Способ приготовления стандартных образцов аэрозолей



Способ приготовления стандартных образцов аэрозолей
Способ приготовления стандартных образцов аэрозолей
Способ приготовления стандартных образцов аэрозолей
Способ приготовления стандартных образцов аэрозолей
Способ приготовления стандартных образцов аэрозолей
Способ приготовления стандартных образцов аэрозолей
Способ приготовления стандартных образцов аэрозолей
Способ приготовления стандартных образцов аэрозолей
Способ приготовления стандартных образцов аэрозолей
Способ приготовления стандартных образцов аэрозолей
Способ приготовления стандартных образцов аэрозолей

 

G01N1/28 - Исследование или анализ материалов путем определения их химических или физических свойств (разделение материалов вообще B01D,B01J,B03,B07; аппараты, полностью охватываемые каким-либо подклассом, см. в соответствующем подклассе, например B01L; измерение или испытание с помощью ферментов или микроорганизмов C12M,C12Q; исследование грунта основания на стройплощадке E02D 1/00;мониторинговые или диагностические устройства для оборудования для обработки выхлопных газов F01N 11/00; определение изменений влажности при компенсационных измерениях других переменных величин или для коррекции показаний приборов при изменении влажности, см. G01D или соответствующий подкласс, относящийся к измеряемой величине; испытание

Владельцы патента RU 2525427:

Голохваст Кирилл Сергеевич (RU)
Паничев Александр Михайлович (RU)
Гульков Александр Нефедович (RU)

Способ приготовления стандартных образцов аэрозолей на основе смеси тонкодисперсного порошка, содержащего определяемые элементы, отличается тем, что используют дисперсную смесь минеральных, синтетических и биологических материалов, причем предварительно с помощью гранулометрического анализа выявляют присутствие названных видов моделирующих материалов и определяют их содержание в составе реальной атмосферной взвеси, в данном регионе применительно к конкретному сезону. При этом обеспечивается возможность максимального подобия моделируемых атмосферных взвесей для разных регионов и условий. 11 ил.

 

Изобретение относится к аналитической химии и экспериментальной медицине, в частности к способам и средствам изготовления образцов, имитирующих по составу атмосферные аэрозоли, и может быть использовано при изучении их влияния на иммуноаллергический статус живых организмов.

Известен способ приготовления стандартных образцов аэрозолей в виде тонких органических пленок, которые получают путем добавления в раствор метилцеллюлозы стандартного раствора, содержащего определяемые элементы, затем смесь выливают на очищенную стеклянную пластину, расположенную горизонтально, высушивают на воздухе при комнатной температуре и из полимерной пленки штампуют образцы заданного размера (см. Billiet J., Pams R., Hoste J. Multielement thin film standards for XRF analysis // X-ray Spectrom. - 1980. - Vol.9, №4. - P.206-211).

Недостатком этого способа является неадекватность получаемых образцов реальным пробам аэрозолей, собранных на фильтр, по физико-химическим свойствам вследствие добавления определяемых элементов в раствор метилцеллюлозы в виде растворимых соединений. В то время как атмосферные аэрозоли и промышленные выбросы в атмосферу в основном представляют собой тонкодисперсные частицы, включающие нерастворимые в воде соединения металлов (алюмосиликаты, оксиды, карбонаты и др.).

Наиболее близким по технической сущности и достигаемому результату к изобретению является способ приготовления стандартных образцов аэрозолей на основе смеси тонкодисперсного порошка, содержащего определяемые элементы (см. RU №2239170, G01N 1/28, 2002). Затем смесь порошка, содержащего определяемые элементы, смешивают с порошком сухой метилцеллюлозы и заливают дистиллированной водой, нагретой до температуры 70-80°С, тщательно перемешивают и выдерживают при комнатной температуре, перемешивая каждые 30 мин в течение 2 час. Далее смесь медленно выливают на очищенную стеклянную пластину, расположенную горизонтально. Высушенную полимерную пленку снимают со стекла и из нее штампуют образцы заданного размера.

Недостаток этого решения - отбраковка примерно 5% экземпляров, при этом нестабильность по химическому составу оставшихся индивидуальных экземпляров стандартных образцов характеризуется коэффициентом вариации, равным 4-7% в зависимости от определяемого элемента. Различие содержания определяемых элементов в индивидуальных экземплярах стандартных образцов снижает точность контроля химического состава атмосферных аэрозолей, нагруженных на фильтр, с помощью различных спектральных и химических методик анализа. Также недостатком этого способа является длительность (около 3 час) и трудоемкость (все операции выполняются вручную) процесса получения однородной смеси полимерного раствора и определяемых компонентов. При этом существенным недостатком является невозможность использования образцов, имитирующих по составу атмосферные аэрозоли при изучении их влияния на живые организмы в эксперименте, в т.ч. иммуноаллергический статус живых организмов.

