Способ измерения расхода жидкости

Способ измерения расхода жидкости, протекающей через канал заключается в то, что в сечении канала выбирают сложную виртуальную измерительную поверхность, перекрывающую полностью все сечение канала, затем, в ее геометрическом центре или центрах устанавливают ультразвуковой источник или источники, формирующие группу узконаправленных лучей, пронизывающих виртуальную измерительную произвольную поверхность с заданным шагом по широте и долготе так, что она покрывается сеткой точек пересечения каждого луча с виртуальной измерительной поверхностью, причем каждый луч перпендикулярен поверхности в точке пересечения. Затем для каждого луча проводят измерение скорости потока вдоль луча в точке пересечения с виртуальной измерительной поверхностью в направлении нормали к упомянутой поверхности по доплеровскому смещению частоты эхосигнала от точки пространства на виртуальной измерительной поверхности, после чего проводят интегрирование по всем точкам сетки. Технический результат - повышение точности измерения расхода, обеспечение обслуживания без осушения канала и даже без остановки гидроэнергетических установок. 1 з.п. ф-лы, 2 ил.

 

Изобретение относится к способам измерения расхода жидкости, протекающей через канал произвольного сечения, и может быть использовано для измерения объемного расхода жидкости в действующих гидроэнергетических установках и в других применениях водопроводящих каналов большого сечения.

Известен способ определения объемного расхода жидкости в гидравлических установках, заключающийся в измерении средней скорости потока с использованием акустического метода и определении объемного расхода воды по измеренному параметру скорости и постоянному коэффициенту расхода, определенному при энергетических испытаниях на конкретном объекте (патент РФ №2201579, МПК G01F 1/66, опубл. 27.03.2003 г.). Определение средней скорости потока в сечении спиральной камеры производят акустическим способом с размещением акустических преобразователей в горизонтальной плоскости в пределах высоты статорных колонн. Один из акустических преобразователей устанавливается на оголовке статорной колонны, а второй - в горизонтальной плоскости на стенке спиральной камеры.

Недостатком данного способа является невысокая точность измерения скорости потока и неудобство обслуживания акустических преобразователей, заключающееся в том, что для этого требуется осушение канала.

В качестве прототипа выбран способ определения объемного расхода турбин низконапорных гидроэлектростанций (варианты), (патент РФ №2369771, МПК F03B 13/06, опубл. 10.10.2009 г.). Способ заключается в измерении средней скорости потока с использованием акустического метода и определении объемного расхода воды по измеренному параметру скорости и постоянному коэффициенту расхода.

Недостатком прототипа является невысокая точность измерений, а также то, что обслуживание возможно только при осушении места установки датчиков.

Технической задачей изобретения является повышение точности измерения расхода, обеспечение обслуживания без осушения и даже без остановки гидроагрегата.

Поставленная задача решается тем, что для измерения расхода жидкости, протекающей через канал, в сечении канала выбирают сложную виртуальную измерительную поверхность, перекрывающую полностью все сечение канала, затем, в ее геометрическом центре или центрах устанавливают ультразвуковой источник или источники, формирующие группу узконаправленных лучей, пронизывающих виртуальную измерительную произвольную поверхность с заданным шагом по широте и долготе так, что она покрывается сеткой точек пересечения каждого луча с виртуальной измерительной поверхностью, причем каждый луч перпендикулярен поверхности в точке пересечения, затем для каждого луча проводят измерение скорости потока вдоль луча в точке пересечения с виртуальной измерительной поверхностью в направлении нормали к упомянутой поверхности по доплеровскому смещению частоты эхосигнала от точки пространства на виртуальной измерительной поверхности, после чего проводят интегрирование по всем точкам сетки.

В одном из конкретных вариантов реализации способа в качестве виртуальной произвольной измерительной поверхности выбрана виртуальная сфера, в единственном геометрическом центре которой располагается единственный многолучевой ультразвуковой источник.

Сущность изобретения поясняется чертежами, где на фиг.1 показано расположение виртуальной сферы с полным перекрытием сечения канала, на фиг.2 показано расположение ультразвукового источника в центре виртуальной сферы и сечение виртуальной сферы лучами.

На фиг.1: сечение канала 1, направление течения потока 2, виртуальная сфера 3, перекрывающая все сечение канала.

На фиг.2: точки пересечения с виртуальной сферой 4, узконаправленные лучи 5, ультразвуковой источник 6, А - угол между лучами в горизонтальной плоскости, В - угол между лучами в вертикальной плоскости.

