Способ оценки качества кварцевого сырья


 


Владельцы патента RU 2525681:

Федеральное государственное бюджетное учреждение Институт геологии Карельского научного центра Российской академии наук (RU)

Использование: для выявления наиболее чистых видов кварцевого сырья. Сущность изобретения заключается в том, что осуществляют выбор мономинеральной пробы кварца, измельчение и отквартовывание трех образцов. Каждый образец подвергают облучению γ-квантами дозой 10±1×106 Гр. В первом образце после облучения определяют содержание изоморфных структурных Al-O- центров в кварце. Третий образец перед облучением подвергают температурной обработке при 590-650°C в течение 20-30 мин и определяют полное содержание структурных Al-O- центров в кварце. Третий образец перед облучением активируют СВЧ-полями мощностью 700-800 Вт в течение 3-5 мин, подвергают температурной обработке при 590-650°C в течение 20-30 мин и определяют содержание подвижных структурных Al-O- центров в кварце. Затем определяют показатель обогатимости кварца, C1 - содержание изоморфных структурных Al-O- центров в кварце, C2 - полное содержание структурных Al-O- центров в кварце, C3 - содержание подвижных структурных Al-O- центров в кварце, и при значении показателя обогатимости 0,5-1 судят о высоком качестве кварцевого сырья. Технический результат: повышение точности и экспрессности, а также упрощение процесса оценки качества кварцевого сырья. 1 табл.

 

Изобретение относится к исследованию минерального сырья, в частности, к способам предварительной оценки кварцевого сырья.

Особо чистый кварц является кварцевым сырьем, пригодным для получения различными технологиями обогащения высококачественных концентратов, отвечающих современным требованиям к чистоте, предъявляемым отечественной промышленностью и соответствующим мировому уровню. Рост потребления особо чистого кварца обусловлен развитием высоких технологий в электронной, химической, космической и других отраслях промышленности. Направления использования кварца определяются формой вхождения различных примесей в кварц. Современные технологии позволяют практически полностью удалять пленочные, минеральные и ГЖВ примеси. Однако получение высокочистых кварцевых концентратов в значительной степени определяется возможностью обеспечить удаление структурных примесей - Al, Ti, Ge и др. в процессе обогащения кварцевого сырья. Структурные элементы-примеси в кристаллической решетке, как правило, образуются в процессе кристаллизации кварца за счет изоморфизма - замещения атомов решетки кварца на атомы примесей, и способами традиционных технологий обогащения удаляются в очень незначительной степени. При этом структурные элементы-примеси и структурные дефекты определяют оптические свойства, растворимость, параметры полиморфного превращения и другие физико-химические свойства кварцевого сырья, которые, в конечном итоге, обуславливают его технологичность и направления использования кварца. Обогащение кварца структурными примесями может произойти и в процессе технологического передела кварцевого сырья. В известной мере, это явление носит неизбежный характер, так как в кварце в значительных количествах присутствуют рассеянные (или подвижные) примеси (Раков Л.Т. Рассеянные примеси в кварце // "Структура и разнообразие минерального мира". Материалы Международного минералогического семинара. Сыктывкар. 2008. С.265-266). Они представляют собой атомы различных элементов, захваченные дефектами кристаллической структуры. В процессах обогащения кварца эти примеси диффундируют в дефектных областях кварца. Результатом такой диффузии становится взаимодействие подвижных примесей с другими структурными дефектами. Так, высокотемпературная обработка, широко используемая в процессах очистки кварца, способствует внедрению подвижных элементов-примесей в кристаллическую решетку и делает их недоступными для извлечения (Раков Л.Т. Механизмы изоморфизма в кварце // Геохимия. 2006. №10. С.1085-1096). Из общего количества внедренных при термообработке примесей основная доля (свыше 95%) приходится на алюминий. Поэтому оценка кварцевого сырья на стадии геологического изучения на пригодность получения кварцевых концентратов с минимально возможным содержанием структурных примесей является актуальной.

Из анализа уровня техники известны различные способы предварительной оценки качества природного кварцевого сырья.

Известен способ оценки качества кварцевого сырья, в котором осуществляют отбор монофракций кварца, прокаливают до температуры 350-450°C, снимают спектр рентгенолюминесценции прокаленного кварца в спектральном диапазоне длин волн 350-550 нм и по отношению интенсивности высвечивания при длине волны 360-380 нм к интенсивности рентгенолюминесценции структурнопримесных центров в спектральном диапазоне 420-500 нм оценивают дефектность структуры и качество кварцевого сырья (патент РФ №2400736, 2010 г).

