Способ мониторинга ресурса изоляции высоковольтного оборудования переменного тока

Использование: в области электротехники. Технический результат заключается в повышении точности определения остаточного ресурса изоляции. Согласно способу определяют абсолютное максимальное значение на каждом полупериоде кривой напряжения и оценивают остаточный ресурс путем вычитания из него части ресурса, определяемой на каждом полупериоде кривой напряжения как отношение продолжительности полупериода напряжения к величине допустимого времени нахождения изоляции оборудования под напряжением с максимальным значением полупериода. При этом измеряют электрическое напряжение в равномерно фиксированные моменты времени и формируют отсчеты выпрямленного сигнала путем определения абсолютных значений измерений, сравнивают отсчеты выпрямленного сигнала с заданным порогом и выделяют отрезок, расположенный между двумя отсчетами ниже порога и отсчеты которого выше упомянутого порога, находят среди отсчетов выделенного отрезка отсчет с максимальным значением, а затем выбирают заданное число отсчетов слева и справа от него. Через найденные отсчеты проводят интерполяционную кривую с единственным максимумом и принимают ее максимум за абсолютное максимальное значение электрического напряжения на полупериоде. 1 з.п. ф-лы, 1 ил.

 

Изобретение относится к области электротехники, а именно к релейной защите и автоматике.

Известно устройство, реализующее способ мониторинга ресурса изоляции высоковольтного оборудования переменного тока [1], согласно которому измеряют действующее значение напряжения и по вольт-секундной характеристике определяют ресурс изоляции как допустимое время воздействия на изоляцию оборудования измеренного напряжения [2]. Способ обладает недостаточно высокой точностью учета воздействия электрического напряжения на защищаемое оборудование в случае, когда напряжение содержит высшие гармоники. Это связано с тем, что действующее значение, являясь интегральной величиной, не позволяет учитывать работу изоляции при перенапряжениях, вызванных суммарным воздействием мгновенных значений основной и кратных гармоник.

Наиболее близким к заявляемому изобретению по использованию, технической сущности и достигаемому техническому результату является способ мониторинга ресурса изоляции высоковольтного оборудования переменного тока [3], основанный на оценке максимального значения электрического напряжения и определения допустимого времени воздействия напряжения с данным максимальным значением на изоляцию оборудования согласно вольт-секундной характеристике оборудования.

Недостатком прототипа является невысокая точность определения остаточного ресурса изоляции. Вызвано это тем, что максимальное значение напряжения на полупериоде определяется косвенно путем сравнения измеряемого электрического напряжения с заранее заданными порогами. При этом за максимальное значение напряжения на полупериоде принимается значение наибольшего из порогов, выше которого оказалось мгновенное значение напряжения, т.е. точность измерения максимального значения напряжения определяется шагом между порогами. Поскольку число порогов ограничено, то точность определения максимального значения невысока, что приводит к уменьшению точности учета остаточного ресурса оборудования.

Повышение точности в предлагаемом способе мониторинга ресурса изоляции высоковольтного оборудования переменного тока достигается следующим образом.

Вначале измеряют напряжение в равномерно фиксированные моменты времени (на фиг.1 измерения показаны на кривой напряжения 1 метками в виде точек) и формируют отсчеты выпрямленного сигнала путем определения абсолютных значений измерений (метки в виде точек на кривой 2). Затем на каждом периоде уже выпрямленного сигнала выделяют отрезок, расположенный между двумя отсчетами ниже порога (порог 1 на фиг.1) и все отсчеты которого выше упомянутого порога (отсчеты между точками а и b). Тем самым на каждом полупериоде сигнала (на периоде выпрямленного сигнала) определяется отрезок, содержащий в себе абсолютное максимальное значение напряжения.

Как видно из фиг.1, порог должен обеспечивать однозначное определение отрезка с максимальным значением напряжения для данного периода выпрямленного сигнала. Неудачный выбор порога может привести к выделению на периоде нескольких отрезков со своими максимумами, что приведет к неправильному учету остаточного ресурса. Этот случай иллюстрируется фиг.1 при работе способа с неправильно выбранным порогом 2, когда на периоде будут выделены два отрезка с-d и е-f.