Задачей предлагаемого способа является обеспечение возможности использования образцов, имитирующих по составу атмосферные аэрозоли при изучении их влияния на живые организмы в эксперименте.

Технический результат, получаемый при решении поставленной задачи, выражается в обеспечении возможности использования образцов, имитирующих по составу атмосферные аэрозоли при изучении их влияния на живые организмы в эксперименте. При этом обеспечивается возможность максимального подобия моделируемых атмосферных взвесей для разных регионов и условий.

Для решения поставленной задачи способ приготовления стандартных образцов аэрозолей на основе смеси тонкодисперсного порошка, содержащего определяемые элементы, отличается тем, что используют дисперсную смесь минеральных, синтетических и биологических материалов, при этом в качестве минерального компонента используют измельченный цеолитовый туф в двух размерных фракциях - до 1 мкм и от 1 до 100 мкм, в качестве синтетического компонента используют пластмассу, измельченную до фракций десятки мкм, в качестве биологического компонента используют измельченную до фракций не более 100 мкм смесь листьев и травы, и/или волос животных, и/или перьев птиц, представителей биосферы данного региона, причем предварительно с помощью гранулометрического анализа, выявляют присутствие названных видов моделирующих материалов и определяют их содержание в составе реальной атмосферной взвеси, в данном регионе применительно к конкретному сезону.

Сопоставительный анализ признаков заявленного решения с признаками прототипа и аналогов свидетельствует о соответствии заявленного решения критерию "новизна".

Признаки отличительной части формулы изобретения обеспечивают решение комплекса функциональных задач.

Признаки «… используют дисперсную смесь минеральных, синтетических и биологических материалов» обеспечивают максимальное соответствие моделей реальных аэрозолей составу загрязнений атмосферы.

Признаки «… в качестве минерального компонента используют измельченный цеолитовый туф» обеспечивают как хорошую доступность этого материала как сырьевого компонента, так и учитывают тот факт, что цеолиты - горные породы коры выветривания, постоянно контактирующие с живыми организмами, в связи с их широкой распространенностью (одни из наиболее широко представленных алюмосиликатов, занимающих шестое место в мире по запасам).

Признаки, указывающие, что цеолиты должны быть представлены «… в двух размерных фракциях - до 1 мкм и от 1 до 100 мкм», позволяют учесть реальный гранулометрический состав минеральной взвеси, что важно в связи с различным механизмом воздействия на человеческий организм упомянутых фракций (более крупные частицы с учетом плотности материала не проходят дальше носоглотки, а более мелкие из-за своей летучести не оседают в верхних дыхательных путях): по данным Н.П.Юшкина (ВЕСТНИК ОТДЕЛЕНИЯ НАУК О ЗЕМЛЕ РАН - ЭЛЕКТРОННЫЙ НАУЧНО-ИНФОРМАЦИОННЫЙ ЖУРНАЛ №1(22) 2004, статья «МИНЕРАЛЬНЫЙ МИР И ЗДОРОВЬЕ ЧЕЛОВЕКА») каждый человек пропускает через свою дыхательную систему ежесуточно около 12 м3 воздуха, т.е. около 15 кг. Всего в земной атмосфере взвешено около 20 млн т минерального вещества. В промышленных районах их концентрация в сотни и даже тысячи раз выше; так что человек вдыхает не чистый воздух, а воздушно-минеральную смесь, аэрозоль с размером частиц от 0,001 до 1000 мкм. Каждый вдох - это втягивание до миллиона минеральных частиц.

В процессе эволюции живых организмов выработался довольно эффективный механизм очистки вдыхаемого воздуха: грубые частицы (более 5 мкм) оседают в каналах носоглотки, до 90% мелких частиц задерживается в верхних дыхательных путях и бронхах, из которых они удаляются вместе со слизью путем отхаркивания. Как показывают наши исследования, проникающая способность порошкообразных материалов в дыхательных путях зависит не только от крупности частиц, но и от режима дыхания; при глубоких энергичных вдохах (повышенной интенсивности дыхания) крупность частиц, способных проникнуть в верхние дыхательные пути, лежит в верхней части заявленного диапазона (от 5-6 до 10 мкм); при нормальном режиме дыхания крупность частиц, способных проникнуть в верхние дыхательные пути, лежит в средней части заявленного диапазона (от 2-3 до 5-6 мкм); при пониженной интенсивности дыхания крупность частиц, способных проникнуть в верхние дыхательные пути, лежит в нижней части заявленного диапазона (от 1-2 до 3-4 мкм).

Признаки, указывающие, что «в качестве синтетического компонента используют пластмассу, измельченную до фракций десятки мкм», учитывают реально достижимый диапазон крупности частиц синтетического компонента при измельчении пластмассы (при изготовлении компонента в процессе реализации способа), так и фиксируемый в реальных пробах аэрозоля.

