точкой Кюри не менее 900°C, при этом цилиндрические участки наружной поверхности чашеобразных цапф-пят снабжены бандажом, выполненным, например, намоткой углеволокна с пропиткой твердеющими синтетическими смолами. Достигается обеспечение высокой несущей способности радиального и упорного подшипникового узлов в рабочем режиме при уменьшении в них потерь на трение, надежный запуск ГТД при низких температурах, повышение его надежности работы при высоких динамических нагрузках, а также повышение механического КПД ГТД. 2 ил.

Газотурбинный двигатель, на вал которого надета цилиндрическая втулка, выполненная из немагнитного материала, одним концом упертая в торцевую поверхность колеса турбины, а другим упертая в кольцевой выступ пяты, выполненной из немагнитного материала, надетой на вал, на участке, примыкающем к колесу компрессора. Центральная часть ротора содержит соосные вал и обечайку, выполненную из немагнитного материала, жестко скрепленные друг с другом, по меньшей мере, тремя равноудаленными друг от друга перемычками, выполненными из немагнитного материала, в виде пластин одинаковой толщины, ориентированных радиально к продольной оси ротора. Ротор и подшипниковые узлы размещены в полости проставки, выполненной из немагнитного материала, содержащей цилиндрический корпус, концы которого снабжены фланцами, выполненными с возможностью разъемного жесткого скрепления соответственно с сопловым аппаратом турбины и диффузором компрессора, причем длина обечайки соответствует длине цилиндрической части полости проставки. Фланец проставки со стороны, обращенной к турбине, содержит отверстие, через которое пропущен с возможностью вращения вал с надетой на него цилиндрической втулкой, которые сосны с продольной осью проставки, кроме того, этот участок ротора снабжен первым радиальным магнитным подшипником, для чего названный фланец проставки снабжен кольцевым выступом, на внешней поверхности которого жестко закреплен составной постоянный магнит, содержащий как минимум три кольцевых постоянных магнита, размещенных друг за другом, нечетные из которых, начиная с крайних, намагничены по оси ротора и обращены друг к другу одноименными полюсами, а четные выполнены с радиальным намагничиванием. На внутренней поверхности обечайки жестко закреплен составной постоянный магнит, содержащий как минимум три кольцевых постоянных магнита, размещенных друг за другом, причем число, размеры, местоположение и направление намагниченности этих кольцевых постоянных магнитов аналогичны числу, размерам, местоположению и направлению намагниченности постоянных магнитов, закрепленных на кольцевом выступе названного фланца проставки. У противоположного конца цилиндрической втулки размещен надетый на нее и часть кольцевого выступа пяты корпус второго радиального магнитного подшипника, для чего он выполнен в виде диска, снабженного отверстием, окруженным кольцевым выступом, обращенным к центральной части ротора. Края поверхности диска уперты в поверхность выступа, образованного первой цилиндрической выточкой, выполненной на конце цилиндрической части полости проставки, обращенной к компрессору. Противоположная сторона диска снабжена выточкой с плоским дном, причем на внешней поверхности кольцевого выступа корпуса второго радиального магнитного подшипника жестко закреплен составной постоянный магнит, содержащий как минимум три кольцевых постоянных магнита, размещенных друг за другом, нечетные из которых, начиная с крайних, намагничены по оси ротора и обращены друг к другу одноименными полюсами, а четные выполнены с радиальным намагничиванием. На внутренней поверхности обечайки, со стороны, обращенной к компрессору, жестко закреплен составной постоянный магнит, содержащий как минимум три кольцевых постоянных магнита, размещенных друг за другом, причем число, размеры, местоположение и направление намагниченности этих кольцевых постоянных магнитов аналогичны числу, размерам, местоположению и направлению намагниченности постоянных магнитов, закрепленных на кольцевом выступе корпуса второго радиального магнитного подшипника. Ротор снабжен упорным магнитным подшипником, содержащим двустороннюю пяту и два подпятника, при этом в качестве первого подпятника использована сторона дисковой поверхности корпуса второго радиального магнитного