Углоизмерительный прибор

Изобретение относится к оптико-электронным приборам, обеспечивающим измерение угловых координат цели в динамическом режиме. Углоизмерительный прибор содержит объектив, матричный приемник излучения, вычислительный блок и канал геометрического эталона, состоящий из оптически сопряженных с объективом осветительного блока, имеющего три источника света, расположенные под углом 120° друг к другу, коллиматорного блока, включающего три входные и три выходные точечные диафрагмы, и зеркально-призменного блока, образующий с нанесенными на него диафрагмами коллиматора моноблок, жестко связанный с опорной плоскостью углоизмерительного прибора. Зеркально-призменный моноблок выполнен из шести боковых зеркальных граней и ограничивающих их параллельных преломляющих оснований, большее шестиугольное из которых с нанесенными на него выходными точечными диафрагмами обращено к объективу, причем его соседние ребра расположены под углом 120° друг к другу. Моноблок выполнен с тремя дополнительными преломляющими гранями, размещенными между большим основанием и соответствующей боковой зеркальной гранью, составляющей с большим основанием острый угол и размещенной перед выходной точечной диафрагмой, каждая дополнительная грань снабжена входной точечной диафрагмой, а углы между большим основанием и тремя дополнительными преломляющими гранями и тремя боковыми зеркальными гранями, расположенными перед тремя входными точечными диафрагмами, равны 90°. Технический результат - повышение точности прибора без усложнения его конструкции и увеличения массогабаритных характеристик. 7 ил.

 

Изобретение относится к области оптико-электронной техники, а точнее - к оптико-электронным приборам, обеспечивающим измерение угловых координат цели в динамическом режиме, и может быть использовано для автоматического управления ориентацией и навигацией космических аппаратов (КА).

Широко известны оптико-электронные приборы (астроприборы), определяющие угловое положение КА относительно астрономических источников излучения. Эти приборы на современных КА решают задачи астроориентации и астрокоррекции. Такие углоизмерительные приборы описаны в статье «Нерасстраиваемые оптические системы угломеров с неподвижной линией визирования», авт. А.Я. Гебгарт, М.П. Колосов, Оптический журнал, 2010 г., т.77, №10, 48-53 с. Кроме того, функциональная схема такого прибора также раскрыта в книге «Оптика адаптивных угломеров», авт.М.П. Колосов, Москва: Логос, 2011 г., стр.149-151. К недостаткам этих устройств следует отнести недостаточно высокие точностные характеристики.

Аналогичный углоизмерительный прибор описан в патенте на изобретение №2399871, который выбран в качестве прототипа.

Прибор содержит канал геометрического эталона (КГЭ), выполненный в виде осветительного блока, коллиматорного блока и зеркально-призменного блока, осуществляющего ввод излучения от осветительного блока в объектив, объектив, фотоприемное устройство и вычислительный блок, при этом осветительный блок выполнен в виде трех источников излучения, установленных перед входными диафрагмами и расположенных под углом 120° друг к другу, коллиматорный блок выполнен в виде трех входных точечных диафрагм и трех выходных точечных диафрагм, расположенных на задней, обращенной к объективу, вне его входного зрачка, грани (основании) зеркально-призменного блока, а зеркально-призменный блок представляет собой единый моноблок, выполненный в виде параллельных меньшей передней и большей задней, обращенной к объективу, шестиугольных граней, соседние ребра которых расположены под углом 120° друг к другу и образуют шесть боковых зеркальных граней между собой, которые наклонены под острым углом к задней грани, при этом зеркально-призменный блок своей задней гранью установлен на опорной плоскости углоизмерительного прибора.

В углоизмерительном звездном приборе перед меньшей передней гранью зеркально-призменного блока дополнительно установлена бленда, а шесть боковых зеркальных граней зеркально-призменного блока наклонены, например, под углом 45° к его задней грани. Наклон боковых зеркальных граней зеркально-призменного блока, расположенных напротив выходных диафрагм, выбирается таким образом, чтобы обеспечить на входе объектива необходимое отклонение пучка света от оптической оси прибора для формирования на фотоприемном устройстве опорной системы координат. При этом в устройстве расположение диафрагм выбирается таким образом, чтобы обеспечить на входе объектива необходимое отклонение пучка света от оси прибора для формирования на фотоприемном устройстве опорной системы координат. В углоизмерительном звездном приборе передняя и задняя грани основания представляют собой подобные шестиугольники, образованные из равносторонних треугольников с одинаково усеченными, параллельно сторонам, вершинами, при этом передняя и задняя грани представляют собой подобные шестиугольники.

