Жаропрочный сплав на основе никеля для литья рабочих лопаток газотурбинных установок

Изобретение относится к металлургии, в частности к литейным жаропрочным коррозионностойким сплавам на основе никеля, и может быть использовано для изготовления литьем деталей горячего тракта газотурбинных установок. Жаропрочный сплав на основе никеля для литья рабочих лопаток газотурбинных установок содержит, мас.%: углерод 0,001-0,12, хром 8,8-9,2, кобальт 4,8-5,2, вольфрам 6,1-6,5, молибден 0,15-0,3, алюминий 3,7-3,9, тантал 3,9-4,1, рений 3,4-3,6, бор 0,0003-0,01, ниобий 0,10-0,20, церий 0,002-0,012, иттрий 0,002-0,012, титан 2,9-3,1, гафний 0,15-0,25, марганец 0,002-0,12 и никель остальное. Сплав содержит церий и иттрий в равных количествах, а отношение содержания титана к содержанию алюминия составляет > 0,75. Сплав характеризуется повышенной длительной прочностью в сочетании с высоким сопротивлением окислению. 2 табл.

 

Изобретение относится к металлургии, в частности к литейным жаропрочным коррозионностойким сплавам на основе никеля с хромом и кобальтом, и может быть использовано для изготовления литьем деталей горячего тракта газотурбинных установок (ГТУ), например рабочих лопаток газовой турбины с монокристаллической, направленной и равноосной структурами, работающих в агрессивных средах при температурах 800-1000°C.

Высокие прочностные характеристики таких сплавов достигаются за счет значительного количества (50-70 об.%) упрочняющей γ'-фазы (Ni3Al), легированной ниобием, титаном, танталом и т.д., а также упрочнением твердого раствора (γ-фазы) кобальтом, хромом, молибденом, вольфрамом и рением. Повышенную коррозионную стойкость обеспечивают высоким содержанием хрома (как правило, 6-10 мас.%) при отношении содержания титана к алюминию Ti/Al≥0,3, а также введением рения и редкоземельных элементов. Сопротивление окислению при повышенных температурах обеспечивают повышенным содержанием алюминия и тантала, снижением содержания хрома и, в первую очередь, молибдена и также введением редкоземельных элементов.

Структурная стабильность на ресурс (исключение образования охрупчивающих фаз) и ограничение образования при кристаллизации неравновесных фаз, на месте которых после их распада при термообработке будут зарождаться поры и трещины, могут быть оценены по известной методике ФАКОМП.

Характеристики длительной прочности, критические точки сплава и другие его физико-механические свойства также могут быть оценены по известным методикам.

(H. Harada и др., Сб. Superalloys, 1988; p.p.733-742; Сб. Superalloys, 2000; p.p.729-736.)

Известен жаропрочный сплав на основе никеля для литья лопаток газовой турбины с монокристаллической структурой, содержащий кобальт, хром, молибден, вольфрам, тантал, алюминий, титан, гафний, рений, при следующем соотношении компонентов, мас.%: кобальт 9,3-10,0; хром 6,4-6,8; молибден 0,5-0,7; вольфрам 6,2-6,6; тантал 6,3-6,7; алюминий 5,45-5,75; титан 0,8-1,2; гафний 0,07-0,12, рений 2,8-3,2; никель - остальное. Максимальное содержание углерода в известном сплаве ограничено 60 ppm, бора - 30 ppm, циркония - 75 ppm, серы - 20 ppm, кремния - 400 ppm.

(US 4643782, C22C 19/05, опубликовано 17.02.1987.)

Литые рабочие лопатки газовой турбины, изготовленные из известного сплава, имеют повышенный объем неравновесной эвтектической γ'-фазы (6-8%), что при литье может привести к значительной пористости отливки, а также к снижению коррозионной стойкости и окислению лопаток в условиях воздействия агрессивной среды из-за неоптимальных соотношений легирующих элементов.

Наиболее близким является жаропрочный сплав на основе никеля для изготовления методом направленной кристаллизацией рабочих лопаток газовых турбин с направленной и монокристаллической структурами. Известный сплав включает углерод, хром, кобальт, вольфрам, молибден, алюминий, тантал, рений, бор, ниобий, церий, иттрий, лантан, неодим и никель при следующем соотношении компонентов, мас.%: углерод 0,05-0,12; хром 5,0-6,0; кобальт 8,0-10,0; вольфрам 6,5-7,5; молибден 0,8-1,5; алюминий 5,5-6,0; тантал 4,4-5,4; рений 3,8-4,6; бор 0,001-0,02; ниобий 0,6-1,0; церий 0,005-0,10; иттрий 0,0001-0,002; лантан 0,001-0,05; неодим 0,0005-0,01; никель остальное.

