Способ защиты от влаги корпусов из композиционных материалов

Изобретение относится к машиностроению и может быть использовано при изготовлении оболочек корпусов из композиционных материалов, требующих по условиям эксплуатации нанесения на поверхность оболочек влагозащитных покрытий с антистатическими свойствами. Для защиты от влаги корпуса из композиционного материала на него наносят наружное влагозащитное покрытие с антистатическими свойствами. Влагозащитное покрытие формируют из 2-х слоев эмали на основе хлорсульфированного полиэтилена с добавкой комбинированного протекторного наполнителя в количестве 30 мас.ч. на 100 мас.ч. эмали. В качестве комбинированного протекторного наполнителя используют ультрадисперсный цинк пластинчатой и сферической формы при соотношении 1:1. Затем наносят 1-2 слоя эмали на основе хлорсульфированного полиэтилена с токопроводящим наполнителем, например эмали марки ХП-5237. Изобретение позволяет повысить надежность влагозащитного покрытия с антистатическими свойствами за счет снижения трещинообразования. 2 ил., 1 табл.

 

Изобретение относится к машиностроению и может быть использовано при изготовлении оболочек корпусов из композиционных материалов типа «кокон», «труба», требующих по условиям эксплуатации нанесения на поверхность оболочек влагозащитных покрытий со свойствами предотвращения возникновения статического электричества (антистатическими свойствами).

С развитием твердотопливного двигателестроения в конструкции корпусов двигателей стали широко использоваться арамидные волокна в полимерных матрицах. При этом содержание полимерного связующего в оболочке корпуса составляет 25-30%, что создает условия для диффузии влаги через стенку корпуса с вероятным взаимодействием пограничного слоя влаги с топливным зарядом, что недопустимо в процессе эксплуатации (относительная влажность до 98%, температура 30-50°C, наличие многокомпонентных газовых сред). Известны пленкообразующие влагозащитные материалы с антистатическими свойствами (ХС-928 ТУ 6-21-16-90, ХС-973 ТУ 6-21-16-90, ХП-5237 ТУ 6-10-1976-84 и др.).

Известен способ защиты от влаги корпусов из полимерно-композиционных материалов путем формирования покрытий из пленкообразующих материалов (ОСТ 92-0967-75, стр.11, п.21; стр.15a, п.43). В этих покрытиях, характеризующихся трехмерным структурообразованием, эпоксидные пленки являются жесткими и склонны к трещинообразованию при действии растягивающих напряжений, возникающих под действием внутреннего давления в диапазоне 12,0-20,0 МПа в процессе испытаний на последнем этапе технологического цикла изготовления.

Технической задачей изобретения является устранением указанных недостатков, то есть повышение надежности работы покрытия.

Технический результат достигается тем, что в способе защиты от влаги корпуса, например, ракетного двигателя, включающем нанесение влагозащитного покрытия с антистатическими свойствами, влагозащитное покрытие формируют из двух слоев эмали на основе хлорсульфированного полиэтилена, например эмали ХП-5237, с добавкой комбинированного протекторного наполнителя в количестве 30 мас.ч. на 100 мас.ч. эмали, причем в качестве комбинированного протекторного наполнителя используют ультрадисперсный цинк пластинчатой и сферической формы при соотношении 1:1, затем наносят 1-2 слоя эмали на основе хлорсульфированного полиэтилена с токопроводящим наполнителем.

Отличительные признаки, являющиеся существенными:

- нанесение двух слоев эмали на основе хлорсульфированного полиэтилена с добавлением комбинированного протекторного наполнителя в количестве 30 мас.ч. ультрадисперсного цинка пластинчатой и сферической формы при соотношении 1:1 позволяет исключить трещинообразование.

- нанесение 1-2 слоев этой же эмали без протекторной добавки позволяет обеспечить стабильность антистатических свойств покрытия.