Признаки, указывающие, что «в качестве биологического компонента используют измельченную до фракций не более 100 мкм смесь листьев и травы, и/или волос животных, и/или перьев птиц, представителей биосферы данного региона», обеспечивают возможность точной «привязки» свойств компонентов стандартных образцов аэрозолей к реальным условиям региона.

Признаки, указывающие, что «предварительно, с помощью гранулометрического анализа, выявляют присутствие названных видов моделирующих материалов и определяют их содержание в составе реальной атмосферной взвеси, в данном регионе», обеспечивают возможность точной «привязки» концентраций компонентов стандартных образцов аэрозолей и их материальную структуру к аналогичным параметрам реальных аэрозолей, фиксируемых в условиях данного региона.

Признаки, указывающие, что выявляют присутствие названных видов моделирующих материалов и определяют их содержание в составе реальной атмосферной взвеси, в данном регионе «применительно к конкретному сезону», позволяют учесть сезонные изменения названных параметров реальных аэрозолей.

Заявленное изобретение иллюстрируется чертежами, где на фиг.1-8 показаны образцы минеральной взвеси: на фиг.1 - из образца снега, собранного на полуострове Шкота (Увеличение х16); на фиг.2 - из образца снега, собранного в районе Первая речка (увеличение х10); на фиг.3 - из образца снега, собранного в районе ул. Пушкинской (увеличение х8); на фиг.4 - из образца снега, собранного в районе Второй речки (увеличение х18); на фиг.5 - из образца снега, собранного в районе Садгород (увеличение х8); на фиг.6 - из образца снега, собранного в районе Емар (увеличение х8): на фиг.7 - из образца снега, собранного в районе Змеинка (увеличение х18); на фиг.8 - из образца снега, собранного в районе бухты Тихой (увеличение х18); на фиг.9, а, б показаны электронные микрофотографии частицы резины из образца, собранного в районе Второй речки (увеличение а) х132 и б) х106); на фиг.10 показаны электронные микрофотографии частиц пластикового (а) и стекловатого волокна из образца, собранного в районе улицы Пушкинской (увеличение a) x111 и б) х197); на фиг.11 показаны электронные микрофотографии частиц - фрагментов морской органики из образца, собранного вблизи моря, в пробах района Садгород (а) и Эгершельд (б).

В основе заявляемого изобретения лежат следующие соображения.

Взвешенные в атмосфере частицы оказывают существенное влияние на качество воздуха и климат. При этом состав и загрязнение атмосферного воздуха являются одними из ведущих факторов риска для здоровья населения, например, атмосферное загрязнение, снижая иммунную сопротивляемость организма, сопровождается ростом инфекционно-аллергических респираторных заболеваний.

Оценка атмосферного переноса вещества и общей массы взвесей, произведенные разными авторами, расходятся в десятки и сотни раз, что связано с несовершенством применяемых методик и ограниченными возможностями применяемых измерительных средств (см. Глазовский Н.Ф. Избранные труды в двух томах. Т. 1. Геохимические потоки в биосфере. - М.: Товарищество научных изданий КМК, 2006. 535 с.2).

В связи с этим была выполнена оценка характеристик (материального состава, крупности и содержания) природных атмосферных взвесей на примере города-порта Владивосток. Пробы (атмосферные осадки в виде снега) собирались в течение зимнего сезона 2010-2011 гг. во время снегопадов. Точки отбора проб располагались в восьми районах Владивостока: полуостров Шкота (район ул. Крыгина); ул. Пушкинская (район фуникулера); Первая речка (район ул. Комсомольской); Вторая речка (район пересечения улиц Русской, Багратиона); Садгород (берег моря); Емар (берег моря); Змеинка (район ул. Космодемьянской) и бухта Тихая (зеленая зона на расстоянии 500 м от ТЭЦ-2). Чтобы исключить вторичное загрязнение антропогенными аэрозолями, отбирался только верхний слой (5-10 см) свежевыпавшего снега. Снег помещали в стерильные контейнеры объемом 1 л. Через пару часов, когда снег в контейнерах полностью истаивал, после взбалтывания из каждого образца набирали 40 мл жидкости и анализировали на лазерном анализаторе частиц Analysette 22 NanoTech (Fritsch). Это позволяло в ходе одного измерения устанавливать распределение частиц по размерам, а также определить их форму. Вещественный анализ взвесей производили на световом микроскопе Zeiss Discovery VI 2 (Германия) и электронном микроскопе Zeiss Ultra Plus с энергодисперсионным спектрометром (Германия). Напыление образцов для электронного микроскопа производили золотом.

В типичном образце, взятом на полуострове Шкота (берег моря) (фиг.1), были выявлены кварц, полевой шпат, кварц-полевошпатовые сростки, кварц с малахитовыми пленками, каолинит, труднодиагностируемые частички горных пород, кремнисто-железо-оксидные частицы, стекловатые частицы, техногенные частицы неустановленного происхождения, плагиоклазы, частицы бетона, шлаковые спеки, растительный детрит, частицы резины.

