Способ контроля вариаций магнитного поля земли

Предложен cпособ контроля вариаций магнитного поля Земли. В способе измеряют напряженность магнитного поля, создают регулируемое компенсирующее магнитное поле, противоположное по направлению к измеряемому, запоминают величину компенсирующего поля при полной компенсации в установочный момент времени. При последующих измерениях вычитают из измеряемого поля запомненную величину и разницу интерпретируют как вариацию магнитного поля. В способе дополнительно создают стабильное градиентное магнитное поле, измеряют величину градиента в установочный момент времени и при последующих измерениях, корректируют передаточную характеристику измерительного устройства по результатам изменения градиента магнитного поля в сравнении с величиной, полученной в установочный момент времени. Техническим результатом является повышения объективности контроля магнитного поля Земли. 2 ил.

 

Изобретение относится к области магнитных измерений и может быть использовано для измерения вариаций магнитного поля, в частности, обусловленных магнитными бурями при определении наличия и интенсивности последних.

Из уровня техники известен способ контроля магнитного поля (Гаусс К.Ф., перевод Крылова А.Н. Избранные труды по земному магнетизму. - Л.: Издательство академии наук СССР, 1952, 341 с.), заключающийся в том, что измеряют период крутильных колебаний свободно вращающегося в горизонтальной плоскости магнита, прикрепляют к магниту немагнитную полоску с известным моментом инерции, повторно измеряют период колебаний, рассчитывают произведение магнитного момента на напряженность поля, измеряют отношение магнитного момента к напряженности поля и рассчитывают напряженность магнитного поля.

Недостатком известного способа является большая трудоемкость измерений и громоздкость используемой аппаратуры.

Наиболее близким к предлагаемому по технической сущности является способ контроля вариаций магнитного поля Земли, реализованный в известном устройстве (см. Магнитная вариационная станция. Патент Российской Федерации №14 2008702, МПК G01V3, от 26.09.1991, Любимов В.В.) и заключающийся в том, что измеряют напряженность магнитного поля, создают регулируемое компенсирующее магнитное поле, противоположное по направлению к измеряемому, запоминают величину компенсирующего поля при полной компенсации в установочный момент времени, при последующих измерениях вычитают из измеряемого поля запомненную величину и разницу интерпретируют как вариацию магнитного поля.

Недостатком известного способа является то, что он лишь частично за счет инструментальных средств решает главную проблему при измерениях временных вариаций поля, а именно проблему точного воссоздания компенсирующего поля, полученного в установочный момент времени, при измерении в последующие моменты через определенные промежутки времени (это могут быть дни, месяцы и годы). На точное воссоздание компенсирующего поля влияет возможное изменение передаточной характеристики устройства, обусловленное температурной чувствительностью датчика, температурной чувствительностью электронной схемы и временной деградацией элементов схемы.

Целью предлагаемого изобретения является повышение объективности контроля вариаций магнитного поля.

Поставленная цель достигается тем, что при использовании известного способа дополнительно создают стабильное градиентное магнитное поле, измеряют величину градиента в установочный момент времени и при последующих измерениях, корректируют передаточную характеристику измерительного устройства по результатам изменения градиента магнитного поля в сравнении с величиной, полученной в установочный момент времени.

Сущность заявляемого изобретения, поясняемая зависимостью на фиг.1 и характеризуемая совокупностью указанных признаков, представлена ниже.

При реализации предлагаемого способа, как и прототипа, измеряется величина E, являющаяся выходной характеристикой прибора, связанная с измеряемым полем соотношением E=k*H, где k - передаточная характеристика устройства.

При измерении поля в точке x1:

E ( x 1 ) = k 1 * ( H з + Н г ( х 1 ) + Н в ) ( 1 )

При измерении поля в точке х2:

Е ( х 2 ) = k 1 * ( H з + Н г ( х 2 ) + Н в ) ( 2 )

где х2 - координата, в которой измеряется магнитное поле Земли Нз и его вариация Нв; Нг - градиентное поле, определяющее градиент ΔH12 магнитного поля между точками x1 и х2.

Величина измеряемого градиента будет определяться как

E ( x 1 ) E ( x 2 ) = k 1 * ( H г ( x 1 ) Н г ( x 2 ) ) ( 3 )

Видно, что при изменении вариации магнитного поля Нв величина измеряемого градиента поля не изменяется, в то время как при изменении передаточной характеристики k происходит ее изменение и возврат характеристики к значению, имевшему место при измерении в установочный момент, приведет к получению значения градиента магнитного поля, имевшего место в установочный момент времени. Возврат имевшей место в установочный момент передаточной характеристики обеспечит объективное измерение вариации магнитного поля. Выполнение указанного алгоритма невозможно без использования хотя бы одного из отличительных признаков, что свидетельствует об их существенности.