подшипника, снабженная кольцевой выточкой с плоским дном, обращенная к пяте, второй подпятник выполнен как дисковой вкладыш, сторона которого, обращенная к пяте, снабжена кольцевым выступом, при этом края поверхности дискового вкладыша уперты в поверхность выступа, образованного второй цилиндрической выточкой, выполненной на конце первой цилиндрической выточки, обращенной к компрессору, а его противоположная плоскость обращена с зазором к колесу компрессора. Пята выполнена в виде диска, зафиксированного на валу ротора и снабженного с обеих сторон кольцевыми выступами, при этом на противоположных поверхностях диска выполнены кольцевые выточки с плоским дном. На дне кольцевой выточки первого подпятника и на плоскости второго подпятника, ограниченной его кольцевым выступом, жестко закреплены составные постоянные магниты, каждый из которых содержит как минимум три кольцевых коаксиальных постоянных магнита, нечетные из которых, начиная с крайнего, намагничены радиально и обращены друг к другу одноименными полюсами, а четные выполнены с осевым намагничиванием, кроме того, на обращенных к ним поверхностях кольцевых выточек пяты жестко закреплены составные постоянные магниты, каждый из которых содержит как минимум три кольцевых коаксиальных постоянных магнита, при этом число, размеры и направление намагниченности этих кольцевых постоянных магнитов аналогичны числу, размерам и направлению намагниченности постоянных магнитов, закрепленных на обращенных к ним поверхностях подпятников. Магнитный подшипниковый узел, размещенный со стороны турбины, выполнен с использованием магнитного материала с точкой Кюри не менее 900°С, при этом цилиндрические участки наружной поверхности обечайки и пяты снабжены бандажом, выполненным, например, намоткой углеволокна с пропиткой твердеющими синтетическими смолами. Технический результат: обеспечение высокой несущей способности радиального и упорного подшипникового узлов в рабочем режиме при уменьшении в них потерь на трение, надежный запуск ГТД при низких температурах, повышение его надежности работы при высоких динамических нагрузках, а также повышение механического КПД ГТД. 2 ил.

Изобретение относится к энергетике. Упругая опора ротора турбомашины, содержащая установленный на валу радиальный подшипник, корпус которого соединен со статорным элементом, причём статорный элемент снабжен прорезями с образованными между ними балочками, сориентированными в радиальном направлении относительно оси опоры. Изобретение позволяет снизить осевые габариты и массу при сохранении необходимых жесткости и надежности. 1 з.п. ф-лы, 2 ил.

Газотурбинный двигатель, на цилиндрической втулке которого со стороны, прилегающей к колесу турбины, надета первая чашеобразная цапфа-пята первого радиально-упорного магнитного подшипника, ориентированная своим дном к колесу турбины, при этом на свободном конце вала последовательно установлены с упором друг в друга, вторая чашеобразная цапфа-пята второго радиально-упорного магнитного подшипника, ориентированная своим дном к колесу компрессора, первый и второй упорные лепестковые газовые подшипники, колесо центробежного компрессора и балансировочная шайба, зафиксированные гайкой. Каждый радиальный магнитный подшипник включает в себя тонкостенную втулку, выполненную из немагнитного материала, на внешней поверхности которой равномерно по ее окружности расположены полюса, выполненные в виде планок трапециевидного сечения, из материала с высокой магнитной проницаемостью, между которыми размещены, контактируя с полюсами боковыми гранями, магнитные планки трапециевидного сечения из магнитного материала, которые по всей осевой длине намагничены в тангенциальном встречном направлении. Магнитные планки широким основанием своего сечения обращены к поверхности тонкостенной втулки, а со стороны их узкого основания размещены клинья, выполненные в виде полос из немагнитного материала, жестко и заподлицо скрепленные с боковыми гранями полюсов, контактирующих с соответствующей магнитной планкой, образуя цилиндрическую поверхность, выходящую в рабочий зазор радиального магнитного подшипника. Кольцевые выступы первой и второй чашеобразных цапф-пят, составляющих радиальные магнитные подшипники, снабжены бандажом из высокопрочного волокна на связующем из твердеющих