В районе Первой речки (промышленный район с наличием ТЭЦ-1) (фиг.2) были выявлены частицы сажи, кварца, полевого шпата, битума, стекла, резины. Сажа в виде слоя покрывает все остальные частицы, но при этом преобладающими по количеству являются минеральные природные частицы.

В образце, взятом на улице Пушкинской (промышленный район) (фиг.3), были выявлены кварц, полевой шпат, синтетические волокна, сажа (шлаки), оксиды железа, пленки (органические и неорганические).

В образце, взятом в районе Второй речки (район с повышенной автомобильной нагрузкой) (фиг.4), были выявлены кварц, частицы резины, полевой шпат, синтетические волокна, сажа, шлак, частицы неустановленной органики.

В образце, взятом в районе Садгород (берег моря) (фиг.5), были выявлены кварц, полевой шпат, шлак, ил, растительный детрит, неустановленная органика (волосы животного и фрагменты растений или водорослей), синтетические частицы, частицы угля. Многие частицы агрегированы.

В образце, взятом в районе Емар (берег моря) (фиг.6), были выявлены кварц, полевой шпат, плагиоклазы, эпидоты, металлические оксиды, частицы угля и асфальта, растительный детрит.

В образце, взятом в районе Змеинка (берег моря) (фиг.7), были выявлены кварц, полевой шпат, плагиоклазы, халцедон, эпидоты, техногенные частицы неустановленного происхождения.

В образце, взятом в районе бухты Тихой (промышленный район рядом с ТЭЦ-2) (фиг.8), были выявлены сажа, шлак, кварц, полевой шпат, плагиоклазы, спеки.

По всем районам г. Владивостока отмечается выраженная закономерность между экологическими характеристиками районов (например, повышенная автомобильная нагрузка или близость моря) и составом взвесей (частицы резины и фрагменты органики соответственно). Так, в районе Второй речки с повышенным автомобильным прессом встречались частички резины (фиг.9, а, б); в районе улицы Пушкинской встречается много техногенных частиц, в том числе пластиковых (фиг.10,а) и стеклянных (фиг.10,б) волокон; вблизи моря, в пробах района Садгород (фиг.11,а) и Эгершельд (фиг.11,б) были обнаружены фрагменты морской органики.

Все наблюдаемые частицы атмосферных взвесей можно разделить на три группы: природные неорганические (частицы минералов), антропогенные (частицы синтетики, шлаки, сажа и др.) и природные органические (пыльца, фрагменты насекомых и растений, шерсть животных и др.), что соотносится с наблюдениями и других исследователей (см. Иванов В.В. Вещественный состав нерастворимых частиц в снежном покрове Южного Сахалина (данные электронной микроскопии и ИК-спектроскопии) / В.В. Иванов, Н.А. Казаков, Л.Г. Колесова и др. // Тезисы докладов Международного симпозиума «Физика, химия и механика снега». - Южно-Сахалинск, 2011. С.33-37; Свинухов В.Г. Исследование, моделирование и прогноз загрязнения атмосферы в городе: автореф. дис. д-ра геогр. наук. - Владивосток, 1997. 44 с.; Сенотрусова С.В. Загрязнение атмосферы и состояние здоровья населения промышленных городов. - СПб: Изд-во Астерион, 2004. 246 с.; Христофорова Н.К. Экологические проблемы региона: Дальний Восток - Приморье. - Хабаровское книжное издательство, 2005. 304 с.; Шевченко В.П. Распределение и состав нерастворимых частиц в снеге Арктики / В.П.Шевченко, А.П.Лисицын, Р.Штайн и др. // Проблемы Арктики и Антарктики. 2007. №75. С.106-118).

Можно сделать вывод, что в современном городе (на примере Владивостока), несмотря на достаточно большое число источников техногенных атмосферных взвесей (ТЭЦ-1, ТЭЦ-2, 38 крупных котельных, мусоросжигательной завод и около 350 тыс. единиц автотранспорта), доля техногенных частиц не является преобладающей и составляет не более 10-15%. Данный факт можно объяснить характерными для г. Владивостока сильными зимними муссонными ветрами северо-западных румбов (с материка), сильной расчлененностью территории, а также сравнительно маломощным снежным покровом.

Таким образом структура стандартных образцов аэрозолей была принята как смесь минеральных, синтетических и биологических материалов.

Заявленный способ реализуется следующим образом.

В качестве минерального компонента взвеси необходимо использовать измельченный цеолитовый туф в двух размерных фракциях:

- первая, вторая - микро (1-100 мкм) (ее изготовление обеспечивается измельчением стерилизованных (например, облучением ультрафиолетом) навесок дробленного до 4-10 мм цеолита в ультразвуковом дезинтеграторе, например, Bandelin SONOPULS HD 2070 (рабочая частота 22 кГц, максимальная мощность 400 Вт)), подвергают измельчению до получения фракции с крупностью частиц менее 100 мкм;

- вторая - нано (до 1 мкм) (ее изготовление обеспечивается измельчением в вариопланетарной мельнице, например, pulverisette 4, навесок микроразмерного цеолита, приготовленного на первом этапе).