Недостатком известного способа является то, что рентгенолюминесценция относится к качественным методам и не позволяет с достаточной точностью оценивать количественное содержание структурных примесных элементов. Кроме того, способ не позволяет оценивать кварцевое сырье с низкой концентрацией примесных атомов (0,n-0,0000n% - микроизоморфизм).

Известен способ поиска месторождений особо чистого кварца, заключающийся в том, что проводят отбор мономинеральных образцов кварца по разведочной сети, измеряют в отобранных образцах спектральным количественным методом концентрации примеси лития и при их значении менее 0,5 г/т судят о наличии месторождения особо чистого кварца (патент РФ №2145105, 2000 г.).

Недостатком известного способа является использование для оценки малочувствительного спектрального анализа, результаты которого требуют подтверждения данными определения содержания в тех же образцах структурного алюминия, что усложняет процесс оценки качества кварца. Кроме того, определенная спектральным анализом концентрация Li не отражает реальной картины качества кварца, так как Li может входить в состав микроминеральных включений, а не в структуру кварца, что снижает точность оценки качества кварцевого сырья. Способ опробован только применительно к пегматитовому кварцу, используемому для получения термостойкого и технического стекла.

Наиболее близким по технической сущности и достигаемому результату является способ оценки качества кварцевого сырья, основанный на использовании электронного парамагнитного резонанса (ЭПР), позволяющего измерять содержания структурных примесей в кварце. Согласно известному способу мономинеральную тонкоизмельченную пробу кварца подвергают термической обработке, облучают γ-квантами, дозами, переводящими изоморфный титан и германий в парамагнитное состояние, регистрируют спектр ЭПР и определяют концентрации Ge и Ti-центров. Затем пробу подвергают специальной высокотемпературной обработке (термический отжиг), облучают γ-квантами, регистрируют спектр ЭПР и определяют концентрации Al-O--центров в кварце. Содержание указанных структурных примесей в кварце определяют на основе максимальных концентраций парамагнитных центров, что позволяет оценивать степень загрязненности кварца изоморфными примесями Ge, Ti и Al и выявлять наиболее чистые виды кварцевого сырья для использования в электронной технике (Раков Л.Т. и др. «Новый метод оценки качества кварцевого сырья. Разведка и охрана недр», 1993, №7, с.36-38).

Недостатком известного способа является то, что он позволяет определять только общее количество изоморфных структурных примесей Al, Ti и Ge, без учета подвижных форм, находящихся во внутренних слоях демпферных зон, и не позволяет дифференцировать примеси на собственно изоморфные и подвижные, что приводит к многократному завышению порога обогатимости и снижению точности оценки качества кварцевого сырья. Кроме того, определение содержания трех изоморфных структурных примесей (Al, Ti и Ge) усложняет процесс оценки и увеличивает его длительность. Проведение специального высокотемпературного отжига делает процесс энергозатратным.

Задачей предлагаемого изобретения является разработка технологичного и эффективного способа оценки качества кварцевого сырья, позволяющего достоверно на предварительной стадии оценки прогнозировать качество кварцевого сырья и направления его использования.

Техническим результатом предлагаемого способа является повышение точности и экспрессности, а также упрощение процесса оценки качества кварцевого сырья.

Это достигается тем, что в способе оценки кварцевого сырья, включающем отбор мономинеральной пробы кварца, измельчение, термическую обработку, облучение γ-квантами, регистрацию спектра ЭПР и определение содержания структурных Al-O--центров в кварце, согласно изобретению, пробу кварца делят на три образца, каждый образец подвергают облучению γ-квантами дозой 10±1×10 Гр, при этом в первом образце после облучения определяют содержание изоморфных структурных примесей Al-O--центров, второй образец перед облучением подвергают термической обработке при температуре 590-650°C в течение 20-30 мин и определяют полное содержание структурных Al-O--центров, третий образец перед облучением активируют СВЧ полями мощностью 700-800 Вт в течение 3-5 мин, подвергают температурной обработке при 590-650°C в течение 20-30 мин и определяют содержание подвижных структурных Al-O--центров, затем определяют показатель обогатимости кварца в мономинеральной пробе по соотношению Р=(C2-C3)/(C2-C1), где: P - показатель обогатимости кварца, C1 - содержание изоморфных структурных Al-O--центров в кварце, С2 - полное содержание структурных Al-O--центров в кварце, C3 - содержание подвижных структурных Al-O--центров, и при значении показателя обогатимости 0,5-1 судят о высоком качестве кварцевого сырья.

