Способ измерения вязкости жидких сред


 


Владельцы патента RU 2525646:

Открытое акционерное общество Башкирское Специальное Конструкторское Бюро "Нефтехимавтоматика" (ОАО БСКБ "Нефтехимавтоматика") (RU)

Изобретение относится к контрольно-измерительным средствам техники и может быть использовано для измерения вязкости жидких сред, в частности нефтепродуктов. Способ измерения вязкости жидких сред основан на измерении затухания колебаний чувствительного элемента, находящегося в анализируемой жидкости. При этом частота затухания колебаний рабочего вибрационного элемента сравнивается с частотой затухания колебаний вибрационного элемента, погруженного в эталонную жидкость с идентичными температурными показателями. Техническим результатом является повышение точности измерения вязкости испытуемых образцов. 1 ил.

 

Изобретение относится к контрольно-измерительным средствам техники и может быть использовано для измерения вязкости жидких сред, в частности нефтепродуктов.

Известны способы и устройства для измерения вязкости жидких сред, например измерение времени падающего шарика и конуса, способ воздействия газовой струей, вытекающей из сопла, на жидкость и другие.

Известен также вибрационный метод измерения вязкости, примененный в вискозиметре вибрационном низкочастотном ВВН-8 (ОАО «Автоматика» г.Воронеж), прототип. Способ заключается в том, в измерительном преобразователе при помощи электромагнитной системы поддерживается постоянная амплитуда колебаний чувствительного элемента (вибратора), погруженного в анализируемую жидкость.

Недостатком данного метода является невысокая точность из-за отсутствия системы сравнения с эталонной жидкостью.

Задачей заявляемого изобретения является повышение точности измерения вязкости испытуемых образцов.

Поставленная цель достигается тем, что измеряется затухание колебаний вибратора в измерительной ячейке и сравнивается с затуханием колебаний вибратора в ячейке с эталонной жидкостью, например глицерином.

Сущность устройства поясняется чертежом.

Способ реализуется в устройстве, содержащем емкость 1 с эталонной жидкостью, емкость 2 с испытуемой жидкостью, в каждую из которых помещены термостат 3 и вибрационный элемент 4, который подсоединен к измерительно-сравнительной системе 5. Жидкость попадает в емкости 1 и 2 через запорные вентили 6.

Заявляемый способ, применительно к устройству, работает следующим образом: эталонная жидкость, например глицерин, через запорный вентиль заливается в емкость 1, в которую погружен вибрационный элемент 4. Исследуемый продукт, например мазут, через запорный вентиль 6 заливается в измерительную емкость 2, в которую так же погружен вибрационный элемент 4. В начале работы производится термостатирование при помощи термостатов 3 и на протяжении всех испытаний поддерживается постоянная температура. После этого вибрационные элементы 4 начинают колебательные движения, что приводит к разбалансировке измерительно-сравнительной системы 5. При этом разница в амплитудах затухания колебаний пропорциональна вязкости измеряемой жидкости.

Данный способ позволяет повысить точность измерения вязкости жидких сред и найдет применение в испытательных лабораториях.

Способ измерения вязкости жидких сред, основанный на измерении затухания колебаний чувствительного элемента, находящегося в анализируемой жидкости, отличающийся тем, что частота затухания колебаний рабочего вибрационного элемента сравнивается с частотой затухания колебаний вибрационного элемента, погруженного в эталонную жидкость с идентичными температурными показателями.



 

Похожие патенты:

Изобретение относится к области разведочной геологии и может быть использовано для определения различных свойств углеводородных пластовых флюидов. В заявленном изобретении раскрыты примеры способов, установок и изделий промышленного производства для обработки измерений струн, вибрирующих во флюидах.

Изобретение относится к области тепловых исследований свойств жидкостей и может быть использовано для исследования динамических процессов термостимулированной структурной перестройки жидкостей.

Изобретение относится к измерительной технике, в частности к устройствам для измерения вязкости тонких слоев жидкости, для изучения свойств ньютоновских и неньютоновских жидкостей, установления содержания механических примесей в жидкости, измерения сил сопротивления и определения коэффициентов трения жидких и твердых материалов в зависимости от температуры.

