Эталонное рабочее место абсолютной прецизионной калибровки запаздывания огибающих литерных частот в приемнике сигналов глонасс

Изобретение относится к средствам метрологического обеспечения приемоиндикаторов КНС ГЛОНАСС. Технический результат состоит в повышении точности калибровки запаздывания огибающей литерных частот. Для этого эталонное рабочее место прецизионной калибровки запаздывания огибающих литерных частот в приемниках сигналов ГЛОНАСС состоит из источника испытательных сигналов, калибруемого приемника и ПЭВМ для обработки результатов калибровки. В качестве источника испытательных сигналов используют синтезатор сетки испытательных частот, модулированных по фазе на ±90° дальномерным кодом псевдослучайной последовательности ГЛОНАСС. В ПЭВМ вводят набеги фаз, последовательно измеренные системой слежения за несущей (ССН) калибруемого приемника на интервале Δt. Вычитают из них набеги фаз, измеренные на тех же интервалах Δt аппаратной копии ССН калибруемого приемника, делят эти разности на Δt и получают отсчеты ФЧХ для частот. Вычисляют задержки, непосредственно вызванные нелинейностью ФЧХ, измеряют собственно ГВЗ, суммируют эти задержки и получают спектральную плотность задержек, или парциальные задержки, которые усредняют со спектром псевдослучайной последовательности дальномерного кода, смещая последовательно центральную частоту спектра к ближайшей литерной. 5 ил.

 

Изобретение относится к средствам метрологического обеспечения приемоиндикаторов и может быть использовано для метрологического обеспечения приемоиндикаторов КНС ГЛОНАСС (GPS и др.).

Известно, что метрологическая поверка приемоиндикаторов (ПИ) КНС ГЛОНАСС - GPS производится в соответствии с инструкцией и методикой поверки. Существуют следующие методики поверки:

- аппаратура потребителя - навигационная малогабаритная КНС ГЛОНАСС/ДЖИ-ПИ-ЭС «ГРОТ-М» (индекс 14Ц22). Проверка аппаратуры проводится в соответствии с ГОСТ РВ 52271-2004;

- комплекс навигационно-геодезической космической системы «ГРОТ-ТК» (индекс 14Ц824). Методика устанавливает методы и средства первичной и внеочередной поверок, проводимых в соответствии с ПР 509.2.006-94;

- приемоиндикаторы возимые «ГРОТ-В» (индекс 14Ц821).

Указанные методики базируются на традиционных методах определения погрешностей измерения координат, высоты объекта, составляющих вектора скорости и синхронизации шкалы времени ПИ к шкалам системного времени ГЛОНАСС и GPS.

В настоящее время принята блок-схема установки для калибровки ПИ (фиг.1).

Фиг.1 - стандартное рабочее место калибровки ГВЗ, где:

1 - имитатор сигналов ГЛОНАСС,

2 - калибруемый приемник,

3 - ПЭВМ для записи и обработки (в том числе и статистической) результатов измерения задержки.

Фиг.2 - Вид фазочастотных характеристик (ФЧХ), измеренных фазометром в диапазоне (0-2 π) в диапазоне частот fн - fk.

Фиг.3 - ФЧХ идеализированного (без фильтров и реактивных элементов) радиотракта как линейная функция частоты, содержит (в достаточно широком диапазоне частот) несколько целых фазовых фильтров.

Фиг.4 - Блок-схема предлагаемого эталонного рабочего места калибровки ГВЗ, где:

4 - синтезатор сетки испытательных частот fi с равномерным шагом Δf,

5 - модулятор сигналов испытательных частот,

6 - аппаратная копия системы слежения за несущей (ССН) калибруемого приемника,

7 - калибруемый приемник.

Фиг.5 - Блок-схема предлагаемого эталонного рабочего места прецизионной калибровки задержки огибающей на литерных частотах ГЛОНАСС (GPS и др.), где блок 8 - ПЭВМ для обработки результатов калибровки.

Групповое время запаздывания (ГВЗ) - разное на разных литерных частотах ГЛОНАСС - результат неравномерности фазочастотной характеристики сквозного радиотракта. Основной вклад в ГВЗ вносят фильтры промежуточных частот (ФПЧ) аналогового тракта приемника.