(RU 2148099, C22C 19/05, опубликовано 27.04.2000.)

Однако данный известный сплав при высоких показателях по жаропрочности имеет низкую коррозионную стойкость и пониженную стойкость к окислению из-за значительного содержания молибдена.

Целью изобретения и его техническим результатом является достижение: повышенной длительной прочности жаропрочного сплава для литых лопаток газовых турбин в сочетании с высоким сопротивлением окислению и коррозионным воздействиям; повышенной структурной стабильности на ресурс; улучшения технологических характеристик сплава. Кроме того, предлагаемый сплав обеспечивает получение рабочих лопаток газовых турбин с монокристаллической, направленной или равноосной структурами.

Технический результат достигается тем, что жаропрочный сплав на основе никеля для литья рабочих лопаток газотурбинных установок содержит углерод, хром, кобальт, вольфрам, молибден, алюминий, тантал, рений, бор, ниобий, церий, иттрий, титан, гафний, марганец и никель, при следующем соотношении компонентов, мас.%:

углерод 0,001-0,12
хром 8,8-9,2
кобальт 4,8-5,2
вольфрам 6,1-6,5
молибден 0,15-0,3
алюминий 3,7-3,9
тантал 3,9-4,1
рений 3,4-3,6
бор 0,0003-0,01
ниобий 0,10-0,20
церий 0,002-0,012
иттрий 0,002-0,012
титан 2,9-3,1
гафний 0,15-0,25
марганец 0,002-0,12
никель остальное

при этом церий и иттрий содержатся в равных количествах, при суммарном содержании алюминия и титана 6,6-7,0 мас.% и отношении содержания титана к содержанию алюминия >0,75.

В сплаве по изобретению количество упрочняющей γ'-фазы (Ni3Al) составляет 56,7-58,9 ат.%, что обеспечивает высокий и стабильный уровень служебных характеристик, например, жаропрочность: 343-348 МПа за 103 часов при 900°C.

Оптимальное содержание вольфрама, рения, тантала дает повышенную жаропрочность литого сплава, однако дальнейшее увеличение их суммарного содержания вызывает значительный рост температуры растворения γ'-фазы, что можно компенсировать увеличением содержания кобальта, но это удорожает сплав.

Гафний в сочетании с ниобием в заявленных концентрациях, обеспечивают достаточную пластичность литого сплава на длительный ресурс и стабилизацию карбидов.

При этом заявленные соотношения компонентов в сплаве исключают в процессе наработки появление охрупчивающих фаз и ограничивают выделение неравновесной эвтектической γ'-фазы, что обеспечивает пониженный объем газоусадочной пористости и повышает устойчивость изделия к образованию трещин. Высокое отношение содержания титана к содержанию алюминию >0,75 в сочетании с высоким содержанием хрома и рения, присутствием редкоземельных металлов и марганца способствует повышению коррозионной стойкости предлагаемого сплава.

Предлагаемый сплав по изобретению за счет изменения содержания углерода и бора позволяет получать лопатки с монокристаллической, направленной или равноосной структурами. При этом монокристаллическая структура достигается при содержании углерода и бора в сплаве преимущественно в диапазонах 0,001-0,02 и 0,0003-0,002 соответственно, а направленная и равноосная структуры - при содержании углерода и бора в сплаве преимущественно в диапазонах 0,04-0,12 и 0,004-0,01 соответственно.

В сравнении со сплавом с монокристаллической структурой сплав с направленной и равноосной структурами будет иметь примерно равную структурную стабильность, но пониженные характеристики кратковременной и длительной прочности. Однако преимуществом сплавов с направленной и равноосной структурами является более низкая стоимость литых заготовок, в основном за счет повышенного выхода годного.

Для получения литых рабочих лопаток газовой турбины из сплава по изобретению используют известные способы и устройства для литья турбинных лопаток из жаропрочных сплавов с монокристаллической, направленной и равноосной структурами. Термообработка литых заготовок включает гомогенизирующий отжиг при температуре около 1260°C в течение 3-10 часов.

Достижение поставленного технического результата можно проиллюстрировать данными из таблиц 1 и 2.

Из представленных данных видно, что сплав по изобретению с монокристаллической структурой (МК) при примерно равных значениях по жаропрочности при температурах 800-950°C значительно (примерно на порядок) превосходит известный сплав по коррозионной стойкости. Сплавы с направленной (НК) и равноосной (PC) имеют ожидаемые более низкие служебные характеристики, однако достаточные для применения таких сплавов для изготовления литьем рабочих лопаток первых ступеней газовых турбин.

Достигаемое повышенное сопротивление агрессивным воздействиям среды предлагаемого сплава (по сравнению с известным аналогом) позволяют увеличить эксплуатационную надежность и срок службы изделий и, как следствие, приводит к снижению годовой потребности в металле. Причем стоимость шихтовых материалов сплава по изобретению на ≈15% ниже, чем у известного.

Узкие интервалы легирования позволяют уменьшить разброс значений служебных характеристик и обеспечивают гарантированные значения прочности и пластичности, закладываемые конструкторами в расчет изделия.

Таблица 1
Содержание компонентов, мас.% Известный сплав Сплав по изобретению
CMSX-4 по US 4643782 по RU 2148099 МК структура PC и НК структуры
углерод менее 60 ppm 0,08 0,01 0,08
хром 6,5 5,5 9,0 9,0
кобальт 9,6 9,0 5,0 5,0
вольфрам 6,4 7,0 6,3 6,3
молибден 0,6 1,1 0,25 0,25
алюминий 5,6 5,8 3,8 3,8
тантал 6,5 4,9 4,0 4,0
рений 3,0 4,2 3,5 3,5
ниобий - 0,8 0,15 0,15
титан 1,0 - 3,0 3,0
церий - 0,010 0,006 0,006
иттрий - 0,001 0,006 0,006
гафний 0,10 - 0,20 0,20
марганец - - 0,05 0,05
кремний менее 400 ppm - - -
бор менее 40 ppm 0,01 0,001 0,008
Лантан, неодим - по 0,001 - -
никель остальное остальное остальное остальное
Таблица 2
Характеристики сплава Известный сплав Сплав по изобретению
CMSX-4 по US 5270123 по RU 2148099 МК структура PC структура НК структура
1. Упрочняющая γ'-фаза 1.1. Объем γ'-фазы, ат.% 69,7 67,1 58,3 58,4 58,4
1.2. Суммарное содержание титана и алюминия, мас.% 6,6 5,75 6,9 6,9 6,9
1.3. Сольвус Tγ' осредненный, °C 1290 1271 1255 1253 1253
1.4. Степень залегированности γ'-фазы 1,099 1,058 1,057 1,018 1,018
1.5. Отношение содержания Ti/Al 0,18 - 0,79 0,79 0,79
1.6. Mismach при 900°C -0,001 -0,002 -0,003 -0,002 -0,002
1.7. Количество неравновесной γ'-фазы, межось-литой, % 6-7 1-2 2-3 1-2 1-2
2. Энергия дефектов упаковки в γ-фазе 1,353 2,157 0,870 1,186 1,186
3. Плотность т/м3 8,72 8,78 8,70 8,68 8,68
4. Структурная стабильность ФАКОМП, 4.1. Mdy крит≤0,928 осредненный с ТО 0,913 0,898 0,926 0,921 0,921
4.2. литой без ТО: межось 0,907 0,911 0,888 0,883 0,883
5. Длительная прочность
1) σ 1 0 3 7 5 0 C - - - 611 -
2) σ 1 0 3 8 5 0 C 497 510 484 341 437
3) σ 1 0 3 9 0 0 C 346 353 345 244 311
4) σ 1 0 3 1 0 0 0 C 184 184 182 - 163
6. Сравнительная коррозионная стойкость
lg Metall loss (JN792=-0,26) 0,982 0,569 -0,727 -0,776 -0,776
lg corros Rate (JN792=0,1) 0,186 0,402 -0,255 -0,235 -0,235
7. Относительная стоимость литой заготовки рабочей лопатки - - 1,0 0,45 0,75

Жаропрочный сплав на основе никеля для литья рабочих лопаток газотурбинных установок, содержащий углерод, хром, кобальт, вольфрам, молибден, алюминий, тантал, рений, бор, ниобий, церий, иттрий и никель, отличающийся тем, что он дополнительно содержит титан, гафний и марганец при следующем соотношении компонентов, мас.%:

углерод 0,001-0,12
хром 8,8-9,2
кобальт 4,8-5,2
вольфрам 6,1-6,5
молибден 0,15-0,3
алюминий 3,7-3,9
тантал 3,9-4,1
рений 3,4-3,6
бор 0,0003-0,01
ниобий 0,10-0,20
церий 0,002-0,012
иттрий 0,002-0,012
титан 2,9-3,1
гафний 0,15-0,25
марганец 0,002-0,12
никель остальное

при этом он содержит церий и иттрий в равных количествах, а отношение содержания титана к содержанию алюминия составляет > 0,75.