Для обеспечения однозначности определения необходимого отрезка выпрямленного сигнала порог нужно выбирать с учетом режимов высоковольтной электрической сети, при которых есть вероятность появления нескольких экстремумов на периоде выпрямленного сигнала. С этой точки зрения наиболее характерным является случай параметрического резонанса, возникающего при включении линии электропередачи на холостой ход. В этом случае напряжение может состоять из суммы синфазных основной и второй гармоник равной амплитуды [4], и выпрямленный сигнал (кривая 2 на фиг.1) имеет два максимума. Для правильного выделения отрезка, содержащего абсолютный максимум на полупериоде сигнала, порог 1 выбирают выше малой полуволны выпрямленного сигнала.

После выделения необходимого отрезка способ определяет максимальное значение полупериода сигнала. Поскольку в промежутке между измерениями значение напряжения недоступно, то максимальный отсчет y0 на выделенном отрезке сигнала, как правило, не соответствует максимальному значению сигнала. Эту проблему неопределенности способ решает путем интерполяции кривой напряжения полиномом с единственным максимумом, проведенным по измеренным значениям напряжения. Для этого определяется максимальный отсчет на выделенном отрезке, а затем заданное число отсчетов слева и справа от него. Через эти отсчеты проводят интерполяционную кривую и принимают ее максимум ymax за абсолютное максимальное значение электрического напряжения на полупериоде.

Требование единственности максимума накладывает на выбор интерполяционного полинома ограничение, заключающийся в том, что порядок полинома должен быть четным. Минимальный порядок такого полинома равен 2; в этом случае берут по одному отсчету слева и справа от отсчета с максимальным значением и проводят через упомянутые отсчеты интерполяционную кривую второго порядка - параболу.

В качестве иллюстрации используемого в способе метода определения максимального значения рассмотрим поиск экстремума кривой с помощью параболы. Коэффициенты полинома проще всего искать как коэффициенты многочлена в форме Лагранжа [5]. Тогда парабола y(t)=at2+bt+с, проходящая через отсчет с максимальным значением y0 и отсчеты слева y-1 и справа y1 от него (кривая 3 на фиг.1), будет определяться следующим образом:

a = y 1 2 y 0 + y 1 2 T s 2 ;

b = y 1 y 1 2 T s ;

c=y0,

где Ts - интервал между измерениями напряжения. При определении коэффициентов принято, что отсчету с максимальным значением y0 соответствует t=0 и y0=y(t=0). Максимум параболы равен

y max = y 0 ( y 1 y 1 ) 2 8 ( y 1 2 y 0 + y 1 ) .

Его величина принимается за абсолютное максимальное значение электрического напряжения (на фиг.1 значение ymax отмечено меткой в виде ромбика).

Специальные исследования показали, что оценка максимального значения с помощью интерполяционного полинома, в частности параболы, не уступает по точности методу, использующему для этой же цели представление сигнала рядом Тейлора в окрестности отсчета с максимальным значением (погрешность оценки не превышает 2% при определении максимального значения сигнала, содержащего основную и третью гармоники в соотношении амплитуд 1 к 0,1; интервал между измерениями - 0,001 с). В то же время использование интерполяционного полинома алгоритмически проще.

Остаточный ресурс изоляции rk на данном полупериоде напряжения определяется путем вычитания из остаточного ресурса предыдущего полупериода rk-1 части ресурса Δrk

rk=rk-1-Δrk.

Часть ресурса Δrk, которую теряет изоляция после воздействия напряжения данного полупериода, находится как отношение продолжительности полупериода Тп напряжения к величине допустимого времени Тдоп,k нахождения изоляции оборудования под напряжением с максимальным значением k-го полупериода, т.е.

Δ r k = Т п Т д о п , k .

Мониторинг величины rk позволяет принять своевременные меры, направленные на ограничение, снижение напряжения или отключение высоковольтного оборудования при перенапряжениях.

Таким образом, предлагаемый способ мониторинга остаточного ресурса изоляции позволяет точнее учитывать работу изоляции при перенапряжениях, вызванных суммарным воздействием мгновенных значений основной гармоники и других составляющих (в том числе и кратных гармоник), а значит, повышает точность определения остаточного ресурса изоляции.

Источники информации

1. Беркович М.А., Гладышев В.А., Семенов В.А. Автоматика энергосистем. 3-е издание. - М.: Энергоатомиздат, 1991 (стр.208).

