Способ изготовления строительных материалов на магнезиальном вяжущем


 


Владельцы патента RU 2525390:

Сипливый Борис Николаевич (RU)
Малышева Раиса Дмитриевна (RU)
Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Волгоградский государственный университет" (RU)

Изобретение относится к области производства строительных материалов и может быть использовано для производства облицовочных плит (для внутренней и наружной отделки зданий) черепицы, полов, монолитных строительных элементов. Технический результат заключается в улучшении физико-механических характеристик строительных изделий при облегчении веса конструкционных строительных элементов, улучшении декоративных качеств готовых изделий (отсутствие высолов и стабилизация яркости цвета). Способ изготовления строительных материалов на магнезиальном вяжущем включает активацию магнезиального вяжущего, модифицированного заполнителя, пластификатора, пигмента методом механохимической модификации в твердом состоянии в условиях совместного воздействия давления и сдвиговых деформаций. В активированную смесь добавляют водный раствор хлорида магния (водный раствор бишофита) и заполнитель. В качестве магнезиального вяжущего используют каустический магнезит с добавлением электропечного магнезита. В качестве модифицированного заполнителя сырьевая смесь содержит комплексный алюмосиликатный заполнитель, включающий SiO2, Al2O3, CaO, MgO, Fe2O3, FeO, SO3 в различных комбинациях и соотношениях, модифицированный в твердом состоянии оксидом или солью переходного металла методом механохимической модификации в условиях совместного воздействия давления и сдвиговых деформаций, а также сырьевая смесь может содержать дополнительно слюду и фибры (натуральные, полимерные, металлические, стеклянные), причем отверждение смеси ведут при температуре 10-90°C в течение 1÷14 ч, а макромолекулярные структуры готовых изделий подвергают диффузионному процессу введения эмульсии масло/вода в присутствии поверхностно-активного вещества. 2 табл.

 

Изобретение относится к области производства строительных материалов и может быть использовано для производства облицовочных плит (для внутренней и наружной отделки зданий) черепицы, полов, монолитных строительных элементов.

Известен способ приготовления сырьевой смеси для изготовления строительных изделий, включающий смешение магнезиального вяжущего с заполнителем с последующим затворением раствором бишофита, предварительно обработанным в магнитном поле [1].

Известный способ усложняет технологический процесс, требует специальных операций по подготовке жидкости затворения - раствора бишофита. Основные компоненты, входящие в сырьевую массу, по химическим свойствам не обеспечивают достаточной водостойкости и морозостойкости изделий. Кроме того, известный способ не устраняет выделения солей на поверхности изделий в процессе их эксплуатации, что ухудшает их декоративные качества.

Известно техническое решение [2] изготовления изделий экструзией из смеси, содержащей (п.14 в формуле) «magnesium oxychloride cement» при затворении водой. В описании патента отсутствуют примеры и данные по физико-механическим характеристикам изделий из вышеуказанного цемента. Авторы используют сухую смесь оксида магния MgO и (обезвоженного) сухого хлорида магния MgCl2, а в качестве затворителя - воду. Давления, применяемые в вышеуказанном процессе, составляют 10 бар-7000 бар (пп.9, 10, 11 формулы). Приготовление сухого (обезвоженного) хлорида магния усложняет технологию. Необходимость введения в сырьевую смесь сухого (обезвоженного) хлорида магния создает определенные трудности, сложности в технологическом процессе изготовления изделий на основе оксида магния.

Наиболее близким по технической сущности к предлагаемому изобретению является способ изготовления изделий на магнезиальном вяжущем, включающий активацию каустического магнезита совместным помолом с минеральной добавкой с последующим смешением с заполнителем, водным раствором хлорида магния, формованием и отверждением полученной смеси [3].

Способ позволяет повысить прочность изделий, но не исключает выделения солей на поверхности изделий, а также выцветов (ослабление яркости цвета), то есть ухудшение декоративных качеств изделий. Кроме того, компоненты, входящие в состав смеси, приводят к увеличению веса изделий, что недопустимо с конструкционной точки зрения. Способ не технологичен.