Известное устройство (прибор) изображено на фиг.1. Оно содержит бленду 1, объектив 2, матричный приемник излучения (МПИ) с вычислительным блоком 3, а также КГЭ, включающий осветитель 4, состоящий из трех источников излучения, зеркально-призменный моноблок 6 с шестью точечными прозрачными диафрагмами 5 и 7, входящие в состав коллиматора. Зеркально-призменный моноблок 6 выполнен в виде единой оптической детали (моноблока) с двумя параллельными преломляющими гранями (основаниями) и с шестью боковыми зеркальными наклонными гранями, диафрагмы 5 и 7 нанесены на заднюю большую поверхность (основание) зеркально-призменного моноблока 6, обращенную к объективу 2, а в качестве осветителей 4 используют, например, светодиоды. МПИ с накоплением фотоэлектронов, связанный с вычислительным блоком 3, может быть выполнено на основе ПЗС-матрицы.

Устройство работает следующим образом: излучение от визируемой звезды (фиг.1), пройдя бленду 1, предназначенную для подавления паразитных засветок от боковых световых помех, зеркально-призменный моноблок КГЭ 6, работающий на проход, попадает во входной зрачок объектива 2 и фокусируется на МПИ 3. Излучение от осветителя 4, пройдя точечную прозрачную диафрагму 5, последовательно отразившись от наклонных зеркал зеркально-призменного моноблока КГЭ 6 и пройдя точечную диафрагму 7, выходит из КГЭ. Указанное излучение, пройдя объектив 2, фокусируется на МПИ 3. Затем сигналы с матрицы обрабатываются блоком 14 с последующей выдачей информации о положении и ориентации КА.

Соответствующее расположение точечных диафрагм 5 и 7 на задней поверхности на большем основании зеркально-призменного моноблока 6 позволяет обеспечить необходимое угловое отклонение пучка от оси блока.

Аналогичным образом работают и два остальных идентичных канала, расположенных под углом 120° друг к другу. Таким образом, на выходе КГЭ образуется три пучка лучей, оси которых составляют одинаковый угол α с осью блока, а между собой составляют угол 120°. Угловое положение нормали к опорной плоскости определяется ортоцентром равностороннего треугольника, в вершинах которого расположены оси симметрии трех рабочих пучков.

Необходимое угловое отклонение осей вышедших пучков реализуется также и за счет изменения углов наклона зеркальных граней, расположенных напротив выходных диафрагм.

При эксплуатации пучки вне зоны входного зрачка фокусируются объективом 2 на МПИ 3 в виде изображения трех точек, расположенных в вершинах равностороннего треугольника. Наличие изображения трех точек определяет опорную систему координат прибора на МПИ 3, относительно которой производится измерение положения визируемой звезды (цели). Начало координат находится в ортоцентре указанного треугольника, совпадающего с оптической осью. Все это позволяет производить измерения положения визируемой звезды относительно полученного изображения марок и, следовательно, исключить погрешности определения координат, связанные, например, с микросмещениями МПИ 3 в направлениях, перпендикулярных оптической оси объектива 2. Также исключаются и погрешности определения координат визируемой звезды, связанные с возможным разворотом МПИ 3 относительно оптической оси.

При дефокусировке МПИ 3 вновь образованный треугольник, в вершинах которого расположены изображения марок, сохраняет свое подобие первоначальному, при этом ортоцентр треугольника остается на оптической оси. Следовательно, и в новой плоскости установки определяется практически неизменное положение системы координат на МПИ 3.

Выполнение зеркально-призменного моноблока КГЭ 6 в виде единой оптической детали, жестко установленного задней преломляющей гранью на опорной плоскости, обеспечивает высокую стабильность углового положения вышедших из КГЭ пучков относительно опорной плоскости и прошедших КГЭ пучков от визируемой звезды при значительных температурных, вибрационных и ударных воздействиях, что повышает точность прибора. При этом толщина КГЭ вдоль оптической оси объектива может быть предельно малой, что улучшает габаритно-массовые характеристики всего прибора.

На фиг.2 приведен вид по стрелке А из фиг.1, на котором показано взаимное расположение трех осветителей, трех входных точечных диафрагм 5 и трех выходных точечных диафрагм 7.

Наличие двух разнесенных по ходу луча точечных диафрагм формирует «нитевидный» пучок лучей с геометрической расходимостью, определяемой выражением:

2 ω = 2 arcsin { n sin [ ( a r c t g ( D 1 + D 2 ) / L ] } , ( 1 )

где D1, D2 - соответственно диаметры диафрагм 5 и 7,

L - оптическая длина развернутого в плоскопараллельную пластину КГЭ,

n - показатель преломления.

