Способ определения краевого угла смачивания хвои предварительно обработанной водяным паром

Изобретение относится к области определения физико-химических свойств поверхностей и может быть использовано для оценки степени гидрофильности хвои, предварительно обработанной водяным паром. Способ определения краевого угла смачивания хвои, предварительно обработанной водяным паром, состоит в нанесении на испытуемую поверхность дозированной капли жидкости, измерении ее размеров и определения краевого угла смачивания по формуле Θ = a r c t g ( 2 L D 2 d 2 d 2 ) . Техническим результатом является упрощение повышения точности измерения величины краевого угла смачивания хвои, предварительно обработанной водяным паром.1 ил.

 

Изобретение относится к области определения физико-химических свойств поверхностей и может быть использовано для оценки степени гидрофильности хвои, предварительно обработанной водяным паром.

Наиболее близким к предлагаемому способу является метод сидящей капли, заключающийся в нанесении на испытуемую поверхность дозированной капли жидкости, измерении ее размеров: высоты h и радиуса r основания и определения краевого угла смачивания по формуле Θ = 2 h r . (Основы коллоидной химии: учебное пособие для студ. высш. учеб. заведений / Б.Д. Сумм. - 2-е изд., стер. - М.: Издательский центр «Академия», 2007. стр.114-119).

Недостатком данного способа является трудность его применения при определении краевого угла смачивания поверхностей цилиндрической формы малого диаметра, к примеру, хвои, предварительно обработанной водяным паром.

Изобретение решает задачу упрощения процесса определения краевого угла смачивания хвои, предварительно обработанной водяным паром.

Технический результат заключается в повышении точности и простоты измерений величины краевого угла смачивания хвои, предварительно обработанной водяным паром.

Технический результат достигается тем, что краевой угол смачивания хвои, предварительно обработанной водяным паром определяется по формуле

Θ = a r c t g ( 2 L D 2 d 2 d 2 ) .

На фиг.1 показана схема определения краевого угла смачивания хвои предварительно обработанной водяным паром.

Предлагаемый способ реализуется следующим образом. На хвоинку 1 (фиг.1) с известным диаметром d, предварительно обработанную водяным паром, наносят дозированную каплю жидкости 2. Затем измеряют диаметр D и длину L полученной капли и вычисляют краевой угол смачивания по формуле Θ = a r c t g ( 2 L D 2 d 2 d 2 )

После нанесения на предварительно обработанную водяным паром хвоинку капля принимает форму усеченного по вершинам эллипсоида (фиг.1). Для определения краевого угла смачивания такой хвоинки можно воспользоваться известным соотношением tgΘ=f'(x0) - тангенс угла между осью и касательной, приложенной к кривой в точке, равен первой производной функции, описывающей кривую в точке приложения касательной или Θ=arctg(f'(x0)), где Θ - краевой угол смачивания, f - функция описывающая кривую, x0 - точка приложения касательной к кривой с координатами (x;y). Тогда, согласно схеме, представленной на фиг.1, кривая является эллипсом и описывается уравнением, y 2 b 2 + x 2 a 2 = 1 , а точка x0 имеет координаты ( x = L 2 ; y = d 2 ) .

Выражая из уравнения эллипса полуось а, получим:

a 2 = x 2 b 2 b 2 y 2 , ( 1 )

и подставив в полученное выражение (1) значения x = L 2 , y = d 2 и b = D 2 (фиг.1), преобразовав, будем иметь:

a = L D 2 D 2 d 2 . ( 2 )

Выразим из уравнения эллипса y:

y = b a a 2 x 2 ( 3 )

и продифференцировав полученное выражение (3), получим:

y ' = 2 x b a 1 a 2 x 2 = t g Θ . ( 4 )

Подставив в полученное выражение (4) значения x = L 2 , b = D 2 и значение выражения (2), будем иметь:

t g Θ = 2 L 2 D 2 2 2 D 2 d 2 L D 1 L 2 D 2 4 D 2 4 d 2 L 2 4 , ( 5 )

и тогда, проведя необходимые преобразования выражения (5), получим:

t g Θ = 2 L D 2 d 2 d 2 , ( 6 )

или

Θ = a r c t g ( 2 L D 2 d 2 d 2 ) ( 7 )

где L - длина капли; D - диаметр капли; d - диаметр хвои.