Обычно ГВЗ на разных литерных частотах ГЛОНАСС (системы с частотным разделением сигналов спутников) калибруют непосредственным измерением времени задержки фронтов дальномерного кода относительно эталонного сигнала. Будем называть этот способ калибровкой ГВЗ во временной области. Функциональная схема рабочего места для калибровки ГВЗ этим способом приведена на фиг.1, примем его за прототип, где обозначено:

1 - имитатор сигналов ГЛОНАСС,

2 - калибруемый приемник,

3 - ПЭВМ для записи и обработки (в том числе и статистической) результатов измерения задержки.

Иногда вместо имитатора сигналов используют «эталонный приемник», который подключают к общей антенне вместе с анализируемым приемником через сплиттер (т.н. способ нуль-базы). В любом случае калибровка во временной области относительна. Она проводится относительно эталона, ГВЗ которого в общем случае неизвестно, более того нестабильно во времени (зависит от климатических условий и подвержено изменению из-за старения элементов ФПЧ). То же относится и к имитатору сигналов ГЛОНАСС в качестве эталона. Дело в том, что в имитаторах сигналов ГЛОНАСС эталонные сигналы формируют на низкой частоте, а затем переносят преобразованием частоты вверх на несущие литерные частоты ГЛОНАСС. Обычный преобразователь частоты включает ФПЧ (после смесителя) для выделения продукта преобразования (в данном случае) с суммарной частотой. Для ГЛОНАСС этот ФПЧ должен пропускать весь диапазон литерных частот плюс ширина спектра дальномерного кода, т.е. его полоса пропускания должна быть не менее 20 МГц. Это означает, что ФПЧ должен быть многозвенным. Другими словами он не может иметь равномерную ФЧХ в полосе пропускания. А это означает, что имитатор сигналов ГЛОНАСС будет иметь неизвестные (и нестабильные) ГВЗ на литерных частотах ГЛОНАСС имитатора.

Недостатки прототипа рабочего места относительной калибровки ГВЗ во временной области - фиг.1 - низкая точность калибровки ГВЗ по следующим причинам:

1) неизвестные ГВЗ эталонного средства;

2) низкая точность измерений во временной области (кодовых измерений задержки сигналов);

3) невозможность учета задержки, непосредственно вызванной нелинейностью фазочастотных характеристик.

Эти недостатки устраняет предлагаемое эталонное рабочее место для прецизионной калибровки ГВЗ ГЛОНАСС известным в теории фазочастотным методом (ФЧМ).

Задачей предлагаемого технического решения является повышение точности калибровки запаздывания огибающей литерных частот в приемнике сигналов ГЛОНАСС.

Поставленная задача решается за счет того, что вышеуказанные недостатки прототипа устраняются тем, что для построения ФЧХ калибруемого приемника не требуется никаких эталонов, вносящих свои погрешности в калибровку, а ФЧМ используют для калибровки полной задержки на литерных частотах ГЛОНАСС - фазовые измерения (измерения набегов фазы на заданных интервалах времени), обладающие примерно на 3 порядка более высокой точностью измерений приращений задержки по сравнению с измерениями во временной области (кодовыми измерениями).

Сущность изобретения пояснена чертежами (фиг.1-5).

Фиг.1 - блок-схема прототипа:

1 - имитатор сигналов ГЛОНАСС,

2 - калибруемый приемник,

3 - ПЭВМ для записи и обработки (в том числе и статистической).

Как следует из теории, запаздывание огибающей гармонического сигнала (в нашем случае фронтов дальномерного кода) имеет две составляющие:

1) Непосредственно вызванную нелинейностью их.

Полная фаза гармонического колебания на выходе идеализированного радиотракта (без фильтров и реактивных элементов) равна фазе на его входе

2) Для реального радиотракта в правой части (1) добавляется φ(f) - его фазочастотная характеристика φ(f)

Обозначим набег фазы по (1) на интервале отсчетов фазовых измерений Δt через υ / , а для реальных (2) через Ψ.

Использование свип-генератора для построения ФЧХ нецелесообразно по причине низкой точности. Более рационально использование сетки испытательных частот с равномерным шагом Δf, формируемых синтезатором, тогда для отсчетов ФЧХ φi можно записать:

Поскольку диапазон однозначности фазометра составляет (0-2 π), измерения ФЧХ идеализированного (без фильтров и реактивных элементов) радиотракта имеет вид, показанный на фиг.2. Она содержит (в достаточно широком диапазоне частот) несколько целых фазовых циклов.