Значение концентрации ультрадисперсного цинка в количестве 30 мас.ч. (суммарно) получено путем экспериментальных исследований ряда антистатических эмалей на основе хлорсульфированного полиэтилена, результат которых представлен в таблице

Система Состав покрытия Объемное удельное электрическое сопротивление, Ом·см Влагопоглощение, %
1 эмаль ХП-5237 1.45 3.05
2 эмаль ХП-5237 + УДЦ (20 мас.ч.) 2.40 1.62
3 эмаль ХП-5237 + УДЦ (30 мас.ч.) 8.11 0.44
4 эмаль ХП-5237 + УДЦ (40 мас.ч.) 7.26 0.50

с построением графической зависимости объемного удельного электрического сопротивления и влагопоглощения эмали от концентрации ультрадисперсного цинка, приведенной на фиг.1.

Нанесение предложенного покрытия позволяет повторять любую геометрическую форму механизированными методами на изделиях типа «кокон» или «труба» любых габаритов.

Изобретение поясняется разработанной схемой защитного покрытия (см. Фиг.2), где приняты следующие обозначения:

1 - силовая оболочка корпуса;

2 - эмаль ХП-5237 + УДЦ (30 мас.ч.);

3 - эмаль ХП-5237 + УДЦ (30 мас.ч.);

4 - эмаль ХП-5237 (2 слоя).

Пример изготовления защитного покрытия.

На корпус 1 из композиционных материалов (наружная поверхность), предварительно очищенный и обезжиренный от загрязнений, наносят два слоя (2, 3) эмали ХП-5237 с ультрадисперсным цинком (30 мас.ч. на 100 мас.ч. эмали), сушат на воздухе после каждого слоя в течение 1 часа при температуре +15÷25°C. Затем наносят последовательно два слоя (4) эмали ХП-5237 и сушат не менее 24 часов. Покрытие окончательно полимеризуется и готово к работе через 5 суток.

Предлагаемое изобретение позволяет исключить трещинообразование, то есть повысить надежность работы влагозащитного покрытия с антистатическими свойствами.

Способ защиты от влаги корпусов из композиционных материалов, включающий нанесение наружного влагозащитного покрытия с антистатическими свойствами, отличающийся тем, что влагозащитное покрытие формируют из 2-х слоев эмали на основе хлорсульфированного полиэтилена с добавкой комбинированного протекторного наполнителя в количестве 30 мас.ч. на 100 мас.ч. эмали, причем в качестве комбинированного протекторного наполнителя используют ультрадисперсный цинк пластинчатой и сферической формы при соотношении 1:1, затем наносят 1-2 слоя эмали на основе хлорсульфированного полиэтилена с токопроводящим наполнителем, например эмали марки ХП-5237.



 

Похожие патенты:

Изобретение относится к области ракетостроения и может быть использовано при изготовлении корпусов ракетных двигателей, в частности при нанесении теплозащитного покрытия на внутреннюю поверхность корпусов ракетных двигателей.

Изобретение относится к бессопловым ракетным двигателям твердого топлива. Ракетный двигатель содержит корпус и ракетное топливо.

При изготовлении корпуса ракетного двигателя из полимерных композиционных материалов наматывают силовую оболочку в виде кокона спирально-кольцевой намоткой из жгутов арамидных волокон, а перед задним удаляемым днищем на цилиндрической части нарезают резьбу для соединения с сопловым блоком двигателя.

Корпус твердотопливного ракетного двигателя из композиционного материала содержит силовую цельномотанную оболочку типа «кокон» и оболочку второго кокона. Между наружной поверхностью днища силовой оболочки в зоне экватора и оболочкой второго кокона установлен кольцевой эластичный клин.
Предлагаемый способ относится к ракетной технике и предназначен для подготовки внутренней поверхности корпуса твердотопливного ракетного двигателя перед заливкой в корпус смесевого топлива.

Изобретение относится к области ракетной техники и может быть использовано при изготовлении внутреннего теплозащитного покрытия корпусов ракетных двигателей. .

Изобретение относится к области ракетной техники, в частности к способам непрерывного контроля над состоянием конструкции корпуса ракетного двигателя, выполненного из полимерного композитного материала.

Изобретение относится к области ракетной техники и может быть использовано при изготовлении корпусов ракетных двигателей твердого топлива из композиционного материала.