 

Похожие патенты:
Изобретение относится к области металлургии, в частности к высокопрочным сплавам на основе никеля для получения износостойких покрытий на металлические конструктивные элементы.

Изобретение относится к металлургии, в частности к литейным жаропрочным коррозионностойким сплавам на основе никеля, и может быть использовано для изготовления литьем деталей горячего тракта газотурбинных установок, работающих в агрессивных средах при температурах 800-1000°C.

Изобретение относится к области металлургии, в частности к металлическому покрытию со связующим, и может быть использовано в качестве покрытия для детали газовой турбины.

Изобретение относится к области металлургии, в частности к металлическому покрытию с фазами γ- и γ'. Металлическое покрытие из сплава на основе никеля для деталей газовых турбин содержит γ- и γ'-фазы, при этом сплав содержит, мас.%: железо 0,5-5, кобальт по меньшей мере 1, хром по меньшей мере 1, алюминий по меньшей мере 1, и, при необходимости, тантал (Та) и/или иттрий (Y).

Изобретение относится к области металлургии, в частности к сплавам на основе никеля защитных покрытий деталей газовой турбины. Сплав на основе никеля для защитного покрытия деталей газовой турбины содержит, мас.%: 24-26 кобальта, 16-25 хрома, 9-12 алюминия, 0,1-0,7 иттрия и/или по меньшей мере одного металла из группы, содержащей скандий и редкоземельные элементы, необязательно, 0,1-0,7 фосфора, необязательно, 0,1-0,6 кремния, не содержит рений, никель - остальное.
Изобретение относится к области металлургии, а именно к литейным сплавам на основе интерметаллида Ni3Al и изделиям, получаемым методом точного литья по выплавляемым моделям с дендритной столбчатой структурой, таким как, например, сопловые лопатки, блоки сопловых лопаток и другие детали газотурбинных двигателей авиационной и автомобильной промышленности.

Изобретение относится к области металлургии, в частности к никелевым сплавам, и может быть использовано при производстве сопловых и рабочих охлаждаемых лопаток газотурбинных двигателей и установок.

Изобретение относится к металлургии, в частности к литейным жаропрочным коррозионно-стойким сплавам на основе никеля, и может быть использовано для изготовления литьем деталей горячего тракта газотурбинных установок, например рабочих лопаток газотурбинного двигателя с равноосной, направленной и монокристаллической структурами, работающих в агрессивных средах при температурах 700-1000°C.

Изобретение относится к монокристаллическому суперсплаву на основе Ni и может быть использовано для изготовления из него лопаток турбины. Сплав имеет следующий состав по массе: 6,0 мас.% или более и 9,9 мас.% или менее Co, 6,5 мас.% или более и 10,0 мас.% или менее Cr, 1,0 мас.% или более и 4,0 мас.% или менее Mo, 8,1 мас.% или более и 11,0 мас.% или менее W, 4,0 мас.% или более и 9,0 мас.% или менее Та, 5,2 мас.% или более и 7,0 мас.% или менее Al, 0,1 мас.% или более и 2,0 мас.% или менее Ti, 0,05 мас.% или более и 0,3 мас.% или менее Hf, 0-1,0 мас.% Nb и 0-0,8 мас.% Re при остатке, включающем Ni и неизбежные примеси.

Изобретение относится к области металлургии, в частности, к дисперсно-упрочненному сплаву на основе никеля, образующему оксид алюминия на поверхности и предназначенному для применения при высоких температурах.