синтетических смол и размещены в кольцевых пазах соответствующего поперечного сечения, выполненных в проставке, размещенной между корпусами турбины и компрессора, при этом один из кольцевых пазов открыт к компрессору, а другой к турбине. Между поверхностью кольцевых пазов проставки и втулкой размещена гофрированная втулка с продольными гофрами, выполненная из упругого материала. Внутренние поверхности цапфы-пяты покрыты слоем меди и обработаны с высокой чистотой поверхности. Упорный магнитный подшипник содержит подпятник, выполненный из немагнитного материала, размещенный в цилиндрической выточке соответствующей цапфы-пяты, между дном которой и поверхностью подпятника закреплены сектора полюсов из материала с высокой магнитной проницаемостью. Сектора постоянных магнитов и сектора полюсов выполнены в виде планок трапециевидного сечения, контактирующих друг с другом боковыми кромками, при этом магнитные сектора широким основанием своего сечения обращены ко дну цилиндрической выемки, причем узкие основания магнитных секторов перекрыты плоскими клиньями из немагнитного материала, жестко скрепленных своими торцевыми поверхностями с торцевыми поверхностями соответствующих полюсов с образованием плоской поверхности, которая образует с цапфой-пятой рабочий зазор упорного магнитного подшипника. Радиальный и упорный магнитный подшипники, размещенные со стороны турбины, выполнены с использованием магнитного материала с точкой Кюри не менее 900°C. Между подпятником и обращенным к нему дном выточки обоих магнитных подшипников установлена упругая шайба, выполненная в виде шайбообразной пластины из упругого материала, деформированной с образованием кольцевых гофров. Магнитные радиальные и упорные подшипники зафиксированы от поворота вокруг продольной оси вала. Осевой лепестковый газодинамический подшипник содержит проставку и уплотнение компрессора, между которыми размещено дистанционное кольцо, при этом в полости между ними размещены первый и второй упорные лепестковые газовые подшипники, разделенные общей пятой. В зазоре между поверхностью цилиндрической полости проставки и обращенной к ней поверхностью втулки размещен радиальный газодинамический лепестковый подшипник. Достигается обеспечение высокой несущей способности радиального и упорного подшипникового узлов в рабочем режиме при уменьшении в них потерь на трение, надежный запуск ГТД при низких температурах, повышение его надежности работы при высоких динамических нагрузках, а также повышение устойчивости ротора к «полускоростному вихрю», повышение механического КПД ГТД. 1 з.п. ф-лы, 6 ил.

Изобретение быть использовано при проектировании элементов стендового оборудования, предназначаемого для позиционирования гироприборов в процессе их точностных испытаний. Технический результат - повышение стабильности положения при позиционировании гироприборов, технологично, ремонтопригодно, при этом подшипник имеет минимизированный зазор, обеспечивающий минимальное смещение в осевом и радиальном направлении от выбранного положения. В опорно-упорном подшипнике скольжения использована образованная семействами прямолинейных образующих поверхность однополостного гиперболоида в качестве контактной поверхности опорно-упорного подшипника скольжения. Поверхность однополостного гиперболоида используется как при изготовлении поверхности неподвижной цапфы корпуса подшипника, так и при изготовлении контактной поверхности охватывающего цапфу, выполненного разъемным и составленного из двух примыкающих друг к другу минимальными диаметрами пластин частей вкладыша поворотной платформы, между которыми помещена для регулировки зазора фольга. В пластинах вкладыша поворотной платформы выполнены три серии сквозных отверстий, где в первую серию отверстий установлены без зазора штифты, ориентирующие при сборке единым образом друг относительно друга части разъемного вкладыша, во вторую серию сквозных отверстий установлены и соединены друг с другом болты с гайками и шайбами, крепящие пластины вкладыша, в третьей серии сквозных отверстий размещены болты с гайками и шайбами для крепления плиты с полезным грузом, при этом в обеих частях вкладыша с внешних сторон второй и третьей серии отверстий выполнены углубления, в которых размещены утопленные в них головки болтов и гайки с шайбами. 4 ил.