Синтетический компонент - измельченная пластмасса (сначала измельчается на металлической терке (до размера гранул менее 1 мм), а потом в планетарной мельнице (до десятков мкм)). Дальнейшее измельчение из-за пластических свойств материала невозможно. Состав материала для изготовления этого компонента определяется составом реальной атмосферной взвеси, определенной в регионе, для которого моделируется аэрозоль, при этом используется один-два, максимум три вида пластмассы, выявленной в реальных аэрозолях этого региона.

Биологический компонент представляет собой измельченную в ультразвуковом дезинтеграторе смесь листьев наземных деревьев, водорослей, волос животных (кошки, собаки). Состав материала для изготовления этого компонента определяется составом реальной атмосферной взвеси, определенной в регионе, для которого моделируется аэрозоль, при этом используется один-два, те виды материалов, доля которых не менее 15-20% в составе пробы реального аэрозоля этого региона.

Подготовленные таким образом монокомпоненты известным образом смешиваются в пропорции, соответствующей их долям в составе реальной атмосферной взвеси, определенной в данном регионе или сезоне с помощью гранулометрического анализа.

Подготовленный таким образом материал используют известным образом, например реализуют известную (классическую) схему изучения влияния вещества реальных атмосферных взвесей на живые организмы (лабораторных животных) в эксперименте, используя заявленное вещество в качестве адекватных и повторяемых экспериментальных моделей взвесей. При этом на животных осуществляют ингаляционное воздействие известным образом, например, с использованием клетки с размерами, превышающими размеры животного, снабженной чехлом из воздухонепроницаемого материала, например, полиэтилена. При этом аэрозоль вводят в полость клетки, заполняя ее внутренний объем, что заставляет животное вдыхать его. В качестве средства формирования аэрозоля используют ультразвуковой ингалятор, например ультразвуковой портативный ингалятор УП-0,25 "АРСА" (в который загружают заданную навеску распыляемого материала), выпускной канал которого сообщают с полостью клетки. Экспериментальное животное помещают в клетку, после чего формируют в объеме клетки облако аэрозоля. Количество распыляемого материала и продолжительность пребывания животного в клетке принимают из расчета получения различным группам экспериментальных животных дозы от 100 до 1000 мг/кг веса (1 раз в день до 40 мин). Группа контрольных животных не подвергается воздействию препарата.

После опытных мероприятий в заданный в эксперименте день производят одномоментный забой животных посредством декапитации и забирают материал для исследования. Далее известным образом, в соответствии с целями эксперимента, производят препарирование лабораторных животных, отбирают пробы соответствующего биологического материала и осуществляют их анализ с использованием соответствующих лабораторных средств. Например, производят окраску и приготовление мазков для световой микроскопии для светооптической морфометрии или фотосъемки или другие манипуляции.

Способ приготовления стандартных образцов аэрозолей на основе смеси тонкодисперсного порошка, содержащего определяемые элементы, отличающийся тем, что получают дисперсную смесь минерального, биологического и синтетического и материалов, путем их смешивания в пропорциях, соответствующих их долям в составе реальной атмосферной смеси, при этом в качестве минерального материала используют измельченный цеолитовый туф в двух размерных фракций - до 1 мкм и от 1 до 100 мкм, в качестве биологического материала используют измельченную до фракций не более 100 мкм смесь листьев и травы, и/или волос животных, и/или перьев птиц, представителей биосферы данного региона, а в качестве синтетического материала используют пластмассу, измельченную до фракций десятки мкм, затем формируют аэрозоль с использованием ультразвукового ингалятора, причем предварительно с помощью гранулометрического анализа выявляют присутствие названных минерального, биологического и синтетического материалов и определяют их содержание в составе реальной атмосферной взвеси, в данном регионе применительно к конкретному сезону.



 

Похожие патенты:

Изобретение относится к металлическим эталонным образцам со сложным напряженным состоянием, и может быть использовано для проверки и отладки существующих методов и оборудования для определения механических напряжений в сечениях толстостенных элементов металлических конструкций.

Изобретение относится к устройствам для отбора почв с нарушенной структурой и может быть использовано при извлечении различного типа почвенно-грунтовых образцов в полевых условиях для комплексного анализа земли сельскохозяйственного назначения.

Изобретение может быть использовано для определения замеров параметров отработавших газов (ОГ) ДВС. Способ заключается в отборе газов в пробоотборник и последующем анализе материала пробы.