Предлагаемое изобретение позволяет улучшить физико-механические характеристики при облегчении веса готовых изделий, огнестойкость, исключает выделение солей на поверхности изделий, улучшает декоративные качества изделий, стабилизирует яркость цветовой гаммы готовых изделий.

В способе изготовления строительных материалов на магнезиальном вяжущем, активацию магнезиального вяжущего, модифицированного заполнителя, пластификатора, пигмента проводят методом механохимической модификации в твердом состоянии в условиях совместного воздействия давления и сдвиговых деформаций. В активированную смесь добавляют водный раствор хлорида магния (водный раствор бишофита) и заполнитель, причем в качестве магнезиального вяжущего используют каустический магнезит с добавлением электропечного магнезита, а в качестве модифицированного заполнителя сырьевая смесь содержит комплексный алюмосиликатный заполнитель, включающий SiO2, Al2O3, CaO, MgO, Fe2O3, FeO, SO3 в различных комбинациях и соотношениях, модифицированный в твердом состоянии оксидом или солью переходного металла методом механохимической модификации в условиях совместного воздействия давления и сдвиговых деформаций, а также сырьевая смесь может содержать дополнительно слюду и фибры (натуральные, полимерные, металлические, стеклянные), причем отверждение смеси ведут при температуре 10-90°C в течение 1÷14 ч, а макромолекулярные структуры готовых изделий подвергают диффузионному процессу введения эмульсии масло/вода в присутствии поверхностно-активного вещества.

Активация магнезиального вяжущего, модифицированного заполнителя, пластификатора, пигмента методом механохимической модификации в твердом состоянии в условиях совместного воздействия давления и сдвиговых деформаций приводит к образованию новых ионообменных структур, обладающих сорбирующими свойствами, гомогенизирующими и пластифицирующими свойствами.

В результате активации и модификации оксидом и солью переходного металла (например, Fe+3) комплексный алюмосиликатный заполнитель приобретает сорбирующие свойства и характеризуется высокой обменной способностью. Активация заполнителя происходит за счет обменного взаимодействия с ионами солей. При замене иона Al+3 ионами Fe+3 в комплексном силикате проявляется магнитная восприимчивость. Этот ион сообщает характерный парамагнетизм замещенной кристаллической силикатной фазе. Ионы Ме+3 локализуются в каналах алюмосиликатного заполнителя на зарядообменных местах кислородного окружения «изолированных» атомов Al+3 или атомов Al+3, находящихся как в каркасе наполнителя, так и за счет взаимодействия их с внекаркасными ионами Аl, и стабилизированы в виде Fe-Al2O4.

Как показали результаты исследований, заполнитель, не модифицированный солью или оксидом переходного металла, не проявляет сорбирующих свойств.

При дальнейшей совместной механохимической обработке магнезиального вяжущего с модифицированным наполнителем, пигментом, пластификатором измельчение кристаллической структуры сопровождается перемешиванием исходных компонентов и образованием новых структур. При введении в сырьевую смесь модифицированный комплексный алюмосиликатный компонент проявляет гомогенизирующие пластифицирующие и сорбирующие свойства, способствует получению более плотной кристаллической упаковки, упрочнению материала, улучшению его физико-механических свойств, улучшению декоративных качеств изделий.

Совместная активация магнезиального вяжущего с модифицированным заполнителем пигментом, пластификатором в твердом состоянии в условиях совместного воздействия давления и сдвиговых деформаций способствует повышению скорости реакции гидратации, образованию двойных гидроксидов металлов со структурой гидроталькита Mg6Al2(OH)16 и гидробрусита Mg(ОН)2, которые также проявляют сорбирующие свойства, что также ведет к исключению высолов на поверхности изделий.