Предлагаемый режим радиационного облучения γ-квантами дозой 10±1×106 Гр дает возможность получить в кварце концентрацию парамагнитных Al-O--центров, достаточную для надежной регистрации ее методом ЭПР. Режим термообработки кварца при температурах не менее 590-650°C обеспечивает активацию подвижных примесей и внедрение значительной их части в кристаллическую структуру кварца. Измеряемые концентрации Al-O--центров в образцах кварца отвечают различным состояниям подвижных примесей в кварце. Концентрация Al-O- -центров в первом образце соответствует нахождению подвижных примесей в потенциальных демпферных зонах, поэтому величина C1 отвечает исходному содержанию изоморфного Al, накопленному в кварце в природных условиях. Концентрация Al-O--центров С2 во втором образце соответствует переходу подвижных примесей в активное состояние и внедрению их в кристаллическую структуру кварца. Концентрация Al-O--центров C3, измеряемая в третьем образце, отражает влияние СВЧ-поля на процесс внедрения подвижной примеси Al в кристаллическую структуру кварца. Предлагаемый режим обработки кварцевого сырья, включающий активацию кварца СВЧ полями при низких уровнях микроволновой мощности (700-800 Вт) в течение короткого промежутка времени (3-5 мин), ускоряет диффузию подвижных структурных примесей из внутренних слоев демпферных зон к периферийным, что позволяет дифференцировать структурную примесь алюминия на изоморфную, полную и подвижную формы и определять их количество. Процесс проходит без контакта с металлическими или диэлектрическими элементами устройства, что исключает вторичное засорение кварца примесями. Показатель обогатимости кварца в мономинеральной пробе, определяемый по соотношению (C2-C3)/(C2-C1), показывает, какая часть активированных подвижных примесей нейтрализуется воздействием энергетического поля и не внедряется в кристаллическую структуру кварца.

При этом в конечном итоге обеспечивается повышение точности оценки качества кварцевого сырья и достоверность предварительной оценки кварца. Экспрессность и упрощение процесса оценки достигается за счет сокращения круга определяемых элементов-примесей в кварце. Экономичность способа обеспечивается исключением из технологического процесса высокотемпературного отжига.

Опробование предлагаемого способа осуществляли на пробах природного кварца из месторождений и проявлений Карелии: Фенькина-Лампи, Восточная Хизоваара, Рухнавлок. Мономинеральную пробу кварца, отобранную на конкретном объекте, массой 200 г измельчают до крупности 0,5 мм, усредняют и отквартовывают 3 образца весом по 2 грамма. Каждый образец подвергают облучению γ-квантами дозой 10±1×106 Гр, после этого регистрируют спектр ЭПР Al-O--центров, измеряют концентрации парамагнитных Al-O- центров и на основе их максимальных концентраций определяют содержание структурных Al-O--центров. Первый образец облучают указанной дозой γ-квантов и определяют содержание изоморфных структурных Al-O--центров. Второй образец перед облучением γ-квантами подвергают температурной обработке до 590-650°C в течение 20-30 мин и методом ЭПР определяют полное содержание структурных Al-O--центров в кварце. Третий образец перед облучением γ-квантами активируют СВЧ полями мощностью 700-800 Вт в течение 3-5 мин, подвергают температурной обработке при 590-650°C в течение 20-30 мин и методом ЭПР определяют содержание подвижных структурных Al-O- центров. Показатель степени обогатимости P определяют по соотношению:

Р=(С2-C3)/(С2-C1),где:

C1 - содержание изоморфных структурных Al-O--центров;

C2 - полное содержание структурных Al-O--центров

C3 - содержание подвижных структурных Al-O--центров, и при значении показателя степени обогатимости 0,5-1,0 судят о высоком качестве кварцевого сырья.

В качестве эталона сравнения использован контроль - определение содержания структурных Al-O--центров в природном кварце без активации образцов СВЧ полями. Каждый пример проводили в 10 повторностях. Статистически обработанные данные по содержанию структурных форм алюминия и показатели степени обогатимости Р для кварца разных объектов представлены в таблице.

Из таблицы следует, что высоким качеством кварцевого сырья обладает кварц из месторождения Восточная Хизоваара, имеющий показатель степени обогатимости P=1,0, при котором подвижная форма примеси алюминия полностью «нейтрализована» и в процессе дальнейшей очистки кварцевого сырья не войдет в кристаллическую решетку кварца и может быть удалена традиционными технологиями обогащения.