Использование: для контроля локальных изменений плотности образца горной породы в процессе его деформирования. Сущность изобретения заключается в том, что на начальном этапе выбирают равномерно распределенные по всему объему образца направления для измерения скоростей распространения упругих волн по этим направлениям и определяют длину каждого направления, поочередно в образец в начале каждого направления излучают ультразвуковые импульсы, возбуждающие в образце упругие волны, измеряют время прохождения упругой волны по каждому направлению и по полученным значениям длины и времени прохождения упругой волны по каждому направлению определяют среднюю скорость распространения упругой волны по каждому направлению, затем ступенчато через заданные равные интервалы времени деформируют образец на заданное значение, на каждой ступени деформирования определяют аналогично описанному выше средние скорости распространения упругих волн по всем выбранным направлениям, по полученным значениям средних скоростей распространения упругих волн определяют скорости распространения упругих волн для отдельных частей объема образца методом ядерных Гауссовых функций с радиусом осреднения не менее 5 мм, результаты расчетов на каждом шаге деформации отображают в виде проекции вертикального сечения образца слоем толщиной не менее 5 мм с окрашиванием участков проекции различной тональностью, пропорциональной вычисленной разнице скоростей для этих участков, между текущим и предыдущим шагом деформации, по которой судят об изменении плотности образца.

Группа изобретений относится к области медицины и может быть использована для получения костного мозга (КМ) от доноров-трупов. Для этого пунктируют крылья подвздошных костей в передней и задней трети крыльев, устанавливая в каждое по два троакара.

Изобретение относится к области аналитической химии объектов окружающей среды и направлено на разработку средств аналитического контроля параметров экосистем и полиэлементного фонового мониторинга природных вод и водных экосистем.

Изобретение относится к картриджу для биоаналитического реакционного устройства. Картридж содержит по меньшей мере одну камеру для пробы, имеющую стенку, через которую эта проба может быть обработана или проанализирована биоаналитическим реакционным устройством.

Изобретение относится к системе отбора проб и контроля уровня текучего продукта и может быть использовано в качестве технологического оборудования для средств перевозки текучих продуктов, например химических грузов, как наливных, так и сыпучих.

Изобретение относится к устройствам для отбора проб отработавших газов двигателя, позволяющего производить отбор проб на движущемся транспортном средстве, и может быть использовано при контроле технического состояния транспортных средств и для оценки опасности воздействия транспортного средства на окружающую среду.
Изобретение относится к области медицины и может быть использовано для взятия, хранения и транспортировки проб биологических жидкостей с целью последующего проведения анализа материала на содержание биологически активных веществ.
Изобретение относится к области поисково-разведочных работ на золото, а также к анализу горных пород, руд, продуктов их переработки. Способ определения золотоносности горных пород включает многоступенчатое дробление исходного материала до фракции не более -0,5 мм, последующую классификацию полученного материала и обработку его бромоформом. Классификацию ведут путем седиментации с отделением класса материала -0,05+0,02 мм из водных сливов, последующей сушки и рассева оставшегося материала с выделением фракций -0,5+0,1 мм и -0,1+0,05 мм и обработкой каждого из полученных классов 10-30% спиртовым раствором бромоформа. Седиментацию ведут однократно при накоплении осадка в течение 15-20 мин и многократно в течение 3-5 мин с последующим объединением получаемых при этом водных сливов. Технический результат - повышение достоверности выявления золотоносных площадей и определения ареалов золотоносности. 1 з.п. ф-лы, 1 пр.

Изобретение относится к предварительному концентратору образцов, который может быть использован для абсорбции и десорбции образца газа. Предварительный концентратор содержит нанокомплексы металлов с углеродными нанотрубками. Причем металл в нанокомплексах металлов с углеродными нанотрубками представляет собой один или более металлов, выбранных из группы, состоящей из кобальта, меди, никеля, титана, серебра, алюминия, железа, вольфрама и их водных солей или гидратов. Предварительный концентратор может содержать блок концентрирования образцов, включающий в себя указанные нанокомплексы и отверстие для ввода образца газа, источник подачи высушенного газа и газоаналитическую систему, соединенную с предварительным концентратором образцов. Также концентратор может содержать клапан переключения каналов для селективного соединения отверстия для ввода образца газа, источника подачи высушенного газа и газоаналитической системы с блоком концентрирования образцов и регулирования абсорбции и десорбции образца газа из блока концентрирования образцов. Достигаемый при этом технический результат заключается в повышении эффективности концентрирования газов. 2 н., 11 з.п. ф-лы, 8 ил.