Из графика фиг.2 можно перестроить ФЧХ как непрерывную функцию частоты, просуммировав скачки фазометра на 2π (фиг.3).

Набег фазы сигнала с частотой fi на интервале Δt равна 2πfi Δt. Если fiΔt=1, то этот набег равен 2π - полный фазовый цикл, соответствующий длине волны λi. Из этих соображений можно составить пропорцию

Разрешив ее относительно задержки τi, получим:

Набеги фаз υi, соответствующие идеализированному радиотракту, целесообразно формировать с помощью копии ССН копируемого приемника по следующим причинам:

1. Начальные фазы сигналов испытательных частот, формируемых синтезатором, могут меняться в зависимости от частот fi, т.е. это φ0i.

2. За время калибровки могут существенно изменяться задаваемые частоты fi из-за нестабильности опорного генератора в синтезаторе.

В силу линейности выражений (1-3) и операций формирования набегов фаз υi с помощью копии ССН справедливо тождество:

и для задержки огибающей, вызванной непосредственно нелинейностью τнi, можно записать:

3. Собственно ГВЗ на частотах от fi

По определению ГВЗ равно производной ФЧХ по частоте

или для дискретных отсчетов

Δφi - приращение соседних φi, равное φi+1i,

φi - по формуле (3).

Просуммировав τнi (7) и τгi (9), получим спектральную плотность задержки огибающей (фронтов дальномерного кода) или парциальные задержки. Для получения задержек на литерных частотах ГЛОНАСС парциальные задержки необходимо усреднить по спектрам псевдослучайной последовательности (ПСП) дальномерного кода, устанавливая поочередно центральную частоту этого спектра на j-е литерные частоты (или ближайшие к ним испытательные fi) по формуле:

где pij - отсчеты спектра ПСП на частотах fi при смещении центральной частоты спектра к j-й литерной.

На блок-схемах фиг.4, 5 обозначено:

4 - синтезатор сетки испытательных частот fi с равномерным шагом Δf,

5 - модулятор сигналов испытательных частот,

6 - аппаратная копия системы слежения за несущей калибруемого приемника,

7 - калибруемый приемник,

8 - ПЭВМ для обработки результатов калибровки.

Предполагаемое устройство (фиг.5) работает следующим образом.

Синтезатор 4 формирует последовательно частоты fi с шагом Δf в десятки кГц. Желательна автоматизация коммутации частот fi. Испытательные частоты для построения ФЧХ должны охватывать диапазон литерных частот ГЛОНАСС, расширенный справа и слева на 2-3 лепестка спектра псевдослучайной последовательности (ПСС) дальномерного кода. Если полоса частот сквозного радиотракта калибруемого приемника меньше диапазона испытательных частот, возможна их подавление в приемнике. Амплитуда испытательных сигналов должна на 10-20 дБ превышать амплитуду реального спутникового сигнала. Это обеспечит быстрый надежный захват испытательных сигналов калибруемым приемником, после чего его входной коррелятор по коду восстановит несущую. Подавление испытательных частот на краях диапазона их сетки можно компенсировать соответствующим повышением амплитуд сигналов испытательных частот или усреднением нескольких фазовых отсчетов на каждой из них.

Модулятор 5 представляет собой инвертор входных сигналов, управляемый ПСП кода.

Блок 6 имитирует работу ССН идеализированного радиотракта (отслеживает входной сигнал по частоте с точностью до фазы) на интервале отсчетов фазовых измерений реального радиотракта калибруемого приемника Δt. Поскольку калибруемый приемник 7 может иметь разные структуры ССН (порядок астатизма, параметры петлевого фильтра следящего контура), его желательно выполнить на реконфигурируемой программируемой логической интегральной схеме (ПЛИС). Если рабочие частоты ПЛИС ниже частоты fi, то возможно в копии ССН использовать аналоговый генератор, управляемый напряжением (ГУН) отслеживаемых частот fi и ЦАП после петлевого фильтра на ПЛИС в замкнутом контуре.

Калибруемый приемник 7 формирует отсчеты набегов фаз Ψi на интервалах Δt, которые последовательно подают на вход ПЭВМ-8. В ПЭВМ одновременно с Ψi поступают набеги фаз υi от блока 6. Разности Ψi и υi, деленные на Δt, и есть интересующие нас отсчеты ФЧХ φI, формируемые в соответствии со схемой предлагаемого рабочего места.