2. ГОСТ 1516.3-96. Электрооборудование переменного тока на напряжения от 1 до 750 кВ. Требования к электрической прочности изоляции. - Минск: Межгосударственный совет по стандартизации, метрологии и сертификации, 1998 (таблицы Б.1, Б.2).

3. Авт. св. №1669042, БИ №29. 1991.

4. Левиуш А.И., Катунян В.И. Исследование на математической модели параметрического резонанса на второй гармонике для анализа работы релейной защиты ВЛ. Электричество. 1990. №1. Стр.57-62.

5. Бронштейн И.Н., Семендяев К.А. Справочник по математике для инженеров и учащихся втузов. - М.: Наука, 1981 (стр.663).

1. Способ мониторинга ресурса изоляции высоковольтного оборудования переменного тока, согласно которому определяют абсолютное максимальное значение на каждом полупериоде кривой напряжения и оценивают остаточный ресурс путем вычитания из него части ресурса, определяемой на каждом полупериоде кривой напряжения как отношение продолжительности полупериода напряжения к величине допустимого времени нахождения изоляции оборудования под напряжением с максимальным значением полупериода, отличающийся тем, что измеряют электрическое напряжение в равномерно фиксированные моменты времени и формируют отсчеты выпрямленного сигнала путем определения абсолютных значений измерений, сравнивают отсчеты выпрямленного сигнала с заданным порогом и выделяют отрезок, расположенный между двумя отсчетами ниже порога и отсчеты которого выше упомянутого порога, находят среди отсчетов выделенного отрезка отсчет с максимальным значением, а затем выбирают заданное число отсчетов слева и справа от него, проводят через найденные отсчеты интерполяционную кривую с единственным максимумом и принимают ее максимум за абсолютное максимальное значение электрического напряжения на полупериоде.

2. Способ по п.1, отличающийся тем, что берут по одному отсчету слева и справа от отсчета с максимальным значением и проводят через упомянутые отсчеты интерполяционную кривую второго порядка - параболу.



 

Похожие патенты:

Представлен и описан элемент защиты от перенапряжения с корпусом и по меньшей мере одним установленным в корпусе ограничивающим перенапряжение компонентом, прежде всего газонаполненным разрядником (1), искровым разрядником, защитным диодом (2) или варистором.

Изобретение относится к области электротехники, а именно к релейной защите и автоматике. Технический результат заключается в повышении точности определения остаточного ресурса изоляции и, следовательно, в обеспечении своевременного принятия мер для сохранения работоспособности защищаемого высоковольтного оборудования при перенапряжениях путем ограничения или снижения напряжения или отключения высоковольтного оборудования.

Изобретение относится к области электротехники и может быть использовано для снижения уровня перенапряжений и тока однофазного замыкания в электросетях. Способ заключается в том, что нейтраль заземляется при помощи конденсаторов и реактора.

Изобретение относится к области электротехники и может быть использовано в высокочастотных энергосистемах. Техническим результатом является улучшение массогабаритных показателей, уменьшение затрат и расширение области применения.

Изобретение относится к области электротехники. Способ заключается в том, что нейтраль заземляется через соединенные последовательно друг с другом емкостные и резистивный элементы, а между фазами сети подключаются дополнительные емкости.

Использование: в области электротехники. Технический результат - повышение надежности.

Изобретение относится к защитной схеме блока электропитания установки постоянного напряжения, дающей экономичную возможность выполнения электронного предохранителя в выходном контуре регулируемого блока электропитания.

Изобретение относится к соединителям для инверторов. .

Изобретение относится к предохранительному устройству для защиты электрической системы. .

