Способ получения сульфата ванадила


 


Владельцы патента RU 2525903:

Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук (RU)

Изобретение может быть использовано в производстве катализаторов. Способ получения сульфата ванадила включает экстракцию из сернокислого раствора ванадия (IV) