Электронный датчик тока и напряжения на высоком потенциале

Изобретение относится к области электроизмерительной техники и может быть использовано для измерения токов и напряжений. Электронный датчик тока и напряжения на высоком потенциале содержит измерительный модуль, высоковольтный токопровод, соединенные с аналого-цифровым преобразователем. Вход питания аналого-цифрового преобразователя соединен с аккумулятором посредством блока выбора питания, а также с оптическим источником питания. Выход делителя напряжения соединен с входом аналого-цифрового преобразователя, выходы которого выведены из измерительного модуля посредством оптических каналов. Делитель напряжения закреплен в опорном изоляторе. В измерительном модуле дополнительно расположены преобразователь напряжения, соединенный с низковольтным плечом делителя напряжения. Оптические каналы соединены с коммуникационным модулем, содержащим коммуникационный контроллер, блок питания, модуль накачки лазерного диода, блок сигнализации. Также устройство содержит интерфейс SPI. Технический результат изобретения - повышение стабильности измерения тока и напряжения на высоком потенциале. 3 з.п. ф-лы, 2 ил.

 

Изобретение относится к области электроизмерительной техники и может быть использовано для измерения токов и напряжений, в частности, на объектах учета и распределения электрической энергии взамен существующих трансформаторов тока и напряжения.

Из уровня техники известно устройство измерения переменных и импульсных токов в линии электропередачи, в котором выход датчика тока, выполненного в виде катушки Роговского, соединен с входом устройства в экологическом корпусе, выполняющего функции регистрации, а также конвертирования оптических и электрических величин, при этом выходы корпуса через оптические каналы соединены с входами системы контроля и записи, причем выходы устройства контроля и записи соединены с компьютером (US 4105966 А, 08.08.1978, G01R 13/04).

Недостатками известного устройства являются недостаточная точность измерений, низкая помехоустойчивость, не проработанность конструкции в схеме электропередачи и сопряжения с существующими устройствами измерения, защиты, учета электроэнергии, невозможность измерения напряжения.

Наиболее близким решением по технической сути и достигаемому результату является техническое решение по трансформатору тока, совмещенному с конденсатором высоковольтного плеча емкостного делителя напряжения, принятое за прототип, где внутри герметично закрепленного на металлическом основании опорного изолятора расположен емкостной делитель напряжения, при этом сверху кожуха установлен измерительный модуль с расположенными внутри высоковольтным токопроводом и датчиком тока, который выполнен в виде электромагнитного трансформатора тока, а выводы с делителя напряжения и датчика тока выполнены в виде проводников (RU 2297063 С2, 10.04.2007, H01F 38/00).

Недостатками указанного устройства являются аналоговый вывод измеренных величин, нелинейная зависимость выходной характеристики низковольтного трансформатора тока, наличие пульсаций в этом сигнале.

Технический результат заявленного технического решения заключается в повышении стабильности измерения тока и напряжения на высоком потенциале за счет стабилизации линейной зависимости выходной характеристики датчика тока, передачи данных по интерфейсу SPI и передачи измеренных значений в цифровом виде с возможностью сигнализации.

Указанный технический результат достигается за счет того, что электронный датчик тока и напряжения на высоком потенциале содержит датчик тока, делитель напряжения, опорный изолятор и измерительный модуль, внутри которого закреплен высоковольтный токопровод с датчиком тока, при этом измерительный модуль установлен на опорном изоляторе, внутри которого расположен делитель напряжения, причем выводы с измерительного модуля закреплены внутри опорного изолятора, согласно изобретению он также снабжен дополнительным датчиком тока, аналого-цифровым преобразователем, блоком выбора питания, аккумулятором, оптическим источником питания, преобразователем напряжения и коммуникационным модулем, оснащенным зафиксированными и соединенными между собой коммуникационным контроллером, блоком питания, модулем накачки лазерного диода и блоком сигнализации, при этом внутри измерительного модуля закреплен блок выбора питания, который соединен с аккумулятором и оптическим источником питания, и аналого-цифровой преобразователь, вход питания которого соединен с блоком выбора питания, а входы - с датчиками тока и делителем напряжения, причем делитель напряжения выполнен с возможностью дополнительного отбора питания посредством преобразователя напряжения от низковольтной секции, а вход преобразователя напряжения соединен с делителем напряжения и выход - с блоком выбора питания, кроме того, выводы измерительного модуля выполнены в виде оптических каналов и соединены с коммуникационным модулем с возможностью передачи данных синхронным последовательным интерфейсом SPI.