Изобретение относится к способам контролируемого инициирования молниевых разрядов, которые могут быть использованы при молниезащите важных объектов от грозового электричества и при искусственных воздействиях на облачные процессы с целью регулирования их электрической активности. Молниезащита осуществляется за счет отвода тока молнии в безопасное для защищаемого объекта место. Задачей изобретения способа является упрощение, удешевление, повышение надежности и расширение возможностей применения способа инициирования молниевых разрядов. Поставленная задача решается следующим образом. Способ инициирования молниевых разрядов включает дистанционное определение предразрядного состояния и координат грозовых ячеек, а также создание плазменного токопроводящего канала. При этом плазменный токопроводящий канал создают синхронизированным подрывом серии артиллерийских боеприпасов плазменно-оптического действия. Точки подрыва располагают так, чтобы ионизированные области, возникающие в атмосферном воздухе при срабатывании боеприпасов плазменно-оптического действия, располагались с перекрытием по цепочке в направлении от грозовой ячейки к поверхности земли или к соседней грозовой ячейке. Перекрытие ионизированных областей в атмосферном воздухе от срабатывания боеприпасов плазменно-оптического действия может быть осуществлено изменением направления полета каждого последующего боеприпаса в серии относительно предыдущего. Перекрытие ионизированных областей в атмосферном воздухе от срабатывания боеприпасов плазменно-оптического действия также может быть осуществлено изменением времени срабатывания каждого последующего боеприпаса в серии относительно предыдущего. Кроме того, перекрытие ионизированных областей в атмосферном воздухе от срабатывания боеприпасов плазменно-оптического действия может быть осуществлено одновременным изменением направления полета каждого последующего боеприпаса в серии относительно предыдущего и изменением времени срабатывания каждого последующего боеприпаса в серии относительно предыдущего. 3 з.п. ф-лы, 3 ил.

Изобретение относится к области электротехники и содержит модуль ограничителей напряжения (МОН), входной, промежуточный и выходной силовые ключи (СК), дроссель, второй диод, модуль контроля и управления (МКУ), входную плавкую вставку, плюсовой и минусовой входы и плюсовой и минусовой выходы. Технический результат - возможность использования в качестве силовых ключей тиристоров. При защите от сбоев и повреждений осуществляется поэтапное гашение избыточной энергии с помощью шунтирующих и рассеивающих энергию средств без отключения нагрузки от сети, а при достижении предельно больших величин рассеиваемой энергии защиту осуществляют путем отключения комбинированного сетевого защитного устройства от сети. 1 ил.

Изобретение относится к области электротехники и может быть использовано в противоаварийной автоматике для автоматического ограничения повышения напряжения (АОПН) высоковольтного оборудования. Техническим результатом является повышение эффективности эксплуатации высоковольтного оборудования за счет более точной оценки остаточного ресурса изоляции высоковольтного оборудования и повышения гибкости осуществления технических мероприятий по ликвидации перенапряжения. В способе автоматического ограничения повышения напряжения высоковольтного оборудования измеряют электрическое напряжение, делят диапазон возможных перенапряжений на ступени и на каждой из них осуществляют соответствующие технические мероприятия, направленные на ликвидацию перенапряжения. Контролируют признак отказа технических мероприятий ступени и при его появлении приводят в действие технические мероприятия следующей ступени. Оценивают остаточный ресурс изоляции высоковольтного оборудования путем уменьшения его величины с интенсивностью расхода, соответствующей текущему уровню перенапряжения, и формируют упомянутый признак отказа при понижении остаточного ресурса изоляции до пороговой величины, равной произведению времени, отведенного для выполнения технических мероприятий следующих ступеней, и интенсивности расхода ресурса изоляции высоковольтного оборудования, соответствующей текущему уровню перенапряжения. 3 ил.

Использование: в области электротехники. Технический результат заключается в повышении точности оценки ресурса изоляции высоковольтного оборудования при перенапряжениях. Согласно способу определяют затраченный ресурс изоляции оборудования, накапливая его расход с интенсивностью, соответствующей существующему перенапряжению, и сравнивают его с порогом, при превышении которого формируют сигнал об исчерпании ресурса изоляции. После исчезновения перенапряжения учитывают восполнение ресурса изоляции путем уменьшения затраченного ресурса с заданной интенсивностью восстановления. При этом диапазон возможных перенапряжений делят на ступени восстановления и на каждой из них оценивают затраченный ресурс отдельно, а затраченный ресурс изоляции оборудования определяют как сумму затраченных ресурсов упомянутых ступеней. После исчезновения перенапряжения учитывают восполнение ресурса изоляции для каждой ступени восстановления путем одновременного уменьшения затраченных ресурсов ступеней с интенсивностью восстановления, соответствующей каждой ступени. 1 ил.