Способ осуществляют следующим образом. В качестве ультразвукового источника 6 используется многолучевой эхолот, узконаправленные лучи 5 которого распространяются в пространстве под выбранным углом А, так чтобы пересекать виртуальную сферу 3 по всей ширине сечения канала с одинаковым шагом (фиг.2). Все узконаправленные лучи 5 лежат в плоскости перпендикулярной стенкам канала. Плоскость узконаправленных лучей 5 начинают механически вращать сверху вниз, вращая сам ультразвуковой источник 6, причем во время вращения плоскость узконаправленных лучей 5 остается перпендикулярной стенкам канала. Допустим, что при вращении фиксируются несколько угловых положений с шагом по углу места В.

Для каждого углового положения по вертикали проводят зондирование пространства всеми узконаправленными лучами 5 ультразвукового источника 6 и определяют доплеровское смещение именно в точках пересечения узконаправленных лучей 5 и виртуальной сферы 3, по которому и определяют скорость потока в указанных точках 4 пересечения с виртуальной сферой в направлении, перпендикулярном поверхности виртуальной сферы 3 в искомых точках. Получают искомую сетку точек и значение скоростей потока в них. Эти данные используют для расчета суммарного потока через канал.

Количество и частота точек определяется величинами А и В. Чем меньше эти величины, тем больше точек будет участвовать в расчетах, и соответственно более точным будет результат. Для течений с высокой турбулентностью необходимо более часто располагать точки.

Текущий расход в некоторый момент времени для небольших углов А и В определяют по формуле 1

где Р - текущий расход в некоторый момент времени,

R - радиус сферы,

А и В - углы между лучами по горизонтали и вертикали соответственно,

Vi - скорость в точке с номером i,

Σ - сумма по всем просканированным точкам.

Небольшим, считается угол, если на площадке виртуальной сферы с угловым размером А*В, для достижения точности измерения в каждом конкретном случае, можно считать постоянной скорость потока. Это есть условие выбора величины шага по углам.

Вариантов сканирования может быть большое множество. Механическое вращение нескольких лучей в одной из плоскостей, как описано выше, электронное одномерное или двумерное сканирование или любые другие комбинации электронного, механического сканирования или непосредственного использования большой двумерной матрицы лучей.

Предлагаемый способ позволяет измерять расход жидкости в канале и производить обслуживание без осушения и даже без остановки гидроагрегата.

1. Способ измерения расхода жидкости, протекающей через канал, заключающийся в том, что в сечении канала выбирают сложную виртуальную измерительную поверхность, перекрывающую полностью все сечение канала, затем в ее геометрическом центре или центрах устанавливают ультразвуковой источник или источники, формирующие группу узконаправленных лучей, пронизывающих виртуальную измерительную произвольную поверхность с заданным шагом по широте и долготе так, что она покрывается сеткой точек пересечения каждого луча с виртуальной измерительной поверхностью, причем каждый луч перпендикулярен поверхности в точке пересечения, затем для каждого луча проводят измерение скорости потока вдоль луча в точке пересечения с виртуальной измерительной поверхностью в направлении нормали к упомянутой поверхности по доплеровскому смещению частоты эхосигнала от точки пространства на виртуальной измерительной поверхности, после чего проводят интегрирование по всем точкам сетки.

2. Способ по п.1, отличающийся тем, что сложной виртуальной измерительной поверхностью является виртуальная сфера, а единственной точкой установки одного многолучевого ультразвукового источника является геометрический центр этой сферы.



 

Похожие патенты:

Ультразвуковой расходомер для измерения потока текучей среды в трубопроводе содержит патрубок, имеющий сквозное отверстие и посадочное гнездо преобразователя. Посадочное гнездо преобразователя проходит вдоль центральной оси от открытого конца в сквозном отверстии к закрытому концу, являющемуся удаленным по отношению к сквозному отверстию.

Изобретение относится к измерительной технике и может быть использовано в системах автоматического контроля и измерения расхода двухфазного потока сыпучих диэлектрических материалов, перемещаемых воздухом по металлическому трубопроводу.

Ультразвуковой расходомер для измерения потока текучей среды в трубопроводе. В некоторых примерах реализации ультразвуковой расходомер содержит патрубок, блок преобразователя и блок заглушки посадочного гнезда.