Кварц месторождения Фенькина-Лампи характеризуется показателем степени обогатимости P=0,53, при котором подвижная форма примеси алюминия нейтрализована частично.

Кварц проявления Рухнаволок с показателем степени обогатимости P=0,4 не является источником высокочистого кварцевого сырья.

Предлагаемый способ оценки качества кварцевого сырья повышает эффективность и достоверность предварительной оценки обогатимости кварцевого сырья и может быть использован для выявления наиболее чистых видов кварцевого сырья для применения в электронной технике, оптике, светотехнике, солнечной энергетике и других отраслях промышленности, где предъявляются высокие требования к чистоте кварцевых концентратов.

Способ оценки качества кварцевого сырья, включающий отбор мономинеральной пробы кварца, измельчение, температурную обработку, облучение γ-квантами, регистрацию спектра ЭПР и определение содержания структурных Al-O--центров в кварце, отличающийся тем, что пробу кварца делят на три образца, каждый образец подвергают облучению γ-квантами дозой 10±1×106 Гр, при этом в первом образце после облучения определяют концентрацию изоморфных структурных примесей Al-O--центров, второй образец перед облучением подвергают температурной обработке при 590-650°C в течение 20-30 мин и определяют полное содержание структурных Al-O--центров в кварце, третий образец перед облучением активируют СВЧ-полями мощностью 700-800 Вт в течение 3-5 мин, подвергают температурной обработке при 590-650°C в течение 20-30 мин и определяют содержание подвижных структурных Al-O- центров в кварце, затем определяют показатель обогатимости кварца в мономинеральной пробе по соотношению P=(C2-C3)/(C2-C1), где P - показатель обогатимости кварца, C1 - содержание изоморфных структурных Al-O--центров в кварце, C2 - полное содержание структурных Al-O--центров в кварце, C3 - содержание подвижных структурных Al-O--центров, и при значении показателя 0,5-1 судят о высоком качестве кварцевого сырья.



 

Похожие патенты:

Изобретение относится к физико-химическим методам анализа, а именно к способам определения примесей соединений азота, в частности нитратов и нитритов, в гидроксиапатитах (далее ГАП).

Изобретение относится к технике спектроскопии электронного парамагнитного резонанса (ЭПР) и может найти применение при исследованиях конденсированных материалов и наноструктур методом ЭПР в физике, химии, биологии и др.

Изобретение относится к технике спектроскопии электронного парамагнитного резонанса (ЭПР). .

Изобретение относится к технике спектроскопии электронного парамагнитного резонанса (ЭПР), может использоваться при изготовлении и настройке спектрометров ЭПР 3 мм диапазона, а также для контрольно-проверочных работ на спектрометрах 3 мм диапазона во время их эксплуатации.

Изобретение относится к области медицины и касается области фармации, а именно идентификации, оценки качества и безопасности оригинальных и воспроизведенных лекарственных средств.

Изобретение относится к технологии производства изделий из сшитого полиэтилена и может быть использовано при изготовлении полиэтиленовой кабельной изоляции, труб для тепло-водо-газоснабжения, а также других изделий из данного материала.
Изобретение относится к области контроля упругих свойств углеродных волокон. .

Изобретение относится к области радиоспектроскопии и может быть использовано в системах обработки импульсных сигналов. .

Изобретение относится к измерительной технике, в частности к измерению переменных магнитных величин веществ на основе электронного парамагнитного резонанса. .

Изобретение относится к технической физике и может быть использовано при изготовлении спектрометров электронного парамагнитного резонанса (ЭПР). Спектрометр содержит сигнальный 1 и гетеродинный 2 генераторы СВЧ, измерительный аттенюатор 3, смесители опорного 4 и сигнального 5 каналов, циркулятор 6 с измерительным резонатором 7, УПЧ 8 опорного и УПЧ 9 сигнального каналов, фазочастотные дискриминаторы 10 и 11, делители частоты 12 и 13, синхронные детекторы 14 и 15, фазовращатели 16 и 17, элемент перестройки резонансной частоты измерительного резонатора 18, делители СВЧ мощности 19 и 20, трехпозиционный переключатель 21 режимов работы, устройство синтеза опорных частот 22, опорный генератор 23. Технический результат - упрощение устройства, уменьшение его габаритов, снижение потребляемой мощности и фазовых шумов генератора СВЧ. 1 ил.