Коммуникационный модуль предпочтительно выполнен с возможностью питания от бытовой сети.

Целесообразно датчик тока и дополнительный датчик тока выполнять в виде плоской катушки Роговского с разными направлениями намотки и обратным проводом в каждой из них.

Делитель напряжения может быть выполнен на основе пленочных конденсаторов.

Заявленное техническое решение поясняется графическими материалами, где:

- на фиг.1 изображена структурная схема электронного датчика тока и напряжения на высоком потенциале

- на фиг.2 - конструкция электронного датчика тока и напряжения на высоком потенциале.

Электронный датчик тока и напряжения на высоком потенциале содержит измерительный модуль 1, внутри которого закреплен высоковольтный токопровод 2, который оснащен датчиком 3 тока и дополнительным датчиком 4 тока, выполненных, например, в виде катушек Роговского, соединенных с аналого-цифровым преобразователем 5. Вход питания аналого-цифрового преобразователя соединен с аккумулятором 6 посредством блока 7 выбора питания, а также с оптическим источником 8 питания. Выход делителя 9 напряжения соединен с входом аналого-цифрового преобразователя 5, выходы которого выведены из измерительного модуля 1 посредством оптических каналов 10, 11, 12. Делитель 9 напряжения закреплен в опорном изоляторе 13. В измерительном модуле 1 дополнительно расположены преобразователь 14 напряжения, соединенный с низковольтным плечом делителя 9 напряжения. Оптические каналы 10,11, 12 соединены с коммуникационным модулем 15, внутри которого закреплены коммуникационный контроллер 16, вход питания которого соединен с блоком 17 питания, модуль 18 накачки лазерного диода, который посредством оптических каналов 10, 11, 12 соединен с блоком 7 выбора питания, выход коммуникационного контроллера 16 дополнительно соединен с блоком 19 сигнализации, а выходы блока 17 питания соединены с модулем 18 накачки лазерного диода и блоком 19 сигнализации.

Электронный датчик тока и напряжения на высоком потенциале работает следующим образом.

В исходном состоянии питание подается на вход блока 17 питания, с выходов которого осуществляется питание коммуникационного контроллера 16, модуля 18 накачки лазерного диода и блока 19 сигнализации коммуникационного модуля 15. В свою очередь от модуля 18 накачки лазерного диода по оптическому каналу 12 передается питание на оптический источник 8 питания, который осуществляет через блок 7 выбора питания зарядку аккумулятора 6 и питание аналого-цифрового преобразователя 5.

При отсутствии тока и напряжения на высоковольтном токопроводе 2 и при подаче питания от бытовой сети на вход блока 17 питания аналого-цифровой преобразователь 5 находится в «спящем» режиме с минимальным потреблением электроэнергии, а от коммуникационного контроллера 16 по оптическому каналу 10 поступают команды запуска аналого-цифрового преобразователя 5 совместно с командами синхронизации в соответствии с синхронным последовательным интерфейсом SPI, и по оптическому каналу 11 передаются нулевые значения тока и напряжения от аналого-цифрового преобразователя 5 к коммуникационному контроллеру 16 в составе коммуникационного модуля 15. При подаче напряжения на высоковольтный токопровод 2 от датчика 3 тока и дополнительного датчика 4 тока, а также с выхода делителя 9 напряжения на вход аналого-цифрового преобразователя 5 поступают аналоговые сигналы, которые преобразуются в оптические сигналы цифровой формы и по оптическому каналу 11 поступают на вход коммуникационного контроллера 16 в составе коммуникационного модуля 15, где сигналы преобразуются, обрабатываются, запоминаются и выдаются в цифровом виде. В коммуникационном модуле 15 посредством блока 19 сигнализации происходит визуализация измеренных значений в виде таблиц действующих значений токов и напряжений.