Точечная диафрагма 7 играет роль объектива коллиматора и работает как камера обскура. Таким образом, функционально коллиматорный блок, содержащий входные и выходные точечные диафрагмы, можно рассматривать как три коллиматора-обскуры, которые формируют на матрице МПИ три изображения. Эти изображения круглые, а распределение их освещенности обладает осевой симметрией, что весьма благоприятно для обеспечения точности прибора. Однако, как показала практика, для улучшения точности прибора угловой размер (2ω) этих изображений желательно уменьшить. Но, по существу, сделать это невозможно. Действительно уменьшение D1 ограничивается технологическими возможностями по изготовлению точечных отверстий. При уменьшении D2, начиная с некоторого придела, начинают доминировать дифракционные явления, и угловой размер изображения становится больше размера 2ω, определяемого выражением (1). Величину L также невозможно увеличивать, так как она определяется диаметром входного зрачка объектива 2 и описанной выше формой зеркально-призменного моноблока 6. Очевидно, что при увеличении размера L (при увеличении размера зеркально-призменного моноблока 6) излучение КГЭ просто не попадет в объектив 2, диаметр которого определяется, в основном, заданным размером входного зрачка объектива.

Задачей, на решение которой направлено заявляемое изобретение, является создание автоматического прибора ориентации и навигации КА, отвечающего комплексу достаточно сложных технических требований, таких как высокая точность угловых измерений без усложнения его конструкции без увеличения массогабаритных характеристик.

Данная задача решается за счет того, что в заявленном устройстве, содержащем объектив, матричный приемник излучения, вычислительный блок и канал геометрического эталона, состоящий из оптически сопряженных с объективом осветительного блока, имеющего три источника излучения, расположенные под углом 120° друг к другу, коллиматорного блока, включающего три входные и три выходные точечные диафрагмы, и зеркально-призменного блока, образующего с нанесенными на него диафрагмами коллиматора моноблок, жестко связанный с опорной плоскостью углоизмерительного прибора, при этом зеркально-призменный моноблок выполнен из шести боковых зеркальных граней и ограничивающих их параллельных преломляющих оснований, большее шестиугольное из которых с нанесенными на него выходными точечными диафрагмами обращено к объективу, причем его соседние ребра расположены под углом 120° друг другу, при этом зеркально-призменный моноблок выполнен с тремя дополнительными преломляющими гранями, размещенными между большим основанием и соответствующей боковой зеркальной гранью, составляющей с большим основанием острый угол и размещенной перед выходной точечной диафрагмой, при этом каждая дополнительная грань снабжена входной точечной диафрагмой, а углы между большим основанием и тремя дополнительными преломляющими гранями, а также тремя боковыми зеркальными гранями, расположенными перед тремя входными точечными диафрагмами, равны 90°.

Таким образом, предлагаемое техническое решение представляет собой совокупность существенных признаков, которые в сравнении с прототипом обладают новизной.

Технический эффект, выраженный в увеличении точности прибора, подтверждается доводами, приведенными ниже.

Сущность заявленного изобретения поясняется чертежами, на которых изображено:

На фиг.1, 2 - оптическая схема ближайшего аналога-прототипа.

На фиг.3 - оптическая схема предлагаемого устройства.

На фиг.4 - сечение КГЭ, в котором показан ход луча в зеркально-призменном моноблоке.

На фиг.5 - вид по стрелке В из фиг.3.

На фиг.6 - изометрический вид зеркально-призменного блока.

На фиг.7 - сечение КГЭ, на котором показаны обозначения конструктивных параметров зеркально-призменного блока.

Предлагаемое устройство (фиг.3) содержит бленду 1, КГЭ, состоящий из зеркально-призменного моноблока 8, коллиматора, включающего три входных точечных диафрагмы (отверстия) 9 (на чертеже показана одна), и три выходные точечные диафрагмы (отверстия) 10 (на чертеже показана одна), которые нанесены на поверхность моноблока 8, и осветительного блока 11, выполненного в виде трех источников излучения (на чертеже показан один), объектив 12, матрицу пикселей МПИ 13, вычислительный блок 14. На фиг.4 показаны большая (выходная) преломляющая грань (основание) 15, параллельная ей меньшая грань (основание) 16 и дополнительная преломляющая грань 17 (показана одна из трех), боковая зеркальная грань 18 (показана одна из трех), расположенная перед входной точечной диафрагмой 9, которая составляет с большей гранью (основанием) прямой угол, боковая зеркальная грань 19 (показана одна из трех), расположенная по оптическому ходу луча перед выходной точечной диафрагмой 10, ребро 20, образованное пересечением боковых зеркальных граней 19.

Следует отметить, что в зеркально-призменном блоке предлагаемого устройства (см. фиг.5, 6) входная грань (основание) имеет форму треугольника, а большая (выходная) грань (основание) шестиугольная, хотя в прототипе обе эти грани шестиугольные. Треугольная форма входной грани определена конструктивным исполнением прибора. При других соотношениях размеров входная грань КГЭ в предлагаемом устройстве может быть и шестиугольной. При этом из одиннадцати граней зеркально-призменного моноблока преломляющая грань (основание) 15 всегда самая большая. Шесть боковых зеркальных граней можно представить в виде двух групп: три грани составляют с большим основанием острый угол, а три других - угол, равный 90°.