Изобретение относится к машиностроению и может быть использовано для изучения деформированного состояния обрабатываемого материала в зоне пластического деформирования при механической обработке с помощью делительных сеток. Сущность: осуществляют нанесение системы координатных меток на поверхности образца с помощью прижима к этой поверхности инструмента, твердость которого превышает твердость материала детали. В качестве инструмента используют клише с острыми выступающими элементами, имеющими форму четырехгранных пирамид, образующими заданную систему координатных (реперных) точек, являющихся точками пересечения плоскости исследуемого образца с гранями индентора. Образованные углубления заполняют нетвердеющей люминесцентной краской, сохраняющей свои свойства при пластическом деформировании, после чего производят механическую обработку образца, а затем измеряют параметры измененного рисунка сетки, по которым вычисляют параметры пластического деформирования. Технический результат: повышение качества картины поля деформации и увеличение точности измерения параметров пластического деформирования материала образца за счет более точного определения расположения меток сетки. 3 ил.

Группа изобретений относится к способу и устройству отбора проб отработавших газов двигателей внутреннего сгорания для анализа технического состояния транспортного средства по качеству использования моторных топлив и по влиянию на безопасность окружающей среды. Способ отбора проб высокотемпературных газов при температурах до 600°C включает измерение объема газа, протягиваемого через пробоотборный зонд посредством аспирации, и сбор конденсата с приведением объема отобранной пробы к нормальным условиям. Для получения представительной пробы, характеризующей источник выбросов, поток высокотемпературных газов охлаждают до температуры конденсирования паров летучих компонентов с учетом расхода топлива и режимов работы двигателя. Аспирация объема пробы осуществляется перепадом давлений в сборнике конденсата и в потоке отработавших газов, причем потоком отбираемого высокотемпературного газа создают «кипящий слой» из инициаторов конденсирования паров летучих компонентов. При этом объем отобранной пробы сопоставляют с расходом топлива и режимом работы двигателя, а конденсат сохраняют в сборнике конденсата в герметичных условиях до начала поэтапного исследования концентрации отдельных компонентов. Устройство состоит из пробоотборного зонда, средства измерения объема высокотемпературных газов и сборника конденсата. Пробоотборный зонд снабжен средством измерения температуры отбираемых газов, сборник конденсата отработавших газов имеет внешнюю вакуумированную термозащитную оболочку, между слоями которой размещена криогенная жидкость, и средство измерения температуры конденсата. Инициаторы конденсирования шарообразной формы изготовлены из химически инертного материала, обладающего способностью поглощать пары воды состава отработавших газов. Крышка сборника конденсата имеет тепловую развязку с вакуумированной термозащитной оболочкой сборника конденсата отработавших газов и патрубки ввода пробоотборного зонда и вывода криогенно обработанных газов, снабженных клапанами. При этом патрубок вывода снабжен фильтрующим элементом, а крышка сборника конденсата имеет пульт управления, взаимосвязанный со средством измерения температуры и объема газа, отбираемого для анализа, уровнемером криогенной жидкости и средством измерения температуры собранного конденсата. Техническим результатом изобретения является разработка способа и устройства отбора представительных проб высокотемпературных газов подвижных (нестационарных) источников токсичных выбросов, содержащих в своем составе конденсирующиеся компоненты, требующие для их сохранения в пробе до введения в измерительное устройство особых низкотемпературных условий. 2 н.п. ф-лы, 1 ил.

Изобретение относится к способу изготовления реплик из полимерных растворов для исследования ненарушенного микростроения мерзлых пород в растровом электронном микроскопе. Способ изготовления реплик заключается в том, что получают поверхность образца сколом монолита и затем осуществляют последовательное нанесение на образец полимерных растворов. В качестве полимерных растворов используют сначала 0,5% раствор формвара в дихлорэтане, а затем 2% раствор полиметилакрилата в дихлорэтане с выдерживанием образца при отрицательной температуре для высыхания каждого слоя и получения твердой пленки. После высыхания отслаивают от образца готовую пленку с частицами грунта и исследуют в растровом электронном микроскопе. 4 ил.

Изобретение относятся к лесной отрасли и может быть использовано при сертификации древесины непосредственно на корню, например в ходе лесозаготовительных работ различными видами рубок, при выполнении лесосечных и лесоскладских работ, а также при сертификации древесного сырья и полуфабрикатов на деревообрабатывающих производствах и хранении круглых, колотых и пиленых лесоматериалов. Изобретение может быть использовано также и в экологическом древесиноведении и инженерной экологии при оценке экологического состояния и режима территорий по свойствам древесины растущих деревьев. Способ включает взятие спилов в виде кружков от модельного дерева с отметками о геодезических направлениях для изучения свойств древесины вдоль волокон и по радиусу ствола, и вырезание цилиндрических образцов. Вначале поверхность спила в виде кружка размечают метками по центрам продольных осей будущих цилиндрических образцов. Затем на спил в виде кружка вертикально по меткам устанавливают группу цилиндрических резцов режущей частью вниз. После этого вырезание цилиндрических образцов из спила в виде кружка выполняют одновременно группой цилиндрических резцов. Устройство характеризуется тем, что содержит группу цилиндрических резцов. Каждый резец выполнен из инструментальной стали в виде втулки с внутренним диаметром, равным диаметру вырезаемого цилиндрического образца. Один конец втулки выполнен в виде резца с односторонней заточкой с внешней стороны втулки, а второй конец - с опорной фаской для взаимодействия с кондуктором. Способ и устройство для изготовления образцов древесины обеспечат повышение производительности изготовления цилиндрических образцов на одном спиле в виде кружка древесины и точность их взаимной ориентации относительно годичных слоев древесины на спиле. 2 н. и 6 з.п. ф-лы, 4 ил.