Изобретение относится к измерительной технике, в частности к аэрогидродинамическим устройствам для определения вязкости, и может найти применение в различных отраслях промышленности при контроле состава и свойств жидкостей.

Изобретение относится к устройству для определения, контроля и измерения физических параметров веществ и предназначено для бесконтактного фотометрического определения характеристик металлических расплавов, в частности кинематической вязкости и электропроводности.

Изобретение относится к физике и металлургии, а именно к устройствам, используемым в исследовательских и лабораторных работах, и применяется для измерения физических параметров расплавов.

Изобретение относится к технической физике, а именно к устройствам для контроля и измерения физических параметров веществ. .

Изобретение относится к оптоволоконным датчикам и может быть использовано для испытания элементов конструкций и машин, в том числе летательных аппаратов. .

Изобретение относится к физике и металлургии, а именно - к устройствам, используемым в исследовательских и лабораторных работах, и применяется для сигнализации и измерения физических параметров расплавов; оно предназначено для бесконтактного измерения кинематической вязкости металлических расплавов, в частности высокотемпературных, фотометрическим нестационарным методом на основе измерения затухания крутильных колебаний цилиндрического тигля с расплавом.

Изобретение относится к технической физике, а именно к анализу физико-химических параметров металлических сплавов, в частности, на основе железа или никеля, путем фотометрического определения кинематической вязкости v, электросопротивления ρ и плотности d нагреваемого образца в зависимости от температуры. Изобретение может быть использовано в лабораторных исследованиях, на предприятиях металлургической промышленности, при выполнении лабораторных работ в вузах. Способ, при котором измеряют температурные зависимости параметров вязкости v, электросопротивления ρ и плотности d расплава в определенном диапазоне температур с получением значений параметров в виде электрических сигналов. При этом значения этих параметров расплава, полученных при одинаковых значениях температур, перемножают, получая значения мультипликативного параметра Mi , характеризующего расплав, запоминают его в качестве специфического параметра, затем снова измеряют значения вышеуказанных параметров того же или иного расплава, перемножают, получая значения мультипликативного параметра Mi+1, их тоже затем определяют разность значений ΔM мультипликативных параметров ΔM=Mi -Mi+1 которую сравнивают с ΔMпор. Устройство для исследования параметров расплава содержит комплекс блоков определения температурных зависимостей v, ρ и d расплава, имеющих выходы для вывода значений параметров. При этом в него введены соединенные последовательно перемножитель, запоминающее устройство и блок вычитания, каждый из n входов перемножителя соединен с соответствующим выходом одного из блоков определения параметров v, ρ и d расплава. Техническим результатом является обеспечение возможности определения мультипликативных значений температурных зависимостей свойств расплавов, упрощение сравнительной оценки этих значений, а также повышение достоверности и точности результатов измерений величины параметров расплава при изменениях температуры, расширение функциональных возможностей, упрощение и удешевление экспериментов.2 н. и 1 з.п. ф-лы, 5 ил.

Изобретение относится к области измерительной техники и может быть использовано для определения вязкости текучей среды. Предложены измерительное электронное устройство (20) и способ получения вязкости текучей среды потока при заданной эталонной температуре. Измерительное электронное устройство (20) содержит интерфейс (201), выполненный с возможностью обмена сообщениями, систему (204) хранения, выполненную с возможностью хранения заданной эталонной температуры (211), измеренной вязкости (214) текучей среды, измеренной температуры (215) текучей среды и данных (218) отношения температуры и вязкости, которые связывают температуру с вязкостью в заданном диапазоне температур текучей среды потока, и систему (203) обработки, соединенную с интерфейсом (201) и с системой (204) хранения. При этом система (203) обработки выполнена с возможностью получения измеренной температуры (215) текучей среды, получения измеренной вязкости (214) текучей среды и формирования вязкости (227) при эталонной температуре с использованием измеренной вязкости (214) текучей среды и данных (218) отношения температуры и вязкости, при этом сформированная вязкость (227) при эталонной температуре соответствует заданной эталонной температуре (211). Технический результат - повышение точности получаемых данных. 2 н. и 16 з.п. ф-лы, 8 ил.
Наверх