Дополнительное повышение прочности магнезиальных растворов при затворении водным раствором хлорида магния происходит также за счет добавок пигментов, которые в вышеуказанных условиях давления и сдвиговых деформаций образуют новые фазы на основе гидроталькита и брусита. Насыщение ионами Сг+3 приводит к образованию новой фазы Mg-ОCrO3 и магний-хромовому гидроталькиту Mg6Cr2(ОН)2ClX·nH2O, содержащему ионы CP и ОН" в межслоевых пространствах структуры.

Механическая обработка компонентов сырьевой смеси с добавлением пластификатора (поверхностно-активных веществ), снижающих поверхностное натяжение на границе раздела фаз, способствует гомогенизации раствора, ускоряет гелеобразование, кристаллизацию, уплотняет массу, улучшает формуемость изделий. Кроме того, введение в зону реакции пластификаторов в условиях давления и сдвиговых напряжений также создает новые структуры сорбентов, содержащие молекулы пластификаторов, которые также участвуют в реакциях ионного обмена и создают подвижность удобоформуемой массы.

Оптимальная подвижность сырьевой массы достигается также за счет введения природного алюмосиликатного компонента размером частиц до 3÷4 мм, что обеспечивает удобоформуемость бетонной массы без дополнительного количества жидкости затворения.

Частичная замена в сырьевой массе каустического магнезита электропечным позволяет повысить огнестойкость изделий при длительном воздействии высоких температур (например, 24 часа t=1500°C).

Благодаря свойствам компонентов сырьевой смеси (модифицированный алюмосиликатный компонент, магнезиальное вяжущее, пластификатор) отверждение сырьевой смеси может проводиться как при нормальных условиях, так и при термообработке с сохранением декоративных качеств строительных материалов. При обработке поверхности готовых изделий эмульсией масло/вода в присутствии поверхностно-активного вещества происходит диффузия масла в макромолекулярные структуры готового камня и решается проблема выцвета изделий.

Таким образом, в условиях механохимической модификации сырьевой смеси в твердом состоянии в условиях совместного воздействия давления и сдвиговых деформаций, содержащей магнезиальное вяжущее, комплексный модифицированный алюмосиликатный заполнитель, пластификатор, пигмент, улучшаются физико-механические характеристики изделий при облегчении веса готовых изделий, улучшаются декоративные качества строительных изделий (отсутствие выделения солей на поверхности изделий и выцветы). Диффузионная обработка макромолекулярных структур готовых изделий позволяет стабилизировать яркость цветовой гаммы изделий в условиях атмосферного воздействия.

Строительные изделия, приготовленные по предлагаемому способу, обладают наилучшими физико-механическими свойствами при следующем соотношении компонентов, % мас.:

Магнезиальное вяжущее 20-60
Пластификатор 0,25-1,0
Пигмент 0-2
Водный раствор хлористого магния (бишофит) 15-20
Заполнитель модифицированный остальное

В результате экспериментальных исследований установлено, что наибольший эффект от механохимической модификации сырьевой массы в твердом состоянии в условиях совместного воздействия давления и сдвиговых деформаций проявляется при использовании двухшнекового экструдера непрерывного действия. Реакцию проводили в твердофазном режиме на экструдере. Продолжительность процесса в экструдере - 2 мин, в смесителе-экструдере - 2 мин.

Способ осуществляется следующим образом. Механохимическую модификацию комплексного алюмосиликатного наполнителя солью металла (например, Fe+3) проводили при использовании шнекового экструдера в течение 2 минут. Добавляли магнезиальное вяжущее, пигмент, пластификатор и подвергали дальнейшей механохимической обработке, инициированной сдвиговым напряжением, затворяли водным раствором хлорида магния (например, водный раствор бишофита). Сырьевую массу перемешивают далее в смесителе, добавляя заполнитель (размером частиц до 3 мм) до получения однородной массы. Подготовленную сырьевую массу выливают в формы, уплотняют, отверждение смеси ведут при температуре 10-90°C в течение 1-14 ч. Макромолекулярные структуры готовых изделий подвергаются диффузионному воздействию эмульсии.