Изобретение относится к ракетной технике и может быть использовано при создании корпуса ракетного двигателя твердого топлива (РДТТ) малого удлинения и заряда скрепленного, содержащего данный корпус.

Изобретение относится к технологии изготовления теплозащитных покрытий (ТЗП) поверхностей, подвергающихся воздействию высоких температур и скоростных потоков, и может быть использовано для изготовления ТЗП металлических корпусов РДТТ и вдвинутых в камеру сгорания металлических корпусов сопел РДТТ.

Изобретение относится к области машиностроения, а именно к способам нанесения эластичного покрытия, например теплозащитного, на внутреннюю поверхность корпуса. При нанесении эластичного покрытия на внутреннюю поверхность корпуса, изготавливают эластичную оболочку на оправке и проводят вакуумирование полости между оболочкой и поверхностью оправки, причем площадь поверхности оправки соответствует площади внутренней поверхности корпуса. Подготавливают наружную поверхность оболочки к вклейке, устанавливают ее внутрь корпуса и вакуумируют полость между внутренней поверхностью корпуса и эластичной оболочкой. Одновременно с вакуумированием создают давление в полости между поверхностью оправки и оболочкой. Изобретение позволяет повысить качество покрытия по всей площади внутренней поверхности корпуса. 1 з.п. ф-лы, 4 ил.

Изобретение относится к области машиностроения, в частности, к изготовлению теплозащитных покрытий камер сгорания ракетных двигателей твердого топлива, имеющих металлические фланцы. При образовании теплозащитного покрытия формируют на оправках теплозащитное покрытие, соединяют с ним металлический фланец и осуществляют вулканизацию. В подфланцевой зоне после нанесения второго и перед нанесением двух последних слоев теплозащитного материала на его поверхности равномерно размещают продольные и поперечные сегменты предварительно «натренированной» идентично кривизне фланца нитиноловой проволоки диаметром 0,2-0,3 мм. Затем выкладывают другие слои теплозащитного покрытия с последующей вулканизацией образованного пакета. Изобретение позволяет повысить надежность теплозащитного покрытия. 2 ил.

Корпус ракетного двигателя содержит силовую оболочку, облицованную теплозащитным покрытием с раскрепляющими эластичными манжетами. В месте соединения манжеты и теплозащитного покрытия выполнена кольцевая полость, образованная разнесенными эквидистантно кольцевыми поясками, сопряженными со стороны внешних кромок по дуге и снабженными со стороны внутренних кромок коническими участками. В кольцевой полости расположены скрепленные между собой слои упругоэластичного тканого материала, эквидистантно повторяющие противолежащую часть поверхности полости. Слои тканого материала выполнены переменной, нарастающей от внутреннего к наружному, поперечной длины, в основном с конгруэнтным расположением обращенных друг к другу поверхностей соседних слоев или частей одного слоя. Наружный слой тканого материала скреплен по наружной поверхности с манжетой и теплозащитным покрытием. В другом варианте корпуса дополнительный слой упругоэластичного материала расположен в массиве материалов манжеты и теплозащитного покрытия. При изготовлении корпуса ракетного двигателя на форме выкладывают из листового материала манжету и, вне манжеты, частично, теплозащитное покрытие. Собирают продольный пакет из лент упругоэластичного тканого материала с последовательно увеличивающейся шириной по толщине пакета. С широкой стороны пакета укладывают ленту из резиноподобного материала. Подпрессовывают пакет при повышенной температуре до внедрения резиноподобного материала в структуру прилегающей ткани. Пакет укладывают на форме по окружности границы манжеты слоем резиноподобного материала к форме и сшивают между собой торцевые части слоев пакета. Затем перегибают половину пакета от большего радиуса к меньшему до соприкосновения двух половин между собой и выкладывают оставшиеся части теплозащитного покрытия. Вулканизируют теплозащитное покрытие с манжетой и наматывают силовую оболочку из полимерного композитного материала. В другом варианте способа изготовления корпуса с широкой стороны пакета из лент тканого материала дополнительно укладывают набор лент из тканого и резиноподобного материалов, последним наружу. Группа изобретений позволяет повысить надежность ракетного двигателя твердого топлива за счет равномерного распределения напряжений в соединении манжеты с теплозащитным покрытием. 4 н.п. ф-лы, 3 ил.