Полученное выражение (7) используется для вычисления краевого угла смачивания хвои, предварительно обработанной водяным паром.

Способ определения краевого угла смачивания хвои, предварительно обработанной водяным паром, состоящий в нанесении на испытуемую поверхность дозированной капли жидкости и измерении ее размеров, отличающийся тем, что краевой угол смачивания определяется по формуле Θ = a r c t g ( 2 L D 2 d 2 d 2 ) , где L - длина капли, D - диаметр капли, d - диаметр хвоинки.



 

Похожие патенты:

Изобретение относится к области исследования свойств взаимодействия поверхности с флюидами и может быть использовано для определения теплоты адсорбции и смачивания поверхности.

Изобретение относится к области исследования характеристик порошковых материалов, в частности их смачиваемости. Целью изобретения является разработка более точного способа определения смачиваемости порошков.

Изобретения относятся к области определения значений параметров, характеризующих физико-химические свойства материалов, например коэффициентов диффузии, по величине электропроводности, и могут найти применение в порошковой металлургии, в изучении процессов самораспространяющегося высокотемпературного синтеза, в материаловедении и физике твердого тела.

Изобретение относится к методам металлографического анализа образцов стали и определения трехмерной топографии поверхности и ее структуры при помощи сканирующей зондовой микроскопии (СЗМ).

Изобретение относится к нанотехнологиям и методам проведения металлографического анализа образцов и определения трехмерной топографии их поверхности и структуры с помощью атомно-силовой микроскопии при разрешающей способности в нанометровом диапазоне.

Изобретение относится к области малых энергий в химии и может быть использовано при разработке нанотехнологий в разных отраслях промышленности: химической, легкой, кожевенной и меховой, пищевой, медицинской, строительной индустрии, а также в разных областях знаний.

Изобретение относится к области оценки поверхностных свойств материалов и может быть использовано для разработки энергетических нанотехнологий в различных отраслях промышленности: химической, кожевенной и меховой, легкой, пищевой, медицинской, строительной индустрии и т.д.

Изобретение относится к области исследования смачиваемости поверхностей применительно к различным отраслям промышленности. Для определения смачиваемости поверхности исследуемого материала по меньшей мере один образец исследуемого материала помещают в по меньшей мере одну герметичную ячейку калориметра.

Изобретение относится к измерительной технике и может быть использовано в строительных материалах и изделиях, а также в пищевой, химической и других отраслях промышленности.

Изобретение относится к области оценки свойств дисперсных материалов и может быть использовано для разработки энергетических нанотехнологий в разных отраслях промышленности и областях знаний, а также для разработки и управления самоорганизующихся систем, открывает возможности для изучения новых принципов построения технических устройств. Для установления дальности перемещения движущихся объектов, направления их перемещения, определения количества и размеров частиц в секторах ограничительной окружности используют объект-препарат из бумаги с нанесенной на нее ограничительной линией шириной 5-6 мм в виде окружности с помеченным центром, направлением расположения видеокамеры и разбитой на сектора тонкими линиями окружности из гидрофобного материала. При этом в помеченном центре ограничительной окружности размещают шаблон, в который помещают дисперсный материал. Затем в ограничительную окружность вносят изучаемую жидкость в количестве, обеспечивающем толщину слоя жидкости над изучаемым материалом. Далее подводят его к центру капилляр на высоте 1-6 мм, содержащий поверхностно-активное вещество, включают видеокамеру на фиксирование изменений поверхности. После завершения процесса перемещения самоорганизующихся объектов на поверхности изучаемого материала видеокамеру отключают, пластину с объектом-препаратом и изучаемым материалом внутри шаблона оставляют высыхать, не сливая воду с поверхности объекта-препарата. Затем с помощью микроскопа определяют в каждом секторе количество частиц и их размеры возле ограничительной окружности, по которым определяют, в каком направлении объекты преимущественно перемещались и примерный состав движущихся объектов. Техническим результатом является обеспечение возможности установления дальности перемещения движущихся объектов, направления их перемещения, определения количества и размеров частиц в секторах ограничительной окружности. 9 ил., 4 пр.

Изобретение относится к способам определения аэрационной способности пенообразователей, используемых в технологии пенобетонов, и может быть использовано для оценки эффективности использования пенообразующих добавок, корректировки рецептуры пенобетонных смесей. Способ определения аэрационного потенциала пенообразователей, используемых в технологии пенобетонов, включает приготовление рабочего раствора пенообразователя, измерение температуры рабочего раствора пенообразователя и приготовление пены. Также способ включает отбор проб пены, выкладывание проб пены в предварительно взвешенные емкости известного объема и определение физико-механических характеристик пены. Причем перед приготовлением рабочего раствора пенообразователя все исходные компоненты выдерживаются в испытательном помещении при стандартных условиях до выравнивания температуры, а приготовление пены осуществляют в турбулентном бетоносмесителе в течение до 5 минут начиная с малой концентрации раствора. При этом объем раствора подбирают в зависимости от конструкционных особенностей смесителя и кратности пенообразователя, а отбор проб производят из верхнего загрузочного и нижнего выгрузочного отверстий бетоносмесителя в период до 30 секунд после приготовления пены. В качестве физико-механической характеристики определяется плотность пены для каждой из проб путем взвешивания фиксированного объема пены в предварительно взвешенных емкостях и деления массы пены на ее объем. Затем определяется среднее значение плотности пены, полученной из рабочего раствора пенообразователя с заданной концентрацией пенообразователя в воде, определяется температура пены, на основании предварительно установленного значения средней плотности пены, а также известных плотностей и дозировок исходных компонентов определяется показатель аэрационного потенциала, который вычисляется по формуле: A = m р − р а m п о ⋅ ( 1 ρ п − 1 ρ р − р а ) , где А - показатель аэрационного потенциала, л/кг; ρп - плотность пены, кг/л; ρр-ра - плотность рабочего раствора пенообразователя в воде, кг/л; mр-ра - масса рабочего раствора пенообразователя в воде, г; mпо - масса пенообразователя, г. Техническим результатом является расширение числа критериев оценки качества пенообразователей. 5 ил.

Изобретение относится к измерительной технике и может быть использовано при исследовании процессов массопереноса в капиллярно-пористых материалах для определения коэффициентов диффузии влаги в строительных материалах и конструкциях, а также в пищевой, химической и других отраслях промышленности. Способ определения коэффициента диффузии влаги заключается в создании в исследуемом образце равномерного начального влагосодержания, приведении плоской поверхности образца в контакт со средой с отличным от образца влагосодержанием. Также способ включает измерение изменения во времени сигнала гальванического преобразователя, определение времени достижения максимума на кривой изменения ЭДС гальванического преобразователя и расчет коэффициента диффузии. При этом производят импульсное увлажнение плоской поверхности исследуемого образца по прямой линии, после чего гидроизолируют эту поверхность, располагают электроды гальванического преобразователя в двух точках этой плоской поверхности на линии, параллельной линии нанесения импульсного увлажнения и на заданном расстоянии от нее, и рассчитывают искомый коэффициент по формуле: D = r 0 2 / ( 4 τ max ) , где τmax - время достижения максимума на кривой изменения ЭДС гальванического преобразователя, r0 - расстояние между линией импульсного увлажнения и линией расположения электродов гальванического преобразователя. Техническим результатом является повышение оперативности эксперимента и обеспечение возможности неразрушающего контроля коэффициента диффузии в массивных изделиях из капиллярно-пористых материалов. 1 ил., 1 табл.