Пример

В экструдер загружают (17 мас.%) алюмосиликатный заполнитель (SiO2 - 3%, Al2O3 - 2%, CaO - 3,5%, MgO - 2,5%, Fe2O3 - 1,5%, FeO - 1,5%, SO3 - 3%) - смесь отходов предприятия ЖБИ-1 - цементно-содержащие компоненты (13 мас.%) - и слюды, железо сернокислое (4 мас.%) от веса заполнителя. Процесс ведут при температуре 18°C в течение 2 минут. Затем добавляют каустический магнезит - 1,5 кг (22 мас.%) и электропечной магнезит - 2,5 кг (38 мас.%), пластификатор С-3 - 1 мас.% и подвергают дальнейшей механохимической обработке в экструдере в течение 2 минут, затворяют водным раствором бишофита (плотность 1,2 г/см3, 20 мас.%). Добавляют в сырьевую массу (2 мас.%) слюду размером частиц 3÷4 мм. Суммарное содержание всех ингредиентов составляет 100%. Оптимальный состав сырьевой смеси: магнезиальное вяжущее 60 мас.%, пластификатор 1 мас.%, пигмент 2 мас.%, водный раствор бишофита плотностью 1,17-1,32 г/см3 20 мас.%, алюмосиликатный заполнитель модифицированный 17 мас.%. Суммарное содержание всех ингредиентов составляет 100%. Сырьевую массу перемешивают в смесителе-экструдере 2 минуты. Подготовленную смесь выдавливают в формы, вибрируют, уплотняют. После отверждения образцы вынимают из форм, испытывают по стандартным методикам. Готовые изделия подвергают диффузионному процессу введения эмульсии в макромолекулярные структуры цементного камня. Составы для изготовления сырьевой смеси представлены в таблице 1. Физико-механические характеристики образцов, изготовленных по предлагаемому способу, представлены в таблице 2. Вес изделий размером 600×600×10 составляет 4,8-6,0 кг. Результаты огневых испытаний показали, что введение в сырьевую смесь электропечного магнезита повышает огнестойкость изделий и жаростойкость. Образцы не разрушаются при длительном воздействии высоких температур.

Представленные сравнительные результаты испытаний показывают, что использование предлагаемого способа изготовления строительных материалов на магнезиальном вяжущем механохимической модификацией в твердом состоянии в условиях совместного воздействия давления и сдвиговых деформаций позволяет облегчить вес строительных изделий на 25-30% по сравнению с прототипом, при этом повышается прочность изделий на растяжение при изгибе на 30-50%, предел прочности на сжатие - на 10-20%, обеспечивает высокий уровень декоративных качеств изделий при длительном атмосферном воздействии, позволяет сократить продолжительность процесса и расход реагентов и улучшить экономические и экологические показатели технологического процесса. Применение модифицированного комплексного алюмосиликатного заполнителя позволяет изготавливать строительные изделия с применением недифицитных компонентов, улучшает экологическую обстановку окружающей среды.

Таким образом, предлагаемый способ позволяет решить конструкционную проблему облегчения веса изделий при сохранении высоких физико-механических характеристик.

Предлагаемый способ изготовления строительных материалов на магнезиальном вяжущем имеет промышленную значимость.