Способ осуществляют следующим образом. На фиг.2 представлена функциональная схема устройства, по которой был реализован предлагаемый способ. Намагничивающие обмотки первого и второго датчиков 1 и 2 включены последовательно, измерительные обмотки 3 и 4 включены встречно, причем с обмотки 4 снимается сигнал, пропорциональный магнитному полю в точке х2, а с обоих включенных встречно обмоток снимается разностный сигнал, пропорциональный разнице (градиенту) магнитных полей в точках x1 и х2. При проведении измерения в установочное время в запоминающем устройстве 5 запоминается в цифровом виде уровень управляющего сигнала для компенсирующего магнитного поля, создаваемого катушками компенсации 6 и 7 поля в момент, когда сигнал с измерительной катушки 4 равен нулю, а с обеих катушек соответственно равен градиенту магнитного поля. При последующих измерениях блок управления 8 сразу инициализирует запоминающее устройство 5, включая запомненный ток компенсации, выводит на индикатор показания, пропорциональные вариации магнитного поля, и анализирует величину градиента магнитного поля. В случае ее изменения выдает сигнал о необходимости коррекции характеристики формирователя тока компенсации. Для изготовления феррозондовых преобразователей использовался малошумящий аморфный сплав 10020 на основе кобальта (состав Fe28Co70P2). Функции управляющего блока и запоминающего устройства реализовывались программно на микроконтроллере типа ATMega16 с использованием его аналогово-цифрового преобразователя с переключаемыми входами, встроенного энергонезависимого ЗУ. Для изготовления формирователя тока компенсации 9 применялась известная схема управляемого напряжением источника тока. В качестве источника градиентного поля использовался высокостабильный температурно и во времени магнит из сплава SmCo5. Моделирование вариации поля Земли производилось с помощью катушек Гельмгольца большого размера, так что система измерения градиента находилась в зоне однородного поля, моделирование ухода передаточной характеристики производилось непосредственно изменением последней. Результаты апробации полностью подтвердили достижение поставленной цели при использовании предлагаемого способа.

Способ контроля вариаций магнитного поля Земли, заключающийся в том, что измеряют напряженность магнитного поля, создают регулируемое компенсирующее магнитное поле, противоположное по направлению к измеряемому, запоминают величину компенсирующего поля при полной компенсации в установочный момент времени, при последующих измерениях вычитают из измеряемого поля запомненную величину и разницу интерпретируют как вариацию магнитного поля, отличающийся тем, что с целью повышения объективности контроля дополнительно создают стабильное градиентное магнитное поле, измеряют величину градиента в установочный момент времени и при последующих измерениях, корректируют передаточную характеристику измерительного устройства по результатам изменения градиента магнитного поля в сравнении с величиной, полученной в установочный момент времени.



 

Похожие патенты:

Изобретение относится к области морской электроразведки и может быть использовано при поисках углеводородов. Сущность: электрод состоит из запрессованных в диэлектрический стакан (3) твердых графитовых стержней (1).

Изобретение относится к области геофизики и может быть использовано для определения удельной электропроводности грунтов, скальных пород и других тел на и под поверхностью земли.

Заявляемая группа изобретений относится к области разведочной геофизики и предназначена для прогнозирования залежей углеводородов при зондировании морского дна при глубинах моря более 500 м.

Изобретение относится к разведке нефтяных месторождений. Сущность: способ предусматривает следующие шаги: выставляют электроды в рабочей области в виде решетки из малых ячеек, все станции для измерения двух компонентов (Ех, Еy) электрического поля записывают синхронно и с одинаковыми настройками временные ряды данных естественного электромагнитного поля.

Изобретение относится к емкостному обнаружению проводящих объектов. Сущность: датчик (100) для емкостного обнаружения присутствия проводящих объектов (BOD1) содержит первый сигнальный электрод (10a), второй сигнальный электрод (10b) и структуру (20) базового электрода.

Изобретение относится к подземной электромагнитной разведке. Сущность: в способе используют создающий наведенный ток генератор 2, который циклически формирует наведенный ток.

Изобретение относится к электроразведочным исследованиям - зондирование методом переходных процессов, входящих в область импульсных индуктивных методов электроразведки.

Изобретение относится к геологоразведке и может быть использовано для поиска месторождений нефти и газа путем выделения аномальных зон вызванной поляризации. .

Изобретение относится к подводным измерительным системам. .

Предложен способ магнитной навигации по геомагнитным разрезам. В способе навигация осуществляется не путем сопоставлений наблюденного поля с эталонным, а по корреляции по этим полям построенных геомагнитных разрезов. Аномалии, которые созданы объектами, лежащими выше уровня поверхности земли или дна моря, считаются помехой и не участвуют в процессе навигации. Также исключаются аномалии, которые располагаются глубже заданного уровня, как не имеющие четкой формы. Техническим результатом является повышение надежности навигации.