Изобретение относится к жаропрочному сплаву на основе никеля. Сплав содержит, мас. %: 7,7 - 8,3 Cr, 5,0 - 5,25 Co, 2,0 - 2,1 Mo, 7,8 - 8,3 W, 5,8 - 6,1 Та, 4,9 - 5,1 Аl, 1,0 - 1,5 Ti, 1,0 - 2,0 Re, 0 - 0,5 Nb, 0,11 - 0,15 Si, 0,1 - 0,7 Hf, 0,02 - 0,17 C, 50 - 400 частей на миллион В, остальное - никель и неизбежные примеси. Сплав характеризуется высокой стойкостью к окислению, коррозионной стойкостью и положительными свойствами ползучести при высоких температурах.18 з.п. ф-лы, 3 ил., 1 табл.
Изобретение относится к области металлургии, в частности к высокопрочным прецизионным сплавам на основе никеля для получения покрытий микроплазменным или холодным сверхзвуковым напылением. Сплав содержит, мас.%: хром 18,0-40,0, молибден 30,0-40,0, алюминий 0,45-0,63, цирконий 4,5-6,4, карбид кремния 1,4-2,6, церий 0,2-0,6, иттрий 0,1-0,5, лантан 0,5-0,8, никель - остальное. Алюминий и цирконий присутствуют в сплаве в виде интерметаллида AlZr3, содержание которого составляет 5-7 мас.%. Сплав характеризуется повышенной коррозионной стойкостью и улучшенными прочностными характеристиками. 2 пр.

Изобретение относится к области металлургии, а именно к производству литейных жаропрочных сплавов на никелевой основе. Сплав, мас.%: хром - 4,0-6,0; кобальт - 8,0-11,0; молибден - 2,5-3,5; вольфрам - 6,0-8,0; алюминий - 5,4-6,2; углерод 0,05-0,16; бор - 0,008-0,04; цирконий - 0,01-0,05; титан - 0,5-2,5; церий - 0,002-0,02; иттрий - 0,001-0,01; лантан - 0,002-0,02; рений - 1,0-2,0; тантал - 4,0-6,0; никель - остальное. Изделие, выполненное из заявленного сплава, может иметь поликристаллическую или монокристаллическую структуру. Технический результат - повышение характеристик фазовой стабильности, повышение длительной прочности и пластичности. 2 н. и 1 з.п. ф-лы., 2 табл., 1 пр.

Изобретение относится к металлургии, в частности к литейным коррозионностойким жаропрочным сплавам на основе никеля, и может быть использовано для изготовления литьем деталей горячего тракта газотурбинных установок (ГТУ), работающих в агрессивных средах природного газа при температурах 600-890°C. Жаропрочный сплав на основе никеля для изготовления лопаток газотурбинных установок содержит, мас.%: углерод 0,08-0,11; хром 14,6-15,1; кобальт 8,5-8,9; вольфрам 6,5-6,9; молибден 0,3-0,6; алюминий 3,9-4,1; титан 3,6-3,8; бор 0,010-0,013; кальций 0,01-0,20; кремний ≤0,1; марганец 0,15-0,30; сера ≤0,005; фосфор ≤0,005; магний 0,01-0,20; медь ≤0,05; азот 10-20 ppm; кислород 10-15 ppm, no меньшей мере, два элемента, выбранных из группы: железо ≤0,2; ванадий ≤0,10 и барий ≤0,01, никель - остальное. Сплав характеризуется повышенными значениями пластичности, коррозионной стойкости, обеспечивается высокая структурная стабильность. 2 табл., 3 пр.

Изобретение относится к металлургии, к коррозионно-стойким жаропрочным сплавам на основе никеля и может быть использовано для изготовления деталей горячего тракта газотурбинных установок, работающих в агрессивных средах. Жаропрочный сплав на основе никеля содержит, мас.%: углерод 0,05-0,09; хром 15,4-15,8; кобальт 10,0-10,4; вольфрам 5,0-5,3; молибден 1,6-1,8; титан 4,3-4,5; алюминий 3,0-3,2; бор 0,06-0,09; цирконий <0,015; гафний 0,2-0,3; кремний <0,1; железо <0,1; медь <0,05; сера <0,005; азот <20 ppm; кислород <15 ppm, церий <0,015; ниобий 0,1-0,2; иттрий <0,03; марганец <0,1; фосфор <0,005 и никель - остальное. Способ изготовления лопаток газотурбинных установок из жаропрочного сплава на основе никеля, характеризующийся тем, что проводят термическую обработку путем гомогенизирующего отжига и старения. Гомогенизирующий отжиг ведут в инертной атмосфере с нагревом со скоростью 5-10°C/мин до температуры 1060±10°C, выдержкой в течение 3-4 часов и охлаждением со скоростью 30-50°C/мин до температуры 600-700°С и далее до комнатной температуры. Старение проводят при температуре 850±10°C в течение 16 часов с последующим охлаждением на воздухе до комнатной температуры. Повышаются прочность, пластичность и коррозионная стойкость сплава с равноосной структурой в сочетании с высокой структурной стабильностью на ресурс и пониженным уровнем газоусадочной пористости. 2 н.з.п. ф-лы, 2 табл.