Устройство (фиг.3) работает следующим образом: излучение от визируемой звезды (цели), пройдя бленду 1, предназначенную для подавления паразитных засветок от боковых световых помех, зеркально-призменный блок 8 КГЭ, работающий на проход, попадает во входной зрачок объектива 12 и фокусируется на МПИ 13. При этом грани 16, 15 по отношению к излучению от цели функционально являются соответственно входной и выходной гранями. Излучение от осветителя 11, пройдя входную точечную прозрачную диафрагму 9, последовательно отразившись от боковых зеркальных граней 18, 19 зеркально-призменного моноблока 8 КГЭ и пройдя выходную точечную диафрагму 10, выходит из КГЭ (см. ход луча на фиг.4). Указанное излучение после прохождения объектива 12 фокусируется на МПИ 13, обработанный сигнал с которого поступает на вычислительный блок 14, формирующий информацию об угловом положении КА.

Конструктивное расположение точечных диафрагм 9, 10 на зеркально-призменном моноблоке 8 и наклон зеркальных граней 19 к большей грани (основанию) 15 (на угол (3, см. фиг.4) обеспечивают такое угловое отклонение пучка излучения от оси симметрии (O-O') моноблока 8, при котором происходит совпадение его с оптической осью объектива 12.

Аналогичным образом работают и два остальных идентичных канала, расположенных под углом 120° друг к другу. Таким образом, на выходе КГЭ образуется три пучка лучей, оси которых составляют одинаковый угол α с осью блока (см. фиг.1), а между собой составляют угол 120°. Указанный угол α должен быть меньше или равным половине углового поля объектива. Угловое положение нормали к опорной плоскости определяется ортоцентром равностороннего треугольника, в вершинах которого расположены оси симметрии трех рабочих пучков.

Далее пучки вне зоны входного зрачка фокусируются объективом 12 на МПИ 13 в виде изображения трех точек, расположенных в вершинах равностороннего треугольника. Наличие изображения трех точек определяет опорную систему координат прибора на МПИ 13, относительно которой производится измерение положения визируемой звезды (цели). Начало координат находится в ортоцентре указанного треугольника, совпадающего с оптической осью объектива 12. Все это позволяет производить измерения положения визируемой звезды относительно полученного изображения марок и, следовательно, исключить погрешности определения координат, связанные, например, с микросмещениями МПИ 13 в направлениях, перпендикулярных оптической оси объектива 12. Также исключаются и погрешности определения координат визируемой звезды, связанные с возможным разворотом МПИ 13 относительно оптической оси.

При дефокусировке МПИ 13 вновь образованный треугольник, в вершинах которого расположены изображения марок, сохраняет свое подобие первоначальному, при этом ортоцентр треугольника остается на оптической оси. Следовательно, и в новой плоскости установки (плоскости изображения) определяется практически неизменное положение системы координат на МПИ 13.

Выполнение зеркально-призменного моноблока 8 КГЭ в виде единой оптической детали, жестко связанного с опорной плоскостью прибора, обеспечивает высокую стабильность углового положения вышедших из КГЭ пучков относительно опорной плоскости и прошедших КГЭ пучков от визируемой звезды (цели) при значительных температурных, вибрационных и ударных воздействиях, что повышает точность прибора. При этом толщина КГЭ вдоль оптической оси объектива практически не отличается от толщины КГЭ прототипа, что обеспечивает сохранение массогабаритных характеристик прибора. По сложности конструкции предлагаемое устройство и прототип аналогичны.

Главное положительное качество предлагаемого устройства по сравнению с прототипом заключается в увеличении оптической длины развернутого в плоскопараллельную пластину КГЭ - L примерно в два раза практически без увеличения габаритов зеркально-призменной системы 8, что приводит соответственно к такому же уменьшению геометрической расходимости «нитевидного» пучка лучей - 2ω (см. формулу 1), выходящего из КГЭ. Указанное увеличение оптической длины КГЭ наглядно видно на фиг.4, где показано, что лучи в сечении КГЭ проходят двойной путь, отражаясь от зеркальной грани 18. При этом указанное уменьшение геометрической расходимости «нитевидного» пучка лучей приведет к такому же уменьшению размера изображения входной точечной диафрагмы на матрице пикселей МПИ, повышению крутизны фронтов в распределении освещенности этого изображения, уменьшению шумов в оптико-электронном тракте прибора и соответственному повышению его точности.