Турбина двухроторного газотурбинного двигателя содержит наружный корпус, воздушный коллектор, предмасляную и масляную полости, роторы высокого и низкого давлений, каналы подачи масла в роликоподшипники, масляные уплотнения, межроторное лабиринтное уплотнение, питающие форсунки. В соответствии с заявленным предложением турбина снабжена опорной кольцевой обечайкой с радиальным буртом, кольцевой гайкой с радиальным буртом на ее боковой поверхности, опорной втулкой и радиально-торцевым масляным уплотнением. Опорная втулка установлена на вале ротора высокого давления и зафиксирована кольцевой гайкой. Опорная кольцевая обечайка выполнена за одно целое с валом ротора низкого давления и установлена с образованием верхней масляной ванны. Радиально-торцевое масляное уплотнение выполнено в виде двух подпятников с расположенными между ними графитовыми уплотнительными кольцами и распорной втулкой с фиксирующей пружиной. Масляные уплотнения между предмасляной и масляной полостями выполнены в виде браслетных графитовых уплотнений. В опорной кольцевой обечайке и в подпятнике, прилегающем к торцу вала ротора низкого давления, выполнены отверстия, сообщенные друг с другом. Кольцевая гайка установлена с образованием средней масляной ванны. Питающие форсунки размещены напротив средней масляной ванны. Позволяет уменьшить подогрев масла в масляной полости, уменьшить невозвратный расход масла, позволяет повысить экологичность двигателя и уменьшить его заметность. 3 ил.

Изобретение относится к области авиационного двигателестроения, а именно к конструкции упругих опор с изменяемой податливостью, применяемых в стендовых динамических испытаниях роторов турбомашин. Упругая опора с регулируемой жесткостью содержит подшипник, статорный элемент, жестко закрепленный на наружном кольце подшипника корпус, соединенный со статорным элементом посредством радиально-упругого элемента типа «беличьего колеса», а также оправку радиально-упругого элемента. Оправка выполнена с возможностью перемещения вдоль продольной оси опоры по направляющим, закрепленным на статорном элементе. Радиально-упругий элемент выполнен в виде шпилек цилиндрического сечения, а оправка радиально-упругого элемента выполнена с возможностью перемещения вдоль продольной оси опоры посредством привода. Изобретение позволяет обеспечить плавное изменение жесткости опоры при проведении стендовых динамических испытаний роторов турбомашин. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области турбомашиностроения, а именно к конструкции опор роторов турбомашин, содержащих радиально-упорные подшипники. Опора ротора содержит радиально-упорный шариковый подшипник, наружное кольцо которого установлено в корпусе, который в свою очередь механически соединен со статором, и цапфу ротора. Внутреннее кольцо радиально-упорного шарикового подшипника выполнено зацело с цапфой ротора и в нем выполнены маслоподводящие каналы к шарикам и сепаратору радиально-упорного шарикового подшипника. Наружное кольцо радиально-упорного шарикового подшипника выполнено разъемным. В разъемном наружном кольце радиально-упорного шарикового подшипника между торцевыми поверхностями полуколец образованы каналы, сообщенные с маслоотводящими канавками, расположенными в корпусе радиально-упорного шарикового подшипника. Изобретение позволяет повысить долговечность подшипника, а также уменьшить габариты и массы опоры ротора. 1 з.п. ф-лы, 2 ил.
Наверх