В одном из примеров реализации ультразвуковой расходомер содержит патрубок, имеющий сквозное отверстие и посадочное гнездо преобразователя, проходящее от внешней поверхности патрубка к сквозному отверстию.

Предложен ультразвуковой расходомер для измерения потока текучей среды в трубопроводе. В одном из примеров реализации настоящего изобретения ультразвуковой расходомер содержит патрубок, имеющий сквозное отверстие и канал преобразователя, проходящий к сквозному отверстию.

Датчик ультразвукового расходомера может быть использован для определения расхода газов и жидкостей. Он состоит из пролетного канала, в торцах которого установлены акустические преобразователи, и двух патрубков, соединяющих пролетный канал с контролируемым трубопроводом.

Группа изобретений относится к измерительной технике и, в частности, к способу и системе обнаружения и отслеживания отложений. Система обнаружения нароста отложений в ультразвуковом расходомере включает ультразвуковой расходомер, муфту, пару преобразователей, закрепленных на муфте.

Ультразвуковой преобразователь ультразвукового расходомера снабжен корпусом, содержащим ближний к месту крепления конец, дальний к месту крепления конец и внутренний объем.
Способ одновременного определения расходов жидкой и газовой фаз потока газожидкостной смеси, включающий зондирование восходящего потока несепарированной газожидкостной смеси непрерывным ультразвуковым сигналом, прием отраженного от неоднородностей сигнала, комплексное детектирование, выделяющее синфазную с зондирующим сигналом и квадратурную составляющие, проведение спектрального анализа с определением знака преобладающей частоты, определение частоты сигнала и доли времени, когда преобладающая частота принимает отрицательное значение.

Изобретение относится к системам выравнивания потока текучей среды в проточной части расходомеров или в трубопроводах на входе расходомеров, предназначенных для измерений объемного расхода текучих сред.

Использование: для определения скорости потока газовой среды. Сущность изобретения заключается в том, что осуществляют генерирование ультразвуковых колебаний, прием ультразвуковых колебаний электроакустическими преобразователями, измерение разности фаз электрических колебаний между сигналами от электроакустических преобразователей и вычисление скорости потока по разности фаз, при этом в зависимости от управляющего напряжения, посредством коммутатора на вход измерителя разности фаз подаются сигналы от электроакустических преобразователей 1, 2, 3, из которых электроакустические преобразователи 1, 2 расположены на концах измерительного канала, а преобразователь 3 - на расстоянии одной длины волны распространения ультразвука в воздухе; при нулевом управляющем напряжении обрабатывается сигнал с преобразователей 2 и 3 и запоминаются результаты измерения скорости звука; когда управляющее напряжение принимает значение единицы, через коммутатор проходят сигналы от преобразователей 1 и 2, а на выходе запоминающего устройства выдается запомненный результат измерения электрических сигналов, полученных на выходах преобразователей 2 и 3, и текущее значение разности фаз, полученное на выходе преобразователей 1 и 2; вычислительное устройство рассчитывает мгновенное значение скорости потока газовой среды. Технический результат: обеспечение возможности повышения быстродействия определения скорости потока газовой среды и обеспечение возможности представления результатов в режиме реального времени. 2 н.п. ф-лы, 2 ил.

Изобретения относятся к технике измерения расхода жидкости или газа. Способ включает этапы, выполняемые без прекращения потока текучей среды через расходомер, передачу ультразвукового сигнала первой частоты через указанную текучую среду; регулировку частоты с изменением первой частоты на вторую частоту и передачу другого ультразвукового сигнала второй частоты через указанную текучую среду, причем способ дополнительно включает использование одного общего акустического согласующего слоя для указанных ультразвукового сигнала и другого ультразвукового сигнала. Система содержит пьезоэлектрический элемент, выполненный с возможностью резонировать более чем на одной частоте; акустический согласующий слой, соединенный с пьезоэлектрическим элементом и выполненный с возможностью обеспечения согласования импеданса на каждой из указанной более чем одной частоты; возбуждающее устройство для одновременного возбуждения указанной более чем одной частоты с обеспечением одновременной выработки указанным элементом более чем одного сигнала; оценивающее устройство для оценки качества указанного более чем одного сигнала и выбирающее устройство для выбора, с использованием указанной оценки, одной частоты из указанной более чем одной частоты для ее возбуждения. Расходомер, содержащий пьезоэлектрический элемент, выполненный с возможностью резонировать на различных частотах; акустический согласующий слой, сопряженный с указанным элементом и выполненный с возможностью обеспечения согласования акустического импеданса на указанных различных частотах, причем пьезоэлектрический элемент испускает первый сигнал через текучую среду, проходящую через расходомер, и испускает другой сигнал вместо первого сигнала на основании оценки качества указанного первого сигнала, а указанные первый и другой сигналы имеют различные частоты. Технический результат заключается в повышении точности измерения расхода. 3 н. и 14 з.п. ф-лы, 16 ил., 1 табл.