При отказе питания по оптическому каналу питания 12 во время поданного напряжения на высоковольтный токопровод 2 питание аналого-цифрового преобразователя 5 осуществляется от низковольтной секции делителя 9 напряжения, которая через преобразователь 14 напряжения подает питание через блок 7 выбора питания на заряд аккумулятора 6 и питание аналого-цифрового преобразователя 5.

В случае отказа питания по оптическому каналу питания 12 в момент отсутствия напряжения на высоковольтном токопроводе 2 питание аналого-цифрового преобразователя 5 осуществляется от аккумулятора 6.

Благодаря наличию дополнительного датчика 4 тока, выполненного, например, аналогично датчику 3 тока в виде катушки Роговского, но с разным направлением намотки и наличию обратного провода в каждой из них, а также за счет применения делителя напряжения на основе пленочных конденсаторов в твердой изоляции повышается чувствительность датчиков, их помехоустойчивость.

Вследствие использования цифрового канала передачи данных исключается влияние электромагнитного излучения на сигнальные кабели, что способствует повышению стабильности процесса измерения токов и напряжений.

В случае возникновения опасных сверхтоков или перенапряжений в энергосистеме на входах аналого-цифрового преобразователя 5 предусмотрены радиотехнические элементы защиты сигнальных схем от перенапряжений, при этом датчик 3 тока, датчик 4 тока и делитель 9 напряжения способны выдержать аварийные режимы работы энергосистемы для заданного класса напряжения, при этом электронный датчик тока и напряжения на высоком потенциале по цифровому каналу передает сведения об аварии и посредством блока 19 сигнализации информирует о состоянии энергосистемы, визуализируя аварийные сигналы в виде таблиц.

За счет применения интерфейса SPI при организации обмена данными между аналого-цифровым преобразователем 5 и коммуникационным контроллером 16 повышается стабильность и сохраняется полнота доставки данных при гарантированном времени доставки.

Таким образом, заявленная совокупность существенных признаков, изложенная в формуле, позволяет повысить стабильность измерения тока и напряжения на высоком потенциале за счет применения датчиков тока, выполненных, например, в виде катушек Роговского, с разным направлением намотки и обратным проводом в каждой из них, делителя напряжения, например, на основе пленочных конденсаторов в твердой изоляции с линейными зависимостями выходных характеристик, использования синхронного последовательного интерфейса SPI, а также за счет отказа от передачи измеренных значений по проводникам и организации передачи в цифровом виде с возможностью сигнализации на месте установки электронного датчика тока и напряжения.

Анализ заявленного технического решения на соответствие условиям патентоспособности показал, что указанные в формуле признаки являются существенными и взаимосвязаны между собой с образованием устойчивой совокупности неизвестной на дату приоритета из уровня техники необходимых признаков, достаточной для получения требуемого синергетического (сверхсуммарного) технического результата.

Таким образом, вышеизложенные сведения свидетельствуют о выполнении при использовании заявленного технического решения следующей совокупности условий:

- объект, воплощающий заявленное техническое решение, при его осуществлении предназначен для стабильного измерения токов и напряжений и может найти применение на объектах учета и распределения электрической энергии взамен существующих трансформаторов тока и напряжения;

- для заявленного объекта в том виде, как он охарактеризован в независимом пункте формулы, подтверждена возможность его осуществления с помощью вышеописанных в заявке или известных из уровня техники на дату приоритета средств и методов;

- объект, воплощающий заявленное техническое решение, при его осуществлении способен обеспечить достижение усматриваемого заявителем технического результата.

Следовательно, заявленный объект соответствует требованиям условий патентоспособности «новизна», «изобретательский уровень» и «промышленная применимость» по действующему законодательству.