Использование: для определения позиций примесей соединений азота в гидроксиапатитах. Сущность изобретения заключается в том, что облучают образец гидроксиапатита рентгеновскими, гамма- или электронными лучами с последующей регистрацией методом ЭПР возникших при облучении парамагнитных центров на сертифицированном ЭПР спектрометре, вычисляют спектральные характеристики наблюдаемого спектра ЭПР (число наблюдаемых линий и их положение) с контролем погрешности измерений и сравнивают полученные спектральные характеристики со спектральными характеристиками азотных радикалов, при этом производят дополнительное сравнение полученных ранее спектральных характеристик со спектральными характеристиками азотных радикалов в различных позициях, замещающих функциональные группы OH и(или) PO4 в структуре гидроксиапатита, в частности, с возможностью определения мест(а) внедрения (замещения) примесей соединений азота в структуру гидроксиапатита. Технический результат: обеспечение возможности определения позиций примесей соединений азота в гидроксиапатитах. 1 ил.

Изобретение относится к технической физике и может быть использовано при изготовлении спектрометров электронного парамагнитного резонанса (ЭПР). Когерентный супергетеродинный спектрометр электронного парамагнитного резонанса содержит устройство суммирования напряжений, генератор модуляции, синхронный детектор, фазовращатель сигнала модуляции и двухпозиционный переключатель, а первый фазовращатель выполнен управляемым, причем один из входов устройства суммирования напряжений соединен с общим контактом первой секции двухполюсного переключателя, второй - с общим контактом двухпозиционного переключателя, а выход - с управляющим частотой электродом сигнального генератора СВЧ, выход генератора модуляции соединен с одним из переключаемых контактов двухпозиционного переключателя и со входом фазовращателя сигнала модуляции, выход которого соединен с опорным входом дополнительного синхронного детектора, сигнальный вход которого соединен с выходом второго синхронного детектора, частота сигнала генератора модуляции меньше граничной частоты полосы пропускания петли ФАПЧ гетеродинного генератора, но больше граничной частоты полосы пропускания петли ФАПЧ сигнального генератора. Технический результат заключается в возможности обеспечения однозначной, в том числе автоматической, настройки фазовых соотношений, приводящих к точному разделению квадратурных компонент сигнала. 1 ил.

Изобретение относится к нанотехнологиям и может быть использовано в области разработки материалов на основе алмаза для магнитометрии, квантовой оптики, биомедицины, а также в информационных технологиях, основанных на квантовых свойствах спинов и одиночных фотонов. Способ определения ориентации NV дефектов в кристалле алмаза включает помещение образца кристалла алмаза во внешнее магнитное поле, воздействие на образец микроволновым излучением, облучение рабочего объема образца сфокусированным лазерным излучением, возбуждающим в рабочем объеме образца фотолюминесценцию, по которой регистрируют сигнал оптически детектируемого магнитного резонанса (ОДМР), который создают путем развертки частоты микроволнового излучения и модуляции внешнего магнитного поля. Измеряют спектры ОДМР NV дефекта в кристалле алмаза при разных ориентациях кристалла алмаза относительного внешнего магнитного поля. Сравнивают полученные зависимости линий ОДМР с рассчитанными положениями линий NV дефекта в кристалле алмаза в магнитном поле. Затем определяют ориентацию NV дефекта по величине отклонения положения линий NV дефекта от рассчитанных положений линий. Способ является простым по выполнению и не требует использования сложного устройства. 3 ил., 2 пр.

Изобретение относится к технической физике и может быть использовано при изготовлении спектрометров электронного парамагнитного резонанса (ЭПР). Спектрометр содержит сигнальный 1 и гетеродинный 2 генераторы СВЧ, измерительный аттенюатор 3, смеситель опорного 4 и сигнального 5 каналов, циркулятор 6, измерительный резонатор 7 с элементом перестройки его резонансной частоты 8, УПЧ опорного 9 и сигнального 10 каналов, фазочастотные дискриминаторы 11 и 12, делители частоты 13 и 14, синхронные детекторы 15 и 16, опорный генератор 17, устройство синтеза частот 18, трехпозиционный переключатель 19, импульсный модулятор фазы 20, усилитель переменного тока 21 и импульсный демодулятор 22. Технический результат - повышение точности работы системы автоподстойки частоты сигнального генератора и резонансной частоты измерительного резонатора. 1 ил.
Наверх