Таким образом, достигается цель изобретения: повышение точности прибора без усложнения его конструкции и увеличения массогабаритных характеристик.

При этом конструктивные параметры углоизмерительного прибора (см. фиг.7 и 4) рассчитаны таким образом, что выполняются следующие соотношения (неравенства):

l > d > a > c > b , ( 2 )

где l - расстояние между противоположными ребрами зеркально-призменного блока, образованными его большим основанием и боковыми гранями (высота зеркально-призменного моноблока);

d - расстояние между входной и большой (выходной) преломляющими гранями зеркально-призменного моноблока (толщина зеркально-призменного моноблока);

а - расстояние от ребра зеркально-призменного моноблока, расположенного на его большой (выходной) преломляющей грани, до центра выходной точечной диафрагмы;

c - расстояние от ребра зеркально-призменного моноблока, расположенного на его большой (выходной) преломляющей грани, до дополнительной преломляющей грани;

b - расстояние от ребра зеркально-призменного моноблока, расположенного на его большой (выходной) преломляющей грани, до центра входной точечной диафрагмы.

w / n > | π / 2 { [ ( a sin 2 β b ) / ( 2 l c ) ] + 2 β } | , ( 3 )

где w - половина углового поля объектива;

n - показатель преломления материала зеркально-призменного моноблока;

π=3,1415.

В выражении (3) углы берутся в радианах.

Входная и большая (выходная) преломляющие грани выполнены с возможностью отражения лучей, созданных осветительным блоком и входными точечными диафрагмами коллиматорного блока.

Зеркально-призменный моноблок является защитным стеклом углоизмерительного прибора.

Таким образом, при использовании заявленного устройства достигается:

- высокая точность угловых измерений,

- устойчивость к воздействию различных помеховых излучений,

- выполнение различных функций, таких как поиск, обнаружение астроориентиров, слежение за ними, точное измерение угловых координат,

- функционирование прибора при воздействии различных факторов со стороны КА.

Углоизмерительный прибор, содержащий объектив, матричный приемник излучения, вычислительный блок и канал геометрического эталона, состоящий из оптически сопряженных с объективом осветительного блока, имеющего три источника света, расположенные под углом 120° друг к другу, коллиматорного блока, включающего три входные и три выходные точечные диафрагмы, и зеркально-призменного блока, образующего с нанесенными на него диафрагмами коллиматора моноблок, жестко связанный с опорной плоскостью углоизмерительного прибора, при этом зеркально-призменный моноблок выполнен из шести боковых зеркальных граней и ограничивающих их параллельных преломляющих оснований, большее шестиугольное из которых с нанесенными на него выходными точечными диафрагмами обращено к объективу, причем его соседние ребра расположены под углом 120° друг другу, отличающийся тем, что зеркально-призменный моноблок выполнен с тремя дополнительными преломляющими гранями, размещенными между большим основанием и соответствующей боковой зеркальной гранью, составляющей с большим основанием острый угол и размещенной перед выходной точечной диафрагмой, при этом каждая дополнительная грань снабжена входной точечной диафрагмой, а углы между большим основанием и тремя дополнительными преломляющими гранями, а также тремя боковыми зеркальными гранями, расположенными перед тремя входными точечными диафрагмами, равны 90°.



 

Похожие патенты:

Заявленное изобретение относится к системам ориентации космических аппаратов и может быть использовано в качестве активного ультрафиолетового солнечного датчика.

Изобретение относится к приборам ориентации по солнцу и касается оптического солнечного датчика. Датчик содержит широкопольный входной оптический элемент, кодовую маску, светофильтр, защитный экран и матричное фотоприемное устройство МФПУ.

Изобретения относятся к вычислительной технике и могут быть использованы для обнаружения неисправностей спутников и корректировки таких неисправностей. Техническим результатом является возможность определения типа неисправности.

Изобретение относится к приборам навигации космических аппаратов по Солнцу или иным светящимся ориентирам. Целью изобретения является расширение поля зрения и повышение надежности устройства, измеряющего две угловые координаты светящегося ориентира.

Изобретение может использоваться на космических аппаратах (КА) дистанционного зондирования Земли, снимки с которых должны удовлетворять жестким требованиям по координатной привязке, и в качестве средства определения ориентации КА.

Изобретение относится к области приборостроения и может быть использовано в инерциальных систем управления для определения навигационных параметров управляемых подвижных объектов.

Изобретение относится к области приборостроения и может быть использовано в инерциальных навигационных системах (ИНС) управления для определения навигационных параметров управляемых подвижных объектов.

Изобретение относится к области радиотехники, а именно к космической межспутниковой связи, и может быть использовано в космической спутниковой навигационной группировке ГЛОНАСС.