В ПЭВМ-8 вычисляют отсчеты спектра ПСП pi для частот fi. Центральная частота спектра вначале принимается равной нулю, отсчеты pi располагаются справа и слева от f=0. Предварительно вычисляют задержки τнi, вызванные нелинейностью ФЧХ, по формуле (7), затем вычисляют приращение Δφi, для соседних частот fi, делят эти приращения на Δf и получат отсчеты спектральной плотности ГВЗ (парциальные ГВЗ τгi). Эти парциальные ГВЗ суммируют с τнi и усредняют с отсчетами спектра pij, предварительно сдвигая центральную частоту спектра последовательно к значениям fj, к каждой литерной частоте fj по формуле (10).

Промышленное применение технической сложности не представляет, так как устройство может быть построено в основном на серийно выпускаемых блоках.

Эталонное рабочее место прецизионной калибровки запаздывания огибающих литерных частот в приемниках сигналов ГЛОНАСС, включающее источник испытательных сигналов, калибруемый приемник и ПЭВМ для обработки результатов калибровки, отличающееся тем, что в качестве источника испытательных сигналов используют синтезатор сетки испытательных частот fi, модулированных по фазе на ±90° кодом псевдослучайной последовательности (ПСП) ГЛОНАСС, в ПЭВМ вводят набеги фаз Ψi, последовательно измеренные системой слежения за несущей (ССН) калибруемого приемника на интервале Δt, вычитают из них набеги фаз υi, измеренные на тех же интервалах Δt, аппаратной копии ССН калибруемого приемника, делят эти разности на Δt и получают отсчеты ФЧХ φi для частот fi, вычисляют задержки, непосредственно вызванные нелинейностью ФЧХ, по формуле τнii/2πfi-1, выполняют измерения собственно ГВЗ по формуле τri=1/2π(φi+1i)/Δf, суммируют эти задержки и получают спектральную плотность задержек, или парциальные задержки τ0i, парциальные задержки усредняют со спектром ПСП, смещая последовательно центральную частоту спектра к fi, ближайшей к j-й литерной, по формуле τj=Σpijτij/Σpij.



 

Похожие патенты:

Изобретение относится к технологиям создания радиопрозрачных обтекателей (РПО), защищающих самолетную и ракетную бортовую аппаратуру в полете. Достигаемый технический результат - прогнозирование процессов искажения электродинамических характеристик исследуемого образца РПО под воздействием высокотемпературного нагревания.

Изобретение относится к области создания антенных систем с функцией слежения за подвижным источником сигнала. Достигаемый технический результат - возможность быстрой калибровки следящих антенных систем с высокой точностью и надежностью.

Изобретение относится к радиолокации, в частности к имитаторам сигнала радиолокационной станции с синтезированием апертуры (РСА), работающей по наземным и морским целям, и может быть использовано для исследования процессов обнаружения и сопровождения целей РСА на фоне протяженной поверхности.

Изобретение относится к области радиолокации и может быть использовано при калибровке радиолокационных станций (РЛС) по величине эффективной поверхности рассеяния (ЭПР).

Изобретение предназначено для калибровки радиолокационных станций (РЛС). Технический результат - повышение точности калибровки РЛС.

Изобретение относится к способам и технике радиоэлектронного подавления технических средств нелинейной радиолокации. Достигаемый технический результат - уменьшение вероятности обнаружения объектов с нелинейными электрическими свойствами за счет внесения неопределенности в фазовые параметры радиолокационных сигналов, принимаемых нелинейной радиолокационной станцией (РЛС) с синтезированной апертурой антенны (формирования полной фазы радиолокационных сигналов на гармониках зондирующего сигнала (ЗС) Фn(t), где n - номер гармоники ЗС, как случайной величины с пределами изменения фазы от 0 до 2π).

Изобретение относится к способам калибровки и поверки метеорологических приборов с использованием доплеровского радиолокатора для определения скорости и направления ветра, применяемых как для нужд народного хозяйства, так и для военных целей, например, в артиллерии.