Изобретение относится к области измерительной техники и может быть использовано в системах измерения газообразных и текучих сред, а также в коммерческих расчетах. Способ измерения расхода среды, при котором основной поток суммируют с обратным потоком, проводят суммарный поток через основной расходомер, измеряют его, далее разделяют его на два потока, один из которых считают равным входящему и направляют в нагрузку, другой - считают обратным, измеряют своим расходомером и вычитают из суммарного потока. При этом разделяют весь диапазон измерения на две части - первая часть измерения с обратным потоком, вторая часть измерения без обратного потока. В первой части диапазона обратный поток принудительно направляют к основному потоку для суммирования, изменяют его величину инверсно к величине основного потока. Во второй части диапазона расход основного потока измеряют основным расходомером без обратного потока. Кроме того, по изобретению устанавливают связь пропорциональной и инверсной между обратным потоком и основным. Технический результат - расширение диапазона измерения расхода. 3 з.п. ф-лы, 1 ил.

Способ измерения расхода многофазной жидкости, заключающийся в измерении акустического шума, создаваемого движением жидкости при протекании ее через известное сечение, скорость прохождения жидкости определяют по частоте акустических шумов, вызываемых неравномерностью движения жидкости, предварительно измеряют температуру потока и давление в трубе, плотности каждой из фаз, а затем на основе предложенных зависимостей рассчитывают объемную или массовую доли каждой фазы. При этом, используя лабораторные результаты, составляют уравнения зависимости скорости звука каждой фазы от давления и температуры, а уравнение скорости звука для воды дополняют зависимостью от солености воды, при этом полученные уравнения записывают в расчетный блок, измеряют давление и температуру в трубопроводе, измеряют соленость воды, измеряют и записывают амплитуды и частоты колебаний трубы, по которой протекает многофазная жидкость, измеряемый диапазон частот делят на части, соответствующие каждой фазе, в каждой из частей после применения быстрых преобразований Фурье выделяют максимальные значения амплитуд и соответствующие им частоты и вычисляют объемный расход каждой фазы жидкости по соответствующей формуле. Технический результат - уменьшение погрешности измерения каждой фазы. 4 ил.

Преобразовательный блок ультразвукового расходомера. По меньшей мере некоторые из пояснительных примеров реализации представляют собой системы, содержащие: патрубок, который задает внешнюю поверхность, центральный проход и посадочное гнездо преобразователей, проходящее от внешней поверхности к центральному проходу; и преобразовательный блок, соединенный с посадочным гнездом преобразователей. Преобразовательный блок содержит: переходной элемент, соединенный с патрубком, причем переходный элемент имеет первый конец, размещенный в посадочном гнезде преобразователей, и второй конец, расположенный снаружи внешней поверхности; пьезоэлектрический модуль с пьезоэлектрическим элементом, причем пьезоэлектрический модуль соединен непосредственно с первым концом переходного элемента и размещен во внешней поверхности; трансформаторный модуль с размещенным в нем трансформатором, причем трансформаторный модуль соединен непосредственно со вторым концом переходного элемента и размещен снаружи внешней поверхности; и электрический проводник, размещенный в проходе посредством переходного элемента и соединяющий трансформатор с пьезоэлектрическим элементом. Технический результат - повышение надежности ультразвуковых расходомеров, сокращение времени выявления неисправности и ремонта. 4 н. и 16 з.п. ф-лы, 12 ил.

Блок преобразователя для ультразвукового расходомера содержит пьезоэлектрический модуль. При этом пьезоэлектрический модуль содержит корпус, имеющий центральную ось, первый конец, второй конец, противоположный первому концу, и первую внутреннюю камеру, проходящую в радиальном направлении от первого конца. Кроме того, пьезоэлектрический модуль содержит пьезоэлемент, расположенный в первой внутренней камере. Кроме того, пьезоэлемент содержит распорки, расположенные в первой внутренней камере между пьезоэлементом и корпусом, причем каждая распорка расположена в радиальном направлении между пьезоэлементом и корпусом. Технический результат - улучшение качества ультразвуковых сигналов. 3 н. и 22 з.п. ф-лы, 9 ил.