Изобретение относится к области аналитического приборостроения и может найти применение при разработке газоаналитических приборов. Устройство приготовления поверочных газовых смесей содержит смеситель газов, по меньшей мере, один канал для подвода целевого газа в смеситель газов, по меньшей мере, два канала для подвода газа-разбавителя в смеситель газов и канал для вывода газовой смеси из смесителя газов. При этом в каждом канале для подвода газа в смеситель газов последовательно установлены регулятор массового расхода газа и электромагнитный клапан, по меньшей мере, в одном канале для подвода газа-разбавителя в смеситель газов последовательно установлены увлажнитель газа и электромагнитный клапан. В каждом из каналов, снабженных увлажнителем газов, установлена, по меньшей мере, одна обходная магистраль с дополнительным электромагнитным клапаном. Причем выход регулятора расхода газа данного канала соединен со входом дополнительной магистрали, выход которой соединен с выходом последнего электромагнитного клапана, а на входе целевого газа и входе газа-разбавителя установлены, по меньшей мере, по одному фильтру, выходы которых соединены со входами ручных вентилей. Достигаемый технический результат заключается в возможности оперативного автоматизированного получения сухой или увлажненной газовой смеси, а также достоверного получения заданных значений концентраций газовых смесей на выходе устройства. 1 ил.

Изобретение относится к морской технике и может быть использовано для подъема глубинных вод на поверхность для комплексного изучения их физических и химических свойств. Устройство для регулярного отбора воды с контролируемых глубин океана состоит из армированного шланга, верхний конец которого закреплен на плавучести и соединен с гибким шлангом, а нижний - на водозаборной камере и с помощью балластного груза установлен на исследуемой глубине. Причем на верху плавучести установлен трубчатый вертлюг, который соединен с гибким шлангом, конец которого закреплен на лебедке, установленной внизу поплавка, и соединен с осевой муфтой вращения, переходящей в опорный патрубок, выведенный на верх поплавка. Достигаемый при этом технический результат заключается в увеличении надежности работы устройства и расширении его технических возможностей. 1 з.п. ф-лы,2 ил.

Изобретение относится к пробоотборнику, фильтру и способу отбора проб. Пробоотборник содержит корпус с внутренней полостью и два поршня, которые установлены с возможностью перемещения в ней и могут быть прижаты друг к другу во внутренней полости для сжатия пробы. По меньшей мере один из поршней может входить в реактор, чтобы отбирать пробу. Пробоотборник содержит пробоотборную камеру, которая образована пространством между внутренней полостью и поршнями, и по меньшей мере один разъем для присоединения контейнера для проб. Пробоотборник содержит фильтрующее средство, адаптированное для присоединения по меньшей мере к одному из поршней для отделения жидкого компонента пробы от твердого компонента и средство вывода жидкого компонента пробы из пробоотборной камеры. Фильтр содержит корпус со сквозным отверстием, ряд фильтрующих элементов, установленных в корпусе вокруг отверстия, каждый из которых содержит по меньшей мере одну фильтрующую мембрану с отверстиями. Способ отбора проб включает следующие операции: первый поршень вводят в биореактор, втягивают в корпус пробоотборника, при этом поршень перемещает перед собой пробу, ее сжимают между поршнями, выталкивают в разъем для присоединения контейнера для проб. Жидкую фазу пробы фильтруют путем продавливания пробы через фильтр и направляют через пустотелый шток первого поршня в разъем для отбора пробы, твердую фазу пробы выталкивают в разъем для присоединения контейнера для проб. Технический результат: обеспечение автоматического отбора пробы с высоким содержанием твердой фазы с разделением жидкого и твердого компонентов из пробы. 4 н. и 29 з.п. ф-лы, 16 ил., 1 табл.

Изобретение относится к пробоотборнику для сыпучих материалов, например, порошков химически активных металлов с размерами частиц до 15 мм. Пробоотборник содержит цилиндрическую трубу с засыпными окнами, снабженными отбойными козырьками. Засыпные окна пробоотборника выполнены в виде щелевого зазора, размер которого в 2,5-10,0 раз превышает максимальный размер частиц порошкового материала, а угол, образованный между плоскостью щелевого зазора и горизонтальным сечением трубы, меньше угла естественного откоса сыпучего материала. Достигаемый при этом технический результат заключается в повышении надежности работы устройства и увеличении достоверности отбираемой пробы как по химическому, так и по фракционному составу. 2 з.п. ф-лы, 5 ил.
Наверх