Способ летной проверки наземных средств радиотехнического обеспечения полетов, заключающийся в том, что в качестве воздушного судна применяют дистанционно пилотируемый летательный аппарат (ДПЛА), измеряют координаты ДПЛА оптическим устройством и одновременно при работе упомянутых радиотехнических средств формируют бортовыми приемниками измерительные радионавигационные сигналы, которые кодируют, излучают в свободное пространство, принимают на Земле наземными устройствами, декодируют, обрабатывают совместно с сигналами с выхода оптического устройства, отображают и регистрируют результаты измерений и обработки сигналов.

Изобретение относится к области радиолокации и может быть использовано в контрольно-измерительной аппаратуре доплеровских радиолокационных систем с дальномерным каналом.

Изобретение относится к устройствам, предназначенным для имитации частотно-временной структуры радиолокационного сигнала, отраженного от подстилающей поверхности, от одной или нескольких целей, находящихся на фиксированном направлении, и может быть использовано для имитации ложных целей, в том числе расположенных ближе носителя, для имитации боевой работы радиолокационной системы, а также для имитации эхо-сигналов радиовысотомеров при зондировании сигналами с различными видами линейной частотной модуляции.

Изобретение относится к области радиолокации. Достигаемый технический результат изобретения - повышение точности юстировки радиолокационных станций (РЛС). Указанный результат достигается за счет того, что измеряют координаты отражающего объекта с последующим определением систематических ошибок юстировки, с помощью спутникового навигатора определяют прямоугольные координаты собственной точки стояния РЛС (x1, y1), измеряют юстируемой РЛС прямоугольные координаты воздушного объекта (ВО), находящегося в зоне действия РЛС (х2, y2), принимают на РЛС с помощью радиоприемника автоматического зависимого наблюдения координаты текущего местонахождения воздушного объекта (х3, y3) и определяют величину поправки по азимуту и по дальности для юстируемой РЛС по соответствующим формулам. 1 ил.

Изобретение может быть использовано в автоматизированных системах управления воздушным движением. Достигаемый технический результат - повышение точности юстировки. Указанный результат достигается за счет того, что в заявленном способе измеряют координаты отражающего объекта с последующим определением систематических ошибок юстировки, с помощью спутниковых навигаторов определяют прямоугольные координаты (ПК) собственных точек стояния радиолокационных станций (РЛС) (Xn, Yn), измеряют юстируемыми РЛС ПК воздушного объекта (ВО) (XOn, YOn), принимают на автоматических системах управления (АСУ) с помощью радиоприемника автоматического зависимого наблюдения координаты текущего местонахождения ВО (XАЗHn, YАЗHn), интерполируют все принятые ПК к единому моменту времени, математически усредняют полученные интерполированные к единому моменту времени ПК ВО X M C = X O 1 + X O 2 + ⋯ + X O N + X A З H n + 1 Y M C = Y O 1 + Y O 2 + ⋯ + Y O N + Y A З H n + 1 , вычисляют корректировки для каждой из юстируемых РЛС Δ β n = a r c t g ( Y o n − Y n X o n − X n ) − a r c t g ( Y m c − Y n X m c − X n ) = a r c t g ( Y o n − Y n X o n − X n − Y m c − Y n X m c − Y n 1 + Y o n − Y n X o n − X n ⋅ Y m c − Y n X m c − X n ) D n = ( X м с − X n ) 2 + ( Y м с − Y n ) 2 − ( X o n − X n ) 2 + ( Y o n − Y n ) 2 , сравнивают вычисленные корректировки Δβn, ΔDn с разрешающей способностью каждой из юстируемых РЛС и, если корректировки больше разрешающей способности одной из юстируемых РЛС, изменяют настройки данной РЛС, измерения и расчеты повторяют до тех пор, пока величина корректировок не будет меньше разрешающей способности всех юстируемых РЛС. 1 ил.