Изобретение относится к области поверхностных явлений и может быть использовано для оценки свойств жидкостей, различных поверхностей и свойств веществ в разных отраслях промышленности и в том числе в нанотехнологиях и порошковой металлургии. Устройство содержит светонепроницаемый кожух, состоящий из вертикально установленных боковых 6, 7, передней 8 и задней 9 стенок ограждения, а также верхней 10 стенки ограждения. Внутри на боковой стенке 6 ограждения установлен осветитель рассеянного света 12 с установленной на нем индикаторной сеткой 13, а на другой боковой стенке ограждения установлена кинокамера или видеокамера 14 с возможностью вертикального перемещения. На задней стенке 9 ограждения шарнирно закреплена вертикально расположенная ось 18, на которой установлен узел 15 для нанесения на объект-препарат 4 или кювету с бортиком поверхностно-активного вещества, выполненный в виде капельницы 16 с капилляром 17 и оснащенный механизмом 19 двухкоординатного перемещения с возможностью горизонтального смещения для установки капилляра 17 капельницы 16 в центр объекта-препарата 4 или кюветы с бортиком и с возможностью вертикального измерительного смещения края капилляра 17 капельницы 16 для внесения поверхностно-активного вещества на изучаемую поверхность. На задней 9 стенке ограждения установлена автоматическая бюретка 20 для заполнения ограничительной фигуры объекта-препарата 4 или кюветы с бортиком слоем жидкости известной толщины. На верхней 10 стенке ограждения выполнено отверстие 23, края которого соединены со светонепроницаемым рукавом 24, а отверстие 23 расположено над ручкой 25 для вертикального перемещения капилляра 17 капельницы 16. На передней стенке 8 ограждения выполнена крышка 22. Вертикально расположенные две боковые 6, 7, задняя 9 и передняя 8 стенки ограждения светонепроницаемого кожуха в нижней части имеют уплотнения 21, выполненные из мягкого упругого светонепроницаемого материала, например резины или пластических масс. Техническим результатом является повышение точности изображения изучаемой поверхности, упрощение конструкции. 1 з.п. ф-лы, 5 ил., 1 табл.

Изобретение относится к гироскопическим устройствам. Может быть преимущественно использовано для исследования поверхностных явлений смачивания и растекания при нагреве в вакууме и инертной или активной газовых средах. Самогоризонтируемое устройство включает корпус 1, выполненный из керамики, молибдена или стали, в верхней части которого установлен промежуточный элемент 2, выполненный из такого же материала, что и корпус 1 или отличающийся от него, закрепленный двумя стержнями 3 к стенке корпуса 1, самогоризонтируемый столик 4, выполненный из такого же материала, что и корпус 1 или отличающийся от него, в нижней части которого расположен массивный груз 5, который может быть выполнен съемным и соединяться через соединительный стержень 6; самогоризонтируемый столик 4 закреплен двумя стержнями 7 в промежуточном элементе 2, причем стержни 3 и 7 расположены взаимно - перпендикулярно друг другу. В нижней части корпуса 1 расположены упоры 8 для фиксирования массивного груза 5. Техническим результатом является то, что устройство позволяет проводить исследования при размещении его в печи с контролируемой атмосферой и в печи с воздушным нагревом. 8 з.п. ф-лы, 2 ил.

Изобретение относится к микробиологии и может быть использовано для количественной оценки способности микроорганизмов к биопленкообразованию на различных биотических и абиотических поверхностях. Способ заключается в том, что в подготовленные для посева стерильные чашки Петри с питательным бульоном и двумя агаровыми пластинками вносят микробную взвесь. Чашки Петри с посевами инкубируют при 37°C. После инкубации пластинки с выросшей биопленкой вынимают из культуральной жидкости, отмывают стерильной дистиллированной водой от планктонных клеток и высушивают в термостате. Проводят замеры углов смачивания через 3 и 9 ч. По изменению краевого угла смачивания судят об удельной скорости образования биопленки. При этом рассчитывают удельную скорость биопленкообразования по формуле: μ b = 1 t 2 − t 1 l n ( θ 1 θ 2 ) , где µb - удельная скорость биопленкообразования, ч-1; t1 и t2 - продолжительность инкубации, ч (3 и 9 ч); θ1,2 - краевые углы смачивания (°), измеренные после инкубации в течение 3 и 9 ч. Изобретение позволяет ускорить и упростить процесс количественной оценки биопленкообразования микроорганизмов и повысить чувствительность метода. 3 табл.