Изобретение относится к области обнаружения воздушных объектов (ВО), а также к областям автоматизированных систем управления и обработки, оптики, спутниковой навигации и вычислительной техники, и может быть использовано для автоматизированного обнаружения и сопровождения ВО. Способ фотонной локации воздушного объекта (ВО), характеризующийся обнаружением ультрафиолетовым приемником (УФП) фотонного излучения ВО, обработкой принятого сигнала в УФП, а затем в вычислителе, и определением координат нахождения этого ВО в пространстве в соответствующий момент системы единого времени (СЕВ), при этом привязку к единой системе координат и к СЕВ осуществляют с помощью локальной контрольно-корректирующей станции (ЛККС), принимающей кроме фотонного излучения ВО с помощью УФП еще от навигационных спутников (НС) действующих глобальных навигационных систем периодические радиопосылки, содержащие коды текущих значений СЕВ на момент излучения радиопосылок соответствующими НС, а также данные для точного расчета координат дислокации ЛККС и входящего в нее УФП, которые обрабатываются группой спутниковых приемников и вычислителем ЛККС, отличающийся тем, что обнаружение фотонного излучения ВО, источниками которого являются области ионизации газов возле носовой части и сопла движущегося ВО, осуществляют с помощью первой и второй групп УФП, размещенных соответственно на первой и второй вертикальных синхронно и синфазно механически вращающихся вокруг своих осей в азимутальной плоскости мачтах, разнесенных друг от друга на базовое расстояние, причем с помощью каждой из групп УФП обнаружение фотонного излучения ВО в каждый данный момент времени осуществляют со всех направлений 90-градусной угломестной плоскости за счет равномерного распределения оптических осей УФП каждой группы на этих 90 градусах при узкой диаграмме направленности УФП в азимутальной плоскости, а за счет вращения мачт на каждом 360-градусном обзоре - последовательно со всех направлений 180-градусной угломестной плоскости, принимаемые каждой группой УФП излучения ВО при их наличии преобразуют в каждом УФП в цифровой код, а затем регистрируют в памяти вычислителя раздельно для каждой мачты упорядоченно для каждого обнаруженного излучения с фиксацией полученных азимутального угла и угла места, причем азимутальный угол по каждой мачте вычисляют по середине сектора непрерывно принимаемого излучения, формируемого в результате поворота мачт, а угол места по каждой мачте вычисляют по середине сектора непрерывно принимаемого излучения соответствующей совокупностью смежных УФП, одновременно с полученными углами азимута и места по каждому излучению для каждой мачты в памяти вычислителя регистрируют соответствующие данные отсчета СЕВ и рассчитанные по полученным углам значения дальности и высоты, после чего для текущего обзора отождествляют раздельно полученные отсчеты по каждой мачте по их общим признакам углов, дальности и высоты в конкретные координаты конкретных обнаруженных ВО, которые уточняются на очередном и последующих обзорах по признакам уточненных углов, дальности и высоты ВО, а также - по появляющимся дополнительным общим признакам скорости, маневра и направления движения ВО. Техническим результатом заявляемого изобретения является обеспечение пассивной локации ВО, не имеющих на их борту ультрафиолетовых передатчиков, путем приема и обработки слабых фотонных излучений от носовых и хвостовых частей движущихся ВО с помощью разнесенных друг от друга двух синхронно сканирующих пространство групп УФП.

Изобретение относится к области ракетной техники, а именно к контролю исправности гироскопических измерителей вектора угловой скорости космического аппарата. Отличием предложенного технического решения является то, что способ формируют пять пороговых сигналов, сигналы норм гирокватернионов, сигналы норм базисов, сигнал нормы астрокватерниона, определяют скорости изменения выходных сигналов каждого из гироскопов и при превышении ими первого порогового сигнала формируют второй сигнал неисправности, определяют сигналы разностей сигналов гирокватернионов базисов и при превышении ими второго порогового сигнала формируют третий сигнал неисправности, после получения хотя бы одного сигнала неисправности определяют сигнал разности между сигналом нормы гирокватерниона рабочего базиса и сигналом нормы астрокватерниона и при превышении ею третьего порогового сигнала формируют четвертый сигнал неисправности, эпизодически на интервале времени в пять минут определяют сигналы разности сигналов гирокватернионов сигналов базисов и сигнала астрокватерниона и при превышении ею четвертого порогового сигнала формируют пятый сигнал неисправности, эпизодически в течение четырех секунд после получения третьего сигнала неисправности размыкают контур управления космическим аппаратом, подают на вход исполнительного устройства тестовый пробный сигнал, измеряют выходные сигналы гироскопов и при превышении ими пятого порогового сигнала формируют шестой сигнал неисправности.