Изобретение относится к области геофизики и может быть использовано для прогнозирования скрытых рудных полезных ископаемых, связанных с гранитоидами. Сущность: для перспективных рудоносных участков на базе данных по физическим свойствам пород, слагающих модельный разрез, и материалов мелкомасштабных гравиразведочных и магниторазведочных съемок осуществляют построение «нулевой» глубинной модели. «Нулевую» глубинную модель выполняют в виде глубинных разрезов, на которых всем выявленным телам присваивают соответствующие интервалы изменений плотностных и магнитных характеристик. Затем путем решения серии обратных задач осуществляют в интерактивном режиме подбор глубинной модели. В процессе подбора глубинной модели меняют как форму отдельных тел модели, так и их физические параметры (плотность и намагниченность) до практически полного совпадения расчетных гравитационного и магнитного полей с наблюденными. Полученное неоднородное распределение плотности пород и намагниченности интерпретируют, используя эталонные генетические модели рудно-магматических систем, с построением геолого-геофизических разрезов. На геолого-геофизических разрезах по резкой смене или по смещению изолиний полей плотности и намагниченности выделяют крупные разломы и области низкоплотных немагнитных пород как остаточные очаги котектических гранитов (источников флюидов, рудного вещества и энергии), а отходящие от них апофизы оконтуривают как прогнозируемые зоны рудоотложения. Технический результат: прогнозирование с высокой степенью достоверности скрытого оруденения, связанного с гранитоидами. 8 ил.
Изобретение относится к области магниторазведки и может быть использовано при поиске месторождений углеводородов в молодых осадочных бассейнах. Сущность: проводят аэромагнитную, а также наземную магнитную или гидромагнитную съемки нефтегазоносной площади. Выявляют аномалии локальной составляющей остаточного магнитного поля. Выделяют замкнутые отрицательные аномалии. Оценивают конфигурацию и плотность изолиний отрицательных замкнутых аномалий локальной составляющей остаточного магнитного поля. Определяют углы линий наклона аномального магнитного поля по профилям, проходящим через замкнутые изолинии отрицательной составляющей локального магнитного поля. Технический результат: повышение эффективности поиска месторождений углеводородов.

Изобретение относится к электроразведке методом индукционного профилирования и может быть использовано при изучении строения верхней части геологического разреза при поисково-картировочных геоэлектрических исследованиях. Технический результат: повышение информативности и помехоустойчивости измерений, снижение трудоемкости электроразведочных работ. Сущность: используют источник электромагнитного поля и совмещенный с его осью приемный магнитный датчик, установленные и закрепленные между собой таким образом, чтобы в регистрируемом сигнале вклады первичного поля источника и нормального вторичного поля, возбуждаемого в изучаемом геоэлектрическом разрезе, были близки к нулю, а измеряемая составляющая магнитного поля характеризовала аномальный эффект во вторичном поле от исследуемой неоднородности среды. Профилирование осуществляют путем горизонтального смещения относительно поверхности Земли источника электромагнитного поля и установленного на оси генераторной петли приемного магнитного датчика вдоль профиля, параллельного оси датчика и проходящего вкрест простирания предполагаемых проводящих геологических образований с непрерывной или дискретной регистрацией аномальной составляющей магнитного поля. По ее распределению судят о наличии и расположении геоэлектрической неоднородности. 1 ил.
Изобретение относится к геофизике и предназначено для прогнозирования землетрясений по изменению напряженного состояния пород в зоне предполагаемого очага по аномалиям вариаций геомагнитного поля. Сущность: вариации магнитного поля измеряются на двух станциях - базисной и рабочей. На базовой станции и в районе установки второй станции проводят магнитотеллурическое зондирование. По его результатам выбирают места для установки второй станции по идентичности геоэлектрических свойств разреза с первой (базовой) станцией, например по максимальной корреляции графиков магнитотеллурического зондирования. Производят регистрацию вариаций геомагнитного поля на обеих станциях (δT1 и δТ2), вычисляют разность вариаций (Δ12(t)=δT1(t)-δT2(t)). Выделяют вариационные аномалии, например, по превышению разности Δ12≥kσΔ, где k=1,…,3, σΔ - среднее квадратическое значение без учета аномальных значений, по которым судят об интенсивности проявления геодинамических процессов на второй станции Технический результат: повышение надежности.

Изобретение относится к измерительной технике и представляет собой индукционный датчик для измерения земного магнитного поля. Датчик содержит электромагнитный узел обнаружения магнитного поля, размещённый на маятнике. Маятник помещен в корпус и подвешен к его стенке на шарнире. Противоположная от шарнира стенка корпуса имеет форму полусферы и соответствует по размеру сферической поверхности маятника. Техническим результатом является обеспечение постоянства расстояния между корпусом и маятником, когда маятник совершает движения, и ламинирования между ними амортизационной жидкости. 2 н. и 14 з.п. ф-лы, 3 ил.