Изобретение относится к радиолокации и касается имитационно-испытательных комплексов, предназначенных для оценки характеристик радиолокационных объектов. Имитационно-испытательный комплекс для радиолокационной станции (РЛС) содержит цель для создания натурной обстановки в зоне обзора по заданной программе облета. На борту цели установлены подключенная к спутниковой навигационной системе пилотажно-навигационная система и измерительное радиоэлектронное устройство, связанные с пунктом управления. Целью является беспилотный летательный аппарат (БПЛА). БПЛА содержит крыло, оперение, фюзеляж, двигатель и устройство посадки. Пусковая установка содержит направляющую, на которой установлены толкатель и сбоку со стороны винта двигателя убираемый выдвижной стартер. На фюзеляже в нижней его части по продольной оси закреплен упор, контактирующий при взлете с торцевой поверхностью толкателя. Устройство посадки БПЛА установлено в отсеке, на стенке которого закреплена открывающаяся створка, соединенная с автоматическим замком. Достигается простота проведения испытаний, улучшение условий эксплуатации и транспортирования, обеспечение исследований РЛС различного типа на местах дислокации при отсутствии необходимого оборудования. 5 з.п. ф-лы, 5 ил.

Изобретение может быть использовано для калибровки радиолокационных станций (РЛС) по величине эффективной поверхности рассеяния (ЭПР). Достигаемый технический результат - повышение точности калибровки РЛС. Предлагаемый способ включает запуск на орбиту искусственного спутника Земли отражателя с известной величиной ЭПР, облучение отражателя сигналами РЛС, прием и измерение амплитуды отраженных сигналов. В качестве эталона ЭПР на орбиту искусственного спутника Земли транспортируют миниспутник (МС), содержащий корпус в виде прямой призмы и двух плоских радиоотражающих шарнирно связанных граней, при этом грани разворачивают относительно друг друга так, что они образуют двугранный уголковый отражатель (УО), ребро которого параллельно боковому ребру прямой призмы, причем угол α между гранями УО задают в определенном диапазоне градусов. В процессе полета с помощью приемников навигационной системы типа «ГЛОНАСС» и/или GPS и бортовой вычислительной машины (БВМ) по заданной программе выбирают РЛС, в зоне радиовидимости которой находится МС. Определяют положение центра масс МС относительно местоположения выбранной РЛС, а также ориентацию осей связанной системы координат МС относительно линии визирования РЛС. Одновременно БВМ производят расчет и определяют пространственное положение биссектрисы угла двугранного УО относительно линии визирования калибруемой РЛС, а затем системой ориентации МС осуществляют их совмещение, далее при помощи системы ориентации МС удерживают совмещение биссектрисы угла УО с линией визирования калибруемой РЛС до окончания сеанса калибровки, в результате максимум основного лепестка индикатрисы рассеяния УО совпадает с линией визирования калибруемой РЛС. 7 з.п. ф-лы, 9 ил.

Изобретение относится к системе имитации электромагнитной обстановки. Технический результат состоит в упрощенной и автоматизированной калибровке для каждого канала, которая не зависит от калибровки фактической сети зондов. Для этого система содержит сеть (200) излучающих и/или приемных зондов (Si) для тестирования по меньшей мере одной антенны (300), каналы (С) для соединения зондов с имитатором (600) канала, блок (400) излучения сигнала, блок (410) приема сигнала, причем один из блоков (400, 410) соединен с имитатором (600). Согласно изобретению переключающее устройство (100) имеет первое положение измерения, в котором устройство (100) соединяет имитатор (600) по меньшей мере с одним из зондов через соответствующий канал (С) и соединяет другой блок (410, 400) с тестируемой антенной (300), во втором положении калибровки каналов (С) переключающее устройство (100) соединяет имитатор (600) с другим блоком (410, 400) через соответствующий канал (С) без прохождения через сеть (200) зондов (Si). 2 н. и 11 з.п. ф-лы, 8 ил.

Изобретение относится к бортовому радиолокационному оборудованию космических аппаратов (КА), предназначенному для калибровки радиолокационных станций (РЛС) по величине эффективной поверхности рассеяния (ЭПР). КА содержит корпус в форме прямоугольной призмы (1) с поперечным сечением (2) в виде вогнуто-выпуклого многоугольника. Две грани (4, 5) призмы одинакового размера с радиоотражающими поверхностями обращены внутрь корпуса КА. Корпус КА снабжен двумя откидными плоскими радиоотражающими пластинами (6, 7), шарнирно связанными с гранями (8, 9). Пластины (6, 7) снабжены механизмами раскрытия и узлами фиксации к призме (1), образуя в рабочем положении двугранный уголковый отражатель. Угол между гранями отражателя заключен в диапазоне от (90-Δ)° до (90+Δ)°, причем Δ определяется из условия: 0<Δ<18λ/а, где λ - длина волны калибруемой РЛС, a - размер грани отражателя. На борту КА имеются навигационная аппаратура потребителя систем «ГЛОНАСС» и/или GPS, микропроцессор, микроконтроллер, блок сопряжения системы ориентации и стабилизации с микроконтроллером. Технический результат изобретения заключается в расширении функциональных возможностей КА при калибровке радиолокаторов, работающих на волнах круговой поляризации при параллельном приеме отраженных сигналов, а также при калибровке по величине ЭПР высокопотенциальных РЛС в режиме функционирования с пониженной мощностью излучения. 8 з.п. ф-лы, 10 ил.