Источники информации

1. RU №2098381 C1, кл. C04B 28/30, C04B 9/00, 04.05.95.

2. US Patent №5549859, кл. 264/102, МКИ B28B 1/00.

3. RU №2222508 C1, кл. C04B 28/30, 20.08.2002 (прототип).

Таблица 1
Составы сырьевой смеси
Способ изготовления строительных материалов на магнезиальном вяжущем
№ п/п Компоненты сырьевой смеси Номера составов
1 2 3 4 5
1. Магнезиальное вяжущее, мас.% 20 30 40 50 60
2. Пластификатор, мас.% 0,25 0,3 0,3 0,3 1
3. Пигмент, мас.% 0 1 2 2 2
4. Водный раствор бишофита плотностью 1,17-1,32, мас.% 15 15 18 20 20
5. Алюмосиликатный заполнитель
модифицированный, мас.%
остальное
Таблица 2
Физико-механические характеристики образцов, изготовленных по предлагаемому способу
Способ изготовления строительных материалов на магнезиальном вяжущем
№ состава по табл.1 Предел прочности, МПа в возрасте 1 сутки Огнестойкость изделий, визуально*
Rизгиб Rсж
предлагаем. вариант прототип предлагаем. вариант прототип
1 15,8 3,8 34,0 11,3 нет разрушений
2 18,0 6,7 34,5 19,6 нет разрушений
3 22,5 7,8 36,0 24,5 нет разрушений
4 23,0 9,0 42,8 31,5 нет разрушений
5 25,0 12,6 46,5 44,5 нет разрушений
* Огнестойкость определялась визуально при прямом воздействии открытого пламени в течение 45 минут

Способ изготовления строительных материалов на магнезиальном вяжущем, включающий активацию порошка каустического магнезита совместным помолом с минеральной добавкой, пластификатором с последующим смешением с заполнителем, водным раствором хлорида магния (бишофита), формованием и отверждением полученной смеси, отличающийся тем, что активацию магнезиального вяжущего, модифицированного заполнителя, пластификатора и пигмента проводят методом механохимической модификации в твердом состоянии в условиях совместного воздействия давления и сдвиговых деформаций, а затем в активированную смесь добавляют водный раствор хлорида магния (водный раствор бишофита) и заполнитель, причем в качестве магнезиального вяжущего используют каустический магнезит с добавлением электропечного магнезита, а в качестве модифицированного заполнителя сырьевая смесь содержит комплексный алюмосиликатный заполнитель, включающий SiO2, Al2O3, CaO, MgO, Fe2O3, FeO, SO3 в различных комбинациях и соотношениях, модифицированный в твердом состоянии оксидом или солью переходного металла методом механохимической модификации в условиях совместного воздействия давления и сдвиговых деформаций, а также сырьевая смесь может содержать дополнительно слюду и фибры, причем отверждение смеси ведут при температуре 10-90°C в течение 1÷14 ч, а макромолекулярные структуры готовых изделий подвергают диффузионному процессу введения эмульсии масло/вода в присутствии поверхностно-активного вещества.



 

Похожие патенты:
Изобретение относится к способу производства строительных материалов, в частности к технологии приготовления бетонных смесей, и может найти применение при выполнении монолитных бетонных работ для изготовления стеновых блоков, которые могут быть использованы при возведении складских помещений, гаражей и ограждений.
Изобретение относится к способу приготовления асфальтобетона для дорожного строительства с использованием продукта утилизации нефтяных шламов в качестве добавки.

Изобретение относится к геополимерным композициям. Сухая смесь для геополимерного связующего содержит, по меньшей мере, одну летучую золу, содержащую оксид кальция в количестве меньшем или равном 15 вес.%; по меньшей мере, один ускоритель гелеобразования и, по меньшей мере, один ускоритель твердения, имеющий состав, отличный от состава указанной золы.
Изобретение относится к промышленности строительных материалов и касайся изготовления изделий (блоков) из арболита с одновременным получением на их поверхности основы для штукатурки.
Изобретение относится к строительству, а именно к технологии изготовления пенобетонных строительных изделий, например стеновых блоков или панелей. Способ изготовления строительных изделий из пенобетона включает раздельное приготовление пены и растворной смеси, их смешивание или одностадийное приготовление пеномассы с последующей укладкой в формы, выдержкой, распалубкой, пропариванием и распалубкой изделия.

Изобретение может быть использовано в производстве строительных материалов. Фотокаталитический композиционный материал практически без диоксида титана содержит известняк по меньшей мере 0,05% по весу натрия и титанат кальция в кристаллических фазах СТ2 и/или СТ5, характеризуемых следующими дифракционными максимумами: СТ2: (002) d=4,959; (210-202) d=2,890; (013) d=2,762 и (310-122) d-2,138; СТ5: (002) d=8,845; (023) d-4,217; (110) d=3,611 и (006) d=2,948.
Изобретение относится к способу приготовления асфальтобетона для дорожного строительства с использованием продукта утилизации нефтяного шлама в качестве добавки.