Изобретение относится к области измерений и измерительной техники и может быть использовано в геодезии, навигации, метеорологии. Способ определения задержки электромагнитного сигнала тропосферой при относительных спутниковых измерениях включает спутниковые измерения, измерение метеоэлементов геодезическим градиентометром (патент РФ №2452983), расчет распределения метеоэлементов в направлении распространения электромагнитного сигнала, определение задержки сигнала тропосферой. В нижнем слое атмосферы при моделировании используют измеренные градиенты метеоэлементов, выше - среднестатистические, а для влажности используют график зависимости влажности воздуха от температуры. Измерение метеоэлементов градиентометром позволяет однозначно определить характер изменения градиентов с высотой. Производство метеоизмерений над двумя крайними по физико-химическим свойствам подстилающими поверхностями позволяет учесть горизонтальную изменчивость метеоэлементов. Одновременные спутниковые наблюдения на не менее чем трех станциях позволяют получить избыточные измерения, необходимые для определения оптимального значения высоты замены измеренных градиентов среднестатистическими, которое соответствует наименьшей невязке в приращениях координат. Предложенный способ позволяет повысить точность и производительность относительных спутниковых измерений за счет независимого определения задержки электромагнитного сигнала тропосферой. 1 ил.

Изобретение относится к оптико-электронному приборостроению и может быть использовано в оптико-электронных приборах (ОЭП) ориентации по звездам, содержащих матричный фотоприемник с накоплением заряда. Решение заключается в проецировании на фоточувствительную площадку фотоприемника через объектив изображения участка звездного неба в трех или более спектральных диапазонах и калибрационных меток с изменяемым временем экспозиции, выделении изображений звездных объектов во всех спектральных диапазонах и формировании мультиспектрального изображения звездных объектов путем выбора по каждому звездному объекту изображения того спектрального диапазона, средняя величина амплитуды в котором оказывается наибольшей, измерении линейных координат центров изображений звезд и калибрационных отметок и пересчете линейных координат центров изображений звезд в угловые координаты звезд в базовой приборной системе координат с учетом результатов измерений линейных координат центров изображений калибрационных отметок. Технический результат - увеличение точности измерения угловых координат звезд за счет повышения отношения сигнал/шум путем обработки изображений звезд в раздельных спектральных диапазонах. 2 н. и 3 з.п. ф-лы, 1 ил.

Изобретение может использоваться на космических аппаратах дистанционного зондирования Земли при жестких требованиях по координатной привязке получаемых снимков. Телескоп содержит последовательно установленные по ходу луча первого канала главное зеркало, вторичное зеркало, линзовый корректор, регистрирующее устройство, размещенное в фокальной плоскости телескопа, и установленное по ходу луча второго канала главное зеркало, общее для первого и второго каналов, и второе регистрирующее устройство. Каналы телескопа выполнены соосными с противоположным расположением входных зрачков. Главное зеркало выполнено двояковогнутым с образованием двух противоположно направленных рабочих поверхностей и двух фокальных плоскостей телескопа. В первом варианте обе фокальные плоскости телескопа и оба регистрирующих устройства расположены со стороны входного зрачка второго канала. Во втором варианте каждый канал снабжен отдельным вторичным зеркалом, обе фокальные плоскости и оба регистрирующих устройства расположены в центральной зоне главного зеркала, регистрирующие устройства расположены со стороны входных зрачков соответствующих каналов. Технический результат - уменьшение погрешности привязки изображения земной поверхности. 2 н.п. ф-лы, 2 ил.

Изобретение относится к замкнутым телевизионным системам и может быть использовано в контрольно-измерительной технике, в приборах для космической навигации, в устройствах позиционирования, в системах управления космического аппарата в качестве датчика ориентации, где в качестве источника информационного сигнала используются матричные фотоприемники с накоплением заряда. Технический результат - повышение точности измерения положения центра тяжести изображения, полученного фотоприемной матрицей на основе ПЗС. В способе определения координат центра тяжести изображения осуществляют поправку, соответствующую аддитивной составляющей искажений изображения, корректировку обрабатываемых сигналов обратно пропорционально мультипликативной составляющей искажений и формирование групп взвешенных с весами обратными нелинейным искажениям фотоприемной матрицы строчных интегральных сигналов, являющихся основой для определения координат центра тяжести изображения. Таким образом, устраняют влияние искажений изображения, характерных для ПЗС матрицы. 2 ил.

Изобретение относится к области приборостроения и может найти применение в системах навигации подвижных объектов, например летательных аппаратов. Технический результат - расширение функциональных возможностей. Для этого относительно гиростабилизированной платформы (ГСП), установленной на изделии в кардановом подвесе, обеспечивают увеличение углов поворота вокруг продольной, поперечной и вертикальной осей изделия за счет автоматического перевода трехосного карданова подвеса по сигналам от вычислительного устройства из режима работы с «ракетными» углами в режим работы с «самолетными» углами и обратно на заданное (требуемое) число раз с помощью двигателя механизма разворота (ДМР), установленного на дополнительной наружной раме карданова подвеса ГСП. При этом ось вращения дополнительной рамы относительно летательного аппарата (ЛА) устанавливают коллинеарно вертикальной оси ЛА. 3 ил.