Изобретение относится к области электротехники и может быть использовано для фильтрации выходного напряжения источника, предназначенного для питания различных потребителей постоянного тока. Технический результат заключается в уменьшении токовых нагрузок на питающий источник напряжения постоянного тока и на конденсатор нагрузки, повышение надежности работы и расширение области применения. Устройство для ограничения зарядного тока конденсатора нагрузки содержит источник напряжения постоянного тока, ключ, два блока управления, устройство задания напряжения, блок ограничения заданного уровня зарядного тока конденсатора нагрузки, датчик тока, клеммы для подключения конденсатора нагрузки, реактор и диод. 2 ил.

Использование: в области электротехники. Технический результат - повышение безопасности и надежности кабельных электросетей. Способ заключается в том, что используют разделительные конденсаторы, присоединенные к электросистеме и заземленные через включенные параллельно основной реактор и резистор. При этом на время существования однофазного замыкания подключают между опережающей фазой и землей последовательно соединенные дополнительные реактор и конденсатор. 3 ил., 1 табл.

Изобретение относится к области электротехники и может быть использовано в устройствах для ограничения тока заряда конденсатора нагрузки, применяемых, в частности, для фильтрации выходного напряжения источника, предназначенного для питания различных потребителей постоянного тока. Технический результат заключается в уменьшении токовых нагрузок на питающий источник напряжения постоянного тока и на конденсатор нагрузки и защите питающего источника напряжения от токов перегрузки, что повышает надежность работы и расширяет область применения устройства. Устройство для ограничения зарядного тока конденсатора нагрузки содержит источник напряжения постоянного тока, ключ, блок управления, устройство задания тока, блок временной задержки, датчик тока, клеммы для подключения конденсатора нагрузки, а также реактор и диод. 2 ил.

Использование: в области электротехники. Технический результат - повышение надежности работы. Искробезопасное устройство ограничения напряжения содержит шину регулятора, шину заземления, а также узел шунтирующего регулятора. Узел шунтирующего регулятора соединен с шиной регулятора и с шиной заземления и содержит один или более регулирующих блоков. Узел шунтирующего регулятора выполнен с возможностью ограничения напряжения, приложенного к шине регулятора и шине заземления, для ограничения напряжения до безопасного значения. Искробезопасное устройство ограничения напряжения также содержит блок, чувствительный к изменению мощности, выполненный с возможностью активации одного или более ограничивающих блоков для снижения мощности, рассеиваемой на соответствующих регулирующих блоках без повышения напряжения ограничения. 4 н. и 14 з.п. ф-лы, 6 ил.

Раскрыто устройство (10, 110) защиты от перенапряжений для прибора наружного освещения, включающее в себя соединение (23А, 123А) фазы, соединение (23В, 123B) нейтрали и соединение (23C, 123C) заземления. Первый варистор (42) и второй варистор (43) могут иметь последовательное электрическое соединение друг с другом между соединениями фазы и нейтрали, а третий варистор (41) имеет электрическое соединение между соединениями фазы и нейтрали в параллельной конфигурации с первым варистором и вторым варистором. Ограничитель (46, 146) перенапряжения также может иметь электрическое соединение между соединением (23C, 123C) заземления и последовательным соединением между первым варистором и вторым варистором. Технический результат - обеспечение защиты от перенапряжений в осветительных приборах. 13 з.п. ф-лы, 5 ил.

Изобретение относится к области электротехники. Технический результат заключается в повышении эффективности защиты тиристорно-импульсных систем управления (ТИСУ) трамвайными вагонами от коммутационных перенапряжений, обусловленных сбросом электромагнитной энергии индуктивности тяговой контактной сети в конденсатор фильтра ТИСУ при отключении внешних коротких замыканий. Сущность способа и реализующего его устройства основаны на использовании для ограничения перенапряжений трех демпфирующих резисторов, одновременно подключаемых параллельно конденсатору фильтра ТИСУ в момент начала перенапряжения и поочередно отключаемых в моменты достижения током через индуктивность тяговой сети установившихся значений. Отключаются демпфирующие резисторы в последовательности возрастания их сопротивлений, оптимальные значения которых определяют по аналитическим выражениям, полученным на основе критерия оптимального распределения электромагнитной энергии, запасенной при коротких замыканиях в индуктивности тяговой контактной сети, между конденсатором фильтра ТИСУ и демпфирующими резисторами таким образом, чтобы обеспечивался минимум глобальных максимумов напряжений на всем интервале ограничения перенапряжений на входе ТИСУ. 2 н. и 2 з.п. ф-лы, 2 ил.
Наверх