Изобретение относится к производству строительных материалов, а именно к получению высокопрочных пластифицированных цементов и бетонов, для восстановления свойств цементов, потерявших свою активность.
Изобретение относится к промышленности строительных материалов и может быть использовано при изготовлении плит и панелей, предназначенных для внутренней и внешней облицовки промышленных и гражданских зданий, подоконных плит, лестничных ступеней и малых архитектурных форм.

Изобретение относится к области строительства, а именно к способам и конструкциям для изготовления изделий из конструкционно-теплоизоляционного ячеистого бетона с замкнутыми порами.
Изобретение относится к строительной индустрии, в частности к изготовлению деталей, используемых при строительстве зданий и сооружений, в том числе кирпичей, блоков, перемычек для оконных перекрытий и дверных проемов и т.д.
Изобретение относится к промышленности строительных материалов и может быть использовано при изготовлении плит и панелей, предназначенных для внутренней и внешней облицовки промышленных и гражданских зданий, подоконных плит, лестничных ступеней и малых архитектурных форм.
Изобретение относится к области производства строительных материалов и может быть использовано для производства огнестойких панелей, перегородок, потолков, дверей и других конструктивных элементов, используемых при строительстве гражданских и промышленных зданий, в которых требуется обеспечение пожаробезопасности и безопасности жизнедеятельности человека.
Изобретение относится к области строительства, а именно к способам изготовления строительных плит. Изобретение позволит повысить экологическую безопасность строительных плит.

Изобретение относится к строительным материалам на основе модифицированного магнезиального вяжущего, которые могут быть использованы при изготовлении стеновых, теплоизоляционных, отделочных изделий, ячеистых бетонов, ксилолитовых и других материалов для гражданского и промышленного строительства.

Изобретение относится к самовыравнивающейся магнезиальной композиции и может найти применение в промышленности строительных материалов для получения литых декоративных изделий, монолитных конструкций типа наливных полов, при тампонировании трещин разрушающихся зданий, а также при производстве сухих смесей для декоративно-художественной отделки зданий и сооружений.

Изобретение относится к производству декоративных изделий, которые можно использовать для интерьерной отделки, например полы, стены, подоконники, столешницы, мозаичные декоративные панно на стенах зданий с применением наполнителя из янтаря и/или отходов янтарного производства, особенно тех, которые до сих пор не использовались.
Изобретение относится к получению строительных изделий, в том числе покрытий, и может быть использовано для утилизации крупнотоннажных отходов производства лесной, химической и металлургической промышленности. Состав для получения строительного покрытия и изделий содержит наполнитель и магнезиальное связующее - шлам карналлитовых хлоратов. Согласно изобретению для обеспечения возможности быстрого нанесения состава, смешанного с водой, на покрываемую поверхность в качестве наполнителя используют распушенную целлюлозу и/или распушенный древесный опил в отношении наполнитель к связующему от 30/70 до 80/20%. Предложен способ нанесения состава на поверхность, включающий смешивание состава с водой в процессе распыления воды через воздушную смесь наполнителя и связующего, образующих состав. Для приготовления состава целлюлозную вату или распушенный древесный опил в сухом виде смешивают с измельченным шламом карналлитовых хлоратов. На месте монтажа выдувной машиной смесь подается воздухом по шлангу, на выходном конце которого расположена насадка с форсунками, распыляющими под высоким давлением воду. Смачиваясь, смесь прилипает к любой поверхности за счет отличной адгезии вяжущего. Оптимальное количество воды - порядка 50% от веса магнезиального связующего. Не менее 20% воды необходимы для реакции связующего, а при более 150% нанесенное покрытие слишком долго сохнет. Изобретение позволяет расширить сырьевую базу и снизить затраты на изготовление. 2 н.п. ф-лы.
Наверх