Устройство для прохождения сигналов ультразвуковой частоты через контролируемую среду в трубопроводе содержит источник сигналов ультразвуковой частоты, как минимум, «N»-управляемых ключей, подсоединенных своими соответствующими выводами к выходу источника сигналов ультразвуковой частоты через схему развязки, как минимум, «М»-первых ультразвуковых пьезоэлектрических преобразователей, установленных на трубопроводе с контролируемой средой и подсоединенных своими соответствующими выводами к соответствующим вторым выводам одних из, как минимум, «N»-соответствующих управляемых ключей, «М»-вторых ультразвуковых пьезоэлектрических преобразователей, установленных на трубопроводе с контролируемой средой и подсоединенных своими соответствующими выводами к соответствующим вторым выводам других из, как минимум, «N»-соответствующих управляемых ключей, усилитель, непосредственно подсоединенный своим входом к выходу схемы развязки, и схему управления, подсоединенную своими соответствующими выходами к управляющим входам «N»-управляемых ключей и к выходу источника сигналов ультразвуковой частоты. Технический результат - исключение влияния разброса параметров электронных компонентов на процесс прохождения сигналов ультразвуковой частоты по электронным цепям устройства и, следовательно, повышение точности измерения объемного расхода контролируемой среды в трубопроводе. 3 ил.

Изобретение относится к ультразвуковому проточному датчику (110) для применения в текучей среде. Предложенный ультразвуковой проточный датчик (110) содержит, по меньшей мере, два ультразвуковых преобразователя (120, 122), расположенных в проточной трубе (112), вмещающей поток текучей среды, и разнесенных вдоль потока текучей среды. Ультразвуковой проточный датчик (110) также содержит отражательную поверхность (126), причем ультразвуковые преобразователи (120, 122) установлены с возможностью посылки друг другу ультразвуковых сигналов посредством однократного отражения последних на отражательной поверхности (126). Между ультразвуковыми преобразователями (120, 122) предусмотрено отклоняющее устройство (132), выполненное таким образом, чтобы в основном подавлять паразитные ультразвуковые сигналы, отражаемые отражательной поверхностью (126) и падающие на отклоняющее устройство (132), путем их отклонения в сторону от ультразвуковых преобразователей (120, 122). Отклоняющее устройство расположено, по меньшей мере, на средней трети соединительного отрезка между ультразвуковыми преобразователями (120, 122) и имеет, по меньшей мере, одну отклоняющую поверхность (134, 136; 150). Нормали к отклоняющей поверхности (134, 136; 150) образуют с нормалью к отражательной поверхности (126) углы, среднее значение которых больше 10°. Технический результат - повышение точности измерений за счет существенного подавления паразитных ультразвуковых импульсов. 6 з.п. ф-лы, 34 ил.

Изобретение относится к измерительной технике и преимущественно предназначено для использования в системах контроля и измерения скорости и расхода жидких и газообразных продуктов. Оно может быть использовано при транспортировке топливных продуктов, в водоснабжении, медицинской технике, а также в океанографии при измерении скорости течений в морях и океанах. Технический результат изобретения -повышение точности измерения при контроле параметров потока. Точность измерения скорости потока можно повысить, зная скорость распространения звука в среде и величины задержек в электронных схемах и акустических преобразователях.
Изобретение относится к области гидроакустической метрологии. Сущность: при использовании известного свойства электроакустических излучателей изменять соотношение величин активной и реактивной составляющих своего сопротивления излучения в соответствии с флюктуациями характеристик среды - ее плотности, температуры и давления. Таким образом, контролируя соотношение названных величин, можно получать информацию о характеристиках среды и их динамике, сопровождающей, в частности, прокачивание жидкости в трубопроводах. Это соотношение при работе генератора на комплексную нагрузку однозначно характеризуется фазовым сдвигом между подводимым к излучателю напряжением и потребляемым им током, поэтому последний (фазовый сдвиг) и выбирают в качестве контролируемого параметра в предлагаемом способе контроля скорости потока и объемов прокачиваемых жидких сред в трубопроводах. Технический результат: существенное упрощение реализуемых по этому способу устройств со значительным снижением затрат на их производство, установку и эксплуатацию, что повлечет за собой повышение надежности последних и возможность реализации мобильного варианта устройства в целом.
Наверх