Изобретение относится к морской электромагнитной съемке. Сущность: в способе использовано шесть горизонтальных компонент электрического поля. Эти компоненты электрического поля обеспечиваются трехштифтовыми заземляющими электродами четырех полюсов, соединенными попарно. Один из штифтов каждого из трехштифтовых заземляющих электродов и штифты трех других трехштифтовых заземляющих электродов попарно образуют шесть горизонтальных компонент электрического поля. Одновременно регистрируются данные об изменении электромагнитного поля с течением времени. Технический результат: эффективное обеспечение регистрации электрического поля под углом менее 22,5 градусов к направлению активации независимо от ориентации станции обнаружения, гарантия эффективной связи между источником активационного поля и парным полюсом, предназначенным для регистрации электрического поля, снижение требований к ориентации станции обнаружения и к направлению движения и положению источника активационного поля во время сбора данных, исключение потерь электромагнитных данных. 8 з.п. ф-лы, 2 ил.

Изобретение относится к области геофизики и может быть использовано при разведке месторождений нефти и природного газа. Заявлена электромагнитная расстановка, сконфигурированная для использования в подземной буровой скважине. Расстановка включает в себя множество расположенных с промежутком вдоль оси электромагнитов и сконфигурирована с возможностью генерации спектра магнитного поля, имеющего по меньшей мере первую и вторую пары магнитно-противоположных полюсов. Преимущественно могут использоваться измерения при пассивной локации возбужденного магнитного поля, например, для исследования и управления непрерывным бурением объединенной скважины. Электромагнитная расстановка может также использоваться в активной локации. При активной локации может также использоваться расстановка постоянных магнитов, обеспечивающая подобный спектр магнитного поля. Технический результат - повышение точности разведочных данных. 2 з.п. ф-лы, 15 ил.

Изобретение относится к области геофизических исследований и предназначено для поисков и оконтуривания углеводородных (УВ) залежей. Сущность: возбуждают импульсное электромагнитное поле в среде последовательно встречно с двух сторон относительно участка зондирования. Измеряют пространственные разности потенциалов электрического поля на круговом профиле перемещения генераторно-приемной кабельной косы при ее одностороннем движении по профилю и одновременно на парных участках профиля, симметричных относительно диаметра, проходящего через центр генераторной линии. Измерения осуществляют с помощью двух измерительных триполей, встроенных в косу таким образом, чтобы в процессе кругового ее перемещения центры триполей располагались на профиле диаметрально противоположно симметрично относительно центра генераторной линии. Измерение на каждом из парных участков исследования производят сначала одним из триполей пары при одном направлении зондирующего поля и повторяют с помощью другого триполя пары во время его пребывания на том же участке, но при противоположном направлении поля. По измерениям разностей потенциалов рассчитывают односторонние и двухсторонние ДНЭ-параметры. Строят временные разрезы электрофизических параметров по линейным профилям, сформированным путем объединения результатов зондирования, на последовательных круговых профилях, вдоль и/или поперек площади исследуемого объекта. Технический результат: повышение производительности, эффективности и надежности электроразведочных работ. 2 н. и 2 з.п. ф-лы, 3 ил.

Изобретение относится к электроразведочным исследованиям. Технический результат: снижение трудозатрат на проведение измерений и повышение информативности измерений при экспресс-контроле за динамикой извлечения высоковязкой нефти и битума вдоль профиля горизонтальных скважин в реальном масштабе времени, контроле режима закачки теплоносителя, а также режима отбора. Сущность: над траекторией горизонтальных скважин на время разработки высоковязких нефтей и битумов располагают стационарно генераторный контур (ГК) и внутри него систему измерительных контуров (ИК) меньшего размера. Систему ГК и ИК располагают на, над или под поверхностью земли. Каждый ИК через коммутатор подключен к регистратору, оснащенному устройством регулирования времени задержки. Во время регистрации электродвижущей силы (ЭДС) в ИК определяют временные задержки, на которых на фоне сигналов, регистрируемых одновременно всеми ИК, наблюдается контрастный рост наведенной ЭДС, которая соответствует сигналу от металлической обсадной колонны скважины. Привязывают ЭДС на выделенных задержках к траектории прохождения. На основе построенной зависимости продольной проводимости (S) от глубины (h) рассчитывают зависимости S от h на других ИК. По ним определяют мощность и глубину залегания продуктивного пласта. По измеренным ЭДС для исследуемого пласта определяют кажущееся удельное электрическое сопротивление (ρк) и рассчитывают коэффициент кажущейся битумонасыщенности (Кб) по каждому циклу измерений. 2 н. и 6 з.п. ф-лы, 3 ил.
Наверх