Изобретение направлено на высокоточное измерение коэффициентов диффузии горючих газов в азоте или иных инертных газах в широком температурном диапазоне посредством кислородпроводящего твердого электролита. Способ заключается в пропускании электрического тока через электрохимическую ячейку, величину которого изменяют до получения предельного тока, протекающего через границу раздела фаз, а также вычислении коэффициента диффузии. При этом в поток газа с известным содержанием горючего газа, находящегося в смеси с азотом, помещают электрохимическую ячейку с полостью, образованной герметично соединенными между собой двумя дисками из кислородпроводящего твердого электролита, на противоположных поверхностях одного из дисков расположена пара электродов, и капилляром, соединяющим полость с потоком газа. Затем к электродам подают напряжение постоянного тока в пределах 300÷500 мВ с подачей положительного полюса на электрод, находящийся внутри ячейки, и по величине возникающего при этом предельного тока рассчитывают коэффициент диффузии горючего газа в азоте. Техническим результатом является возможность измерения коэффициентов диффузии горючих газов в азоте в широком температурном диапазоне посредством хорошо изученного кислородпроводящего твердого электролита, а также повышение точности. 1 ил.

Использование: для исследования процессов массопереноса и для определения коэффициентов диффузии растворителей в изделиях из ортотропных капиллярно-пористых материалов в строительной, химической и других отраслях промышленности. Сущность изобретения заключается в том, что способ определения коэффициента диффузии растворителей в массивных изделиях из ортотропных капиллярно-пористых материалов заключается в создании в исследуемом образце равномерного начального содержания распределенного в твердой фазе растворителя, приведении плоской поверхности образца в контакт с источником дозы растворителя, измерении изменения во времени сигнала гальванического преобразователя, определении времени достижения максимума на кривой изменения ЭДС гальванического преобразователя и расчете коэффициента диффузии, импульсное воздействие на плоскую поверхность исследуемого изделия дозой растворителя осуществляют по прямой линии в заданном направлении ортотропного материала, выполняют электроды гальванического преобразователя в виде прямолинейных отрезков и располагают их с обеих сторон линии импульсного воздействия на прямых, параллельных линии импульсного воздействия и расположенных на одинаковом заданном расстоянии от нее, и рассчитывают искомый коэффициент по заданной формуле. Технический результат: обеспечение возможности повышения точности контроля и определения коэффициента диффузии в различных направлениях ортотропного капиллярно-пористого материала. 2 табл.

Изобретение относится к области исследования смачиваемости поверхностей и может найти применение в различных отраслях промышленности, например в нефтегазовой, химической, лакокрасочной и пищевой. Для определения смачиваемости поверхности исследуемого материала по меньшей мере один образец исследуемого материала помещают в по меньшей мере одну герметичную ячейку калориметра. Обеспечивают контакт по меньшей мере одного образца с первой смачивающей жидкостью и со второй смачивающей жидкостью при одинаковых давлении и температуре. Измеряют энергии смачивания по меньшей мере одного образца первой и второй смачивающими жидкостями, после чего рассчитывают параметр смачиваемости, характеризующий систему поверхность-жидкость-жидкость. Техническим результатом является повышение качества и эффективности измерения смачиваемости поверхностей двумя флюидами при различных давлениях и температурах, увеличение скорости проведения этих работ с одновременным снижением риска их неправильного проведения. 2 н. и 17 з.п. ф-лы.
Изобретение относится к способам изучения поверхностных явлений. Из меди и серебра изготавливают электроды, приводят их в контакт с раствором электролита, осуществляют предварительный электролиз с чередованием анодного окисления и катодного восстановления поверхности металла, регистрируют зависимость производной поверхностного натяжения по поверхностной плотности заряда от потенциала электрода, сопоставляют указанные зависимости, полученные на меди и серебре, отмечают в качестве их общих признаков участок ступенчатого спада в анодном направлении, убывание протяженности ступеней вдоль оси потенциала. Происхождение ступеней объясняют локализацией электронов поверхностной проводимости в двухмерной квантовой яме, что приводит к ступенчатой зависимости плотности состояний этих электронов от потенциала. Указывают на соответствие между протяженностью ступеней и расстоянием между дискретными уровнями энергии электронов в двойном электрическом слое. На диаграмме в одном и том же диапазоне изменения потенциала сопоставлены график производной поверхностного натяжения по поверхностной плотности заряда и график плотности состояний электронов, имеющий вид ступенчатой функции потенциала, которая убывает при изменении потенциала в сторону более положительных значений и достигает нуля при потенциале минимума производной поверхностного натяжения. Технический результат заключается в повышении наглядности и достоверности демонстрации квантовых осцилляций поверхностного натяжения. 14 з.п. ф-лы, 15 ил.
Наверх