Изобретение относится к области машиностроения и может быть использовано в конструкциях корпусов ракетных двигателей твердого топлива из композиционных материалов. Корпус ракетного двигателя содержит силовую оболочку с фланцами, расположенными в полюсных отверстиях днищ, облицованную изнутри теплозащитным покрытием из резиноподобного материала с кольцами в своих торцевых частях у центральных отверстий фланцев. Со стороны внутренней поверхности, по меньшей мере, в одном фланце выполнены расположенные по соосной фланцу окружности ряд глухих резьбовых отверстий, а в кольце, соосные с отверстиями фланца, сквозные отверстия с зенковочными поверхностями с внутренней стороны. В отверстиях расположены винты, ввернутые во фланец без выступания за поверхность кольца и закрытые материалом теплозащитного покрытия. Отверстия в кольце выполнены диаметром, позволяющим смещаться винтам относительно оси отверстия при различных тепловых деформациях фланца и кольца. Кольцо выполнено из слоистого композиционного материала и расположено в массе материала теплозащитного покрытия с выходом на центральное отверстие фланца, образуя с последним единую поверхность центрального отверстия. Изобретение позволяет повысить надежность корпуса ракетного двигателя твердого топлива. 7 з.п. ф-лы, 4 ил.

Изобретение относится к технологии изготовления внутреннего теплозащитного покрытия корпусов ракетных двигателей из композиционных материалов. При изготовлении теплозащитного покрытия корпуса ракетного двигателя с удлиненной цилиндрической частью и с закладными элементами наносят на внутреннюю поверхность закладного элемента корпуса покрытие из невулканизованной резины. Устанавливают закладной элемент на жесткую оправку, наносят на нее слои невулканизованной резины для формирования основного массива теплозащитного покрытия и осуществляют вулканизацию. Покрытие закладного элемента предварительно вулканизуют в отдельном приспособлении. После установки закладного элемента на жесткую оправку слои невулканизованной резины выкладывают встык со слоями вулканизованного покрытия закладного элемента. При выкладке завершающего слоя невулканизованной резины перекрывают наружную поверхность закладного элемента, после чего проводят совместную вулканизацию. Изобретение позволяет повысить качество изготовления теплозащитного покрытия корпуса ракетного двигателя. 6 ил.

При изготовлении корпуса воспламенителя заряда ракетного двигателя из композиционных материалов выполняют цилиндрическую оболочку. Изготовление всех разнотипных элементов оболочки ведут из разложенного на подогреваемую поверхность расчетного для каждого последовательно выполняемого технологического передела количества препрега легко деформируемой ткани, причем армирующие волокна располагают под углом. Изготовление всех разнотипных элементов оболочки выполняют закаткой на оправку с уплотнением необходимым числом циклов повторения ее до расчетного диаметра оболочки. Подогреваемая поверхность имеет рельеф, соответствующий перепадам диаметров оправки на длине, равной длине препрега ткани при выполнении данного технологического передела. Корпус воспламенителя заряда ракетного двигателя из композиционных материалов содержит цилиндрическую оболочку с наружным теплозащитным покрытием и плоским донышком с одной стороны и свободным торцом с внутренней резьбой, закрытым съемным колпачком, с другой, образующими в совокупности внутренний объем для размещения заряда с элементами его воспламенения. Внутренняя часть цилиндрической оболочки выполнена из расчетного, конструктивно объединяющего резьбу и донышко, числа слоев препрега легко деформируемой ткани с расположением армирующих волокон под углом. Внутренняя часть цилиндрической оболочки имеет в составе внутренней резьбы кольцевые слои формирующей ее профиль нити с распространением ее на цилиндрическую часть и донышко, оформленное закладной деталью с плоским торцом со стороны внутреннего объема и резьбовым хвостовиком с наружной стороны. Группа изобретений позволяет упростить конструкцию корпуса воспламенителя и повысить его технологичность. 2 н. и 6 з.п. ф-лы, 5 ил.