1. Электронный датчик тока и напряжения на высоком потенциале, содержащий датчик тока, делитель напряжения, опорный изолятор и измерительный модуль, внутри которого закреплен высоковольтный токопровод с датчиком тока, при этом измерительный модуль установлен на опорном изоляторе, внутри которого расположен делитель напряжения, причем выводы с измерительного модуля закреплены внутри опорного изолятора, отличающийся тем, что он также снабжен дополнительным датчиком тока, аналого-цифровым преобразователем, блоком выбора питания, аккумулятором, оптическим источником питания, преобразователем напряжения и коммуникационным модулем, оснащенным зафиксированными и соединенными между собой коммуникационным контроллером, блоком питания, модулем накачки лазерного диода и блоком сигнализации, при этом внутри измерительного модуля закреплен блок выбора питания, который соединен с аккумулятором и оптическим источником питания, и аналого-цифровой преобразователь, вход питания которого соединен с блоком выбора питания, а входы - с датчиками тока и делителем напряжения, причем делитель напряжения выполнен с возможностью дополнительного отбора питания посредством преобразователя напряжения от низковольтной секции, а вход преобразователя напряжения соединен с делителем напряжения, и выход - с блоком выбора питания, кроме того, выводы измерительного модуля выполнены в виде оптических каналов и соединены с коммуникационным модулем с возможностью передачи данных синхронным последовательным интерфейсом SPI.

2. Устройство по п.1, отличающееся тем, что коммуникационный модуль выполнен с возможностью питания от бытовой сети.

3. Устройство по п.1, отличающееся тем, что датчик тока и дополнительный датчик тока выполнен в виде плоской катушки Роговского с разными направлениями намотки и обратным проводом в каждой из них.

4. Устройство по п.1, отличающееся тем, что делитель напряжения выполнен на основе пленочных конденсаторов.



 

Похожие патенты:

Изобретение относится к измерительной технике, представляет собой устройство для масштабного преобразования тока и напряжения с гальванической развязкой между высоковольтной сетью и приборами измерения на основе аналого-цифрового кодирования величин тока и напряжения с последующим излучением модулированного светового потока.

Изобретение относится к автомату защиты от тока неисправности. Технический результат изобретения заключается в создании автомата защиты от тока неисправности с высоким разрешением сигнала тока неисправности в широком динамическом диапазоне при исключении в значительной степени перерегулирования, характеризующегося низкими стоимостями компонентов.

Изобретение относится к информационно-измерительной технике, в частности к преобразователям напряжения в длительность импульсов. .

Изобретение относится к области электромагнитных измерений и может быть использовано в электроэнергетике, в измерительной технике высоких напряжений, в области релейной защиты и автоматики.

Изобретение относится к измерительной технике и может быть использовано для измерения тока в проводнике в режиме реального времени, в частности в системе индикации коротких замыканий, измерения мгновенных значений тока, активной и реактивной мощности, фазы, полярности.

Изобретение относится к волоконно-оптическим датчикам тока и работает на принципе эффекта Фарадея. .

Изобретение относится к измерительной технике и может быть использовано в цепях переменного тока, находящихся под высоким потенциалом относительно земли. .

Изобретение относится к способу фазочувствительной оценки тока (КР) проводимости рельсовой цепи (КО), в котором его течение исследуют на наличие первой частоты (1К), второй частоты (2К), вплоть до последней частоты (РК), и упомянутым частотам присваивают соответствующие временные окна (1СО, 2СО, вплоть до РСО), с помощью которых осуществляют деление тока (КР) проводимости на временные сегменты, чтобы установить значения всех первоочередных, второочередных парциальных амплитуд, вплоть до парциальных амплитуд последней очереди (1РА, 2РА, вплоть до РРА) действительных значений (ОН) тока (КР) проводимости, а также значения всех соответствующих первоочередных, второочередных парциальных фаз, вплоть до парциальных фаз последней очереди (1PF, 2PF, вплоть до PPF) действительных значений (ОН) тока (КР) проводимости, при этом значения всех первоочередных, второочередных действующих составляющих, вплоть до действующих составляющих последней очереди (US1, US2.

Изобретение относится к измерительной технике, представляет собой способ и устройство для определения входного напряжения трансформатора местной сетевой станции. При реализации способа измеряют входной ток, выходной ток и выходное напряжение трансформатора, а также фазовый угол между выходным током и выходным напряжением, определяют с их помощью коэффициент трансформации и полную проводимость поперечного звена p-эквивалентной схемы трансформатора местной сетевой станции и на основе определенных коэффициента трансформации и полной проводимости определяют входное напряжение трансформатора местной сетевой станции. 2 н. и 6 з.п. ф-лы, 3 ил.