Изобретение относится к системам, использующим отражение радиоволн, а именно к системам радиолокации для распознавания технического состояния объекта. Достигаемый технический результат - расширение информативности за счет распознавания технического состояния объекта. Указанный результат достигается тем, что устройство распознавания технического состояния объекта содержит антенну, радиолокационную станцию, блок фильтровых каналов, блок получения автокорреляционных функций, блок памяти, вычитающее устройство, устройство оценки технического состояния, линию задержки, умножитель, аналого-цифровой преобразователь, n ключей и кнопку «запись». Перечисленные средства определенным образом взаимосвязаны между собой. 1 ил.

Изобретение относится к области радиолокации, в частности к юстировочным щитам. Юстировочный щит моделирует прямые и зеркально отраженные от земли радиосигналы, идущие от ракеты и цели на конечном участке наведения. Юстировочный щит находится в дальней зоне антенны радиопеленгатора и содержит лазерный и инфракрасный излучатели. Для имитации сигналов от приемоответчика ракеты и сигналов, отраженных от цели, щит снабжен генератором радиоимпульсов с синтезатором частот. Достигается повышение точности юстировки. 3 ил.

Изобретение относится к радиолокации и может быть использовано для исследования процессов обнаружения и сопровождения целей радиолокационной станцией (РЛС) в широком диапазоне дальностей, углов и скоростей. Достигаемый технический результат - упрощение устройства с повышением достоверности имитации. Указанный результат достигается за счет замены антенн имитаторов и их приводов антенной с подвижным фазовым центром, состоящей из N излучателей, расположенных линейно, на равном расстоянии меньше длины волны в среде распространения электромагнитной волны, из которых m смежных излучателей в соответствующий момент времени подключены синфазно к имитатору сигнала через несогласованные делители и несогласованные СВЧ ключи, расположенные в ответвлении фидерной линии от делителя к излучателю, а также за счет введения в схему имитатора регистра перезаписи кода положения группы подключенных излучателей под управлением процессора и обеспечивающего изменение положения фазового центра виртуальной антенны. Для моделирования нескольких целей фазовый центр излучения перемещается в несколько положений за время обработки сигнала в РЛС, при этом имитатор содержит цифровую линию задержки, параметры которой переключаются синхронно с перемещением фазового центра излучения. 1 з.п. ф-лы, 3 ил.

Изобретение относится к области активной радиолокации и может быть использовано при проведении проверки, самодиагностики бортовых радиолокационных систем опознавания объектов. Достигаемый технический результат - обеспечение проверки функционирования запросчика с помощью собственного ответчика, а ответчика с помощью собственного запросчика, без использования дополнительного оборудования или с минимальным его количеством. Результат достигается тем, что способ проверки функционирования интегрированного запросчика-ответчика включает формирование и излучение запросчиком запросного сигнала, прием и переизлучение внешним объектом с некоторой задержкой, имитирующей распространение запросного сигнала в пространстве, запросного сигнала в направлении ответчика, прием ответчиком переизлученного задержанного запросного сигнала, его обработку, формирование и излучение ответчиком ответного сигнала, прием и переизлучение внешним объектом задержанного ответного сигнала в направлении запросчика, прием задержанного ответного сигнала запросчиком, обработку принятого задержанного ответного сигнала запросчиком. Причем при приеме и переизлучении запросных и ответных сигналов в качестве внешнего объекта используют элементы земной поверхности или пассивную антенну, расположенные на небольшом удалении от запросчика-ответчика. При этом имитацию распространения сигналов в пространстве обеспечивают посредством искусственно введенной задержки запуска излучения запросчика и ответчика, формируемой в едином вычислительном устройстве запросчика-ответчика.1 з.п. ф-лы, 3 ил.
Наверх