Изобретение относится к металлургии, в частности к литейным жаропрочным коррозионно-стойким сплавам на основе никеля, и может быть использовано для изготовления литьем деталей горячего тракта газотурбинных установок, работающих в агрессивных средах при температурах 700-900°C. Жаропрочный сплав на основе никеля для литья рабочих лопаток газотурбинных установок содержит, мас.%: углерод 0,005-0,12; хром 11,5-12,4; кобальт 8,0-8,7; вольфрам 6,7-7,4; молибден 0,25-0,55; титан 4,0-4,2; алюминий 3,9-4,2; бор 0,001-0,012; марганец ≤0,12; кремний ≤0,10; ниобий 0,8-1,0; магний ≤0,12; кальций ≤0,12; медь ≤0,05; железо ≤0,1; сера ≤0,005; фосфор ≤0,005; азот ≤10,0 ppm, кислород ≤10,0 ppm, никель остальное, при этом отношение содержания титана к содержанию алюминия составляет 0,95-1,07. Сплав характеризуется повышенными значениями длительной прочности в сочетании с высоким сопротивлением коррозионным воздействиям, высокой структурной стабильностью на ресурс. Сплав может быть использован для литья рабочих лопаток газовых турбин с монокристаллической, направленной или равноосной структурами. 2 табл.

Изобретение относится к области металлургии, в частности, к дисперсионно-упрочненным жаропрочным сплавам на основе никеля и может быть использовано в качестве материала для трубчатой оболочки тепловыделяющего элемента реакторов на быстрых нейтронах. Дисперсионно-упрочненный жаропрочный сплав на основе Ni содержит, мас.%: 0,01 или менее C, 0,5 или менее Mn, 0,01 или менее P, 0,01 или менее S, 2,0-3,0 Si, 23-30 Cr, 7,0-14,0 W, 10-20 Fe и 40-60 Ni. Общее содержание C, N, О, P и S составляет 0,01 мас.% или менее. Диспергируется и выделяется силицид, а размер зерен матричного аустенита регулируется путем термомеханической обработки. Жаропрочный сплав обладает высокой стойкостью к облучению и коррозионной стойкостью. 2 н. и 7 з.п. ф-лы, 10 ил., 4 табл.

Изобретение относится к области металлургии, а именно к жаропрочным сплавам, предназначенным для элементов, используемых в атомной энергетике, нефтехимической и нефтеперерабатывающей промышленности, работающих при высоких температурах. Жаропрочный сплав на никелевой основе содержит, мас.%: углерод 0,02÷0,06, кремний 0,05÷0,30, марганец 1,3÷1,7, хром 18÷20, никель 53÷56, молибден 5,0÷7,0, вольфрам 2,0÷3,0, цирконий 0,05÷0,015, азот 0,01÷0,03, иттрий 0,01÷0,05, бор 0,001÷0,005, алюминий 0,05÷0,15, железо и примеси - остальное. Сплав характеризуется высокими показателями длительной прочности при температурах 650-800°C, повышенной технологичностью при изготовлении крупногабаритных поковок и при сварке. 1 з.п. ф-лы, 3 табл.

Изобретение относится к области металлургии, в частности к сплавам на основе никеля для изготовления механических компонентов турбомашин. Суперсплав на основе никеля для механических компонентов турбомашин содержит, мас.%: хром - от 3 до 7, вольфрам - от 3 до 15, тантал - от 4 до 6, алюминий - от 4 до 8, углерод менее 0,8, никель и примеси - остальное. Сплав характеризуется высокой механической, химической и термической стойкостью. Механические компоненты, изготовленные из заявленного сплава, могут эксплуатироваться при высоких температурах. 5 н. и 5 з.п. ф-лы, 8 ил.

Изобретение относится к области металлургии, в частности к сплавам для защитного покрытия конструктивного элемента газовой турбины от коррозии и/или окисления. Защитное покрытие для защиты конструктивного элемента газовой или паровой турбины от коррозии и/или окисления, в частности, при высоких температурах, выполненное в виде одиночного металлического слоя из сплава, содержащего, вес.%: 24-26 кобальта, 12-14 хрома, 10-12 алюминия, 0,2-0,5 по меньшей мере одного элемента из группы, включающей в себя скандий и редкоземельные элементы, никель - остальное. Покрытие не содержит тантала, рения, кремния. Покрытие характеризуется высокими показателями стойкости к высокотемпературной коррозии и окислению. 2 н. и 2 з.п. ф-лы, 5 ил.
Наверх