Изобретение относится к космической навигации и может быть использовано для оперативного определения направления на Солнце. Согласно способу с помощью оптико-интерференционной системы получают изображения светящегося кольца, центр которого соосен с направлением Солнца из центральной точки этой системы. Изображения кольца проецируют на матричный фотоприемник. Об угловом положении Солнца судят по положению центра спроецированного светового кольца на фотоприемнике. Устройство содержит сферическую оптико-интерференционную систему, включающую тонкий полусферический мениск с нанесенным на его выпуклую поверхность интерференционным светофильтром, рассеиватель излучения на вогнутой поверхности мениска и отсекающий светофильтр. Кроме того, устройство содержит объектив, матричный фотоприемник и блок управления, обработки и расчета. Технический результат - повышение точности определения угловых координат Солнца. 7 н.п. ф-лы, 4 ил.

Изобретение относится к области навигационного приборостроения летательных аппаратов: искусственных спутников Земли, спускаемых космических аппаратов, управляемых снарядов и ракет. Технический результат - повышение точности и помехоустойчивости. Для этого на объекте устанавливаются три приемные антенны спутниковых навигационных систем (СНС) с одним специализированным приемником, имеющим три входа, каждый из которых имеет один вход для подключения антенны, при этом опорная антенна вместе с бескардановым инерциальным измерительным модулем (БИИМ) на микромеханических датчиках (ММД) устанавливается в носовой части объекта по оси вращения, а две других с максимально возможным отстоянием по продольной оси от опорной антенны расположены по окружности со смещением 180° в поперечной плоскости. Разностные фазовые измерения СНС вращающегося объекта используются для оценки погрешностей БИИМ как по углу крена, так и углам курса и тангажа, а также для оценки погрешностей масштабных коэффициентов гироскопов и акселерометров, в том числе установленных по продольной оси объекта, вокруг которой осуществляется быстрое вращение. 14 ил.

Заявляемое изобретение относится к навигационной технике, а именно к способу навигации космического аппарата (КА). Способ основан на измерении отклонения истинного и измеренного положения звезды, наблюдаемой сквозь земную атмосферу. Отклонение связано с атмосферной рефракцией. Для этого с помощью звездного прибора проводят одновременно измерения угловых расстояний между видимым положением известной звезды, лучи которой подвергаются рефракции в атмосфере, и положением каждой из не менее чем двух звезд, находящихся над атмосферой, лучи которых проходят выше атмосферы и не подвергаются рефракции. По измеренным расстояниям определяют величину угла атмосферной рефракции в момент измерения. Технический результат - определение величины атмосферной рефракции для использования ее в системе автономной навигации КА с целью уточнения параметров орбиты. 5 ил.

Изобретение относится к области астрономо-геодезических измерений и может быть использовано для определения географических координат объекта, в том числе подвижного. Технический результат - расширение функциональных возможностей. Для этого осуществляют прием и спектральный анализ сигналов от чувствительного элемента, фиксацию сигналов, принятых от различных радиопульсаров, их идентифицикацию на электронной карте звездного неба в вычислительном устройстве и расчет широты и долготы места обсервации. При этом система космической навигации содержит чувствительный элемент, вычислительное устройство, блок памяти с электронной картой (базой данных) пульсаров, информационные кабели и индикатор долготы и широты, датчик наклона чувствительного элемента, причем чувствительный элемент выполнен в виде датчика сверхслабых излучений, имеющий всенаправленную диаграмму направленности. 2 н.п. ф-лы, 3 ил.

Изобретение относится к бортовым системам навигации (БСН) искусственных спутников Земли (ИСЗ) на низких (с высотой до 500-600 км) орбитах. БСН содержит устройство управления системой и соединенные с ним устройство преобразования навигационных сигналов в навигационные параметры, блок преобразования навигационных параметров в параметры движения центра масс (ЦМ) ИСЗ и блок прогнозирования параметров движения ЦМ. В состав БСН введены соединенные с устройством управления системой блок уточнения баллистического коэффициента (БК) - как параметра согласования расчетного и фактического движения ИСЗ, блок накопления текущих значений БК и блок прогнозирования БК. В блоке прогнозирования БК использован адаптивный (по параметрам, либо также и по структуре модели) алгоритм прогнозирования БК. В алгоритме могут быть использованы соотношения эмпирической регрессии или метод группового учета аргументов. Техническим результатом изобретения является повышение точности прогнозирования движения ЦМ спутника. 2 ил.
Наверх