Изобретение относится к области электроизмерительной техники. Способ интегрирующего аналого-цифрового преобразования основан на формировании интервала преобразования, состоящего из конечного числа интервалов времени фиксированной длительности, и формировании в течение каждого интервала преобразования непрерывной развертывающей функции путем интегрирования суммы или разности входного и опорного напряжений в течение каждого интервала времени фиксированной длительности. Результат преобразования определяют как произведение масштабирующего коэффициента и опорного напряжения, а масштабирующий коэффициент вычисляют как отношение разности всех интервалов времени фиксированной длительности, соответствующих подключениям положительного и отрицательного опорных напряжений в течение интервала преобразования, к длительности интервала преобразования. Затем формируют дополнительные интервалы времени, длительность которых меньше длительности интервалов времени фиксированной длительности в целое число раз, изменяют полярность опорного напряжения, если на предыдущем фиксированном интервале времени происходит изменение полярности развертывающей функции, причем все нечетные переходы синхронизируются интервалами времени фиксированной длительности, а четные - интервалами дополнительной длительности. Технический результат - повышение точности. 4 ил.

Изобретение относится к измерительной технике и может быть использовано в телеметрических системах с времяимпульсной модуляцией. Преобразователь напряжений в интервалы времени содержит последовательную RC-цепь, клемму напряжения смещения, источники преобразуемого напряжения, триггер, выходную клемму, первый, второй, третий и четвертый элементы И, резистор, аналоговый мультиплексор, двоичный счетчик, дешифратор, формирователь коротких импульсов, клемму установки нуля, первый, второй и третий элементы ИЛИ-НЕ, триггер Шмитта, операционный усилитель, клемму запуска, элемент задержки. Два источника преобразуемого напряжения выполнены с детекторами. Технические результаты, на достижение которых направлено заявляемое изобретение, заключаются в упрощении, уменьшении габаритов, повышении технологичности и надежности, повышении точности преобразования и помехозащищенности. 4 ил.
Настоящая группа изобретений относится к защите электрических систем и, более конкретно, относится к способу измерения, анализа и различения сигналов для определения утечки и/или токов повреждения в электрических устройствах, запитанных от таких систем. Способ включает цифровую дискретизацию тока или группы токов в электрической системе с использованием достаточной полосы частот в упомянутой дискретизации для реконструкции амплитуды и фазы созданной электрической частоты и ее гармоник и основной несущей частоты переключающей электроники и боковых полос частот модуляции, анализ в реальном времени сигналов от нескольких преобразователей или точек измерения, чтобы получить информацию по диагностике и местонахождению неисправности в питающих электрических сетях с изолированной нейтралью. При этом способ включает распознавание частотных составляющих токов в электрических системах. Изобретение кроме того раскрывает способы обнаружения замыканий на землю и утечек высокочастотных токов, в частности, хотя и не исключительно, в питающих электрических сетях с изолированной нейтралью (I-T) и/или ограниченным замыканием на землю и, в частности, в питающих электрических сетях в опасных зонах, например, таких как шахты. Изобретение также относится к способу повышения надежности реле при определении утечек на землю, в частности, когда реле работают вместе с электроникой переключения электропитания. Изобретение кроме того относится к способу интерпретации широкополосных сигналов измерений для выявления потенциальных опасностей, которые могут произойти из-за работы переключающей электроники, вместо того чтобы отвергать такие сигналы, как шум, для упрощения анализа. Защитное устройство способно обнаруживать сигналы постоянного тока и более высокой частоты, которые относятся к нормальной и анормальной эксплуатации переключающей силовой электроники, подключенной в качестве нагрузки к электрической системе, при этом осуществляется анализ токов утечки на землю с целью включения защитного оборудования. Технический результат заключается в повышении точности измерения и анализа сигналов электрических систем, включающих переключающую электронику, и улучшении их методов защиты. 3 н. и 36 з.п. ф-лы.
Наверх