Изобретение относится к области ракетной техники и может быть использовано в ракетных двигателях твердого топлива с зарядами из смесевых топлив, скрепленных с корпусом по цилиндрической части и раскрепленных манжетами по эллиптическим торцевым поверхностям. Скрепленный заряд ракетного твердого топлива содержит корпус, топливный заряд, теплозащитное покрытие и защитно-крепящий слой. Топливный заряд жестко скреплен с корпусом в средней части его цилиндрической поверхности через склеенные между собой теплозащитное покрытие и защитно-крепящий слой и подвижно скреплен с корпусом в остальной части его цилиндрической поверхности. Топливный заряд подвижно скреплен с корпусом посредством контактирующих между собой через смазку выступов, которыми оснащен защитно-крепящий слой, и имеющих ответную форму пазов, выполненных в теплозащитном покрытии. Изобретение позволяет повысить надежность ракетного двигателя твердого топлива. 3 з.п. ф-лы, 3 ил.

Изобретение относится к области ракетной техники и может быть использовано в ракетных двигателях твердого топлива с зарядами из смесевых топлив, скрепленных со стенками корпуса. Скрепленный заряд ракетного твердого топлива содержит корпус, топливный заряд и теплозащитное покрытие с выступами, обращенными внутрь заряда. Каждый выступ выполнен с возможностью принимать форму кольца в собранном заряде. Теплозащитное покрытие выполнено из материала, химически совместимого с топливом и исключающего диффузию в него компонентов топлива. Изобретение позволяет повысить технологичность изготовления и эксплуатационную надежность заряда. 1 з.п. ф-лы, 5 ил.

При изготовлении внутреннего теплозащитного покрытия с тканевым защитно-крепящим слоем корпуса ракетного двигателя твердого топлива изготавливают, формуют и вулканизируют внутреннее теплозащитное покрытие с тканевым защитно-крепящим слоем. Из капроновой ткани изготавливают оболочку защитно-крепящего слоя в виде чехла, размеры наружной поверхности которой соответствуют внутренней поверхности корпуса с теплозащитным покрытием. Размещают оболочку защитно-крепящего слоя через разделительный чехол из капроновой ткани на соответствующей длине корпуса жесткой оправке, охватываемой резиновой диафрагмой. Вводят оправку в корпус и расправляют оболочку защитно-крепящего слоя, разделительный чехол и резиновую диафрагму, создавая разряжение между покрытием и резиновой диафрагмой и давление в полости резиновой диафрагмы. Затем выводят оправку из корпуса, а корпус помещают в печь и производят вулканизацию. После окончания вулканизации и охлаждения корпуса с теплозащитным покрытием удаляют из него разделительный чехол и резиновую диафрагму и открывают отверстие в оболочке защитно-крепящего слоя по контуру передней горловины корпуса. Изобретение позволяет снизить трудоемкость изготовления внутреннего теплозащитного покрытия корпуса ракетного двигателя. 3 ил.

Камера сгорания силовой установки крылатой ракеты выполнена в виде многослойного изделия и содержит обечайку, несущую механическую нагрузку внутреннего давления, и слой теплозащитного керамического композиционного материала, контактирующего с образующимися при сжигании топлива газами. Слой теплозащитного керамического композиционного материала имеет коэффициент линейного расширения и модуль упругости, обеспечивающие температурную и механическую совместимость с обечайкой, а также толщину, подобранную таким образом, что дополнительное наружное воздушное охлаждение обечайки не требуется. Обечайка выполнена из керамического композиционного высокотемпературного материала, армированного углеродными волокнами, с коэффициентом линейного расширения не более 5,2·10-6 1/°C, модулем упругости не менее 13·103 МПа, пределом прочности не менее 90 МПа. Слой теплозащитного коррозионно-стойкого керамического материала, контактирующего с газами рабочей температурой не более 2000°С, имеет коэффициент линейного расширения не более 5,5·10-6 1/°C. Изобретение позволяет снизить массу и габариты камеры сгорания силовой установки крылатой ракеты, а так же упростить ее конструкцию и повысить надежность. 1 з.п. ф-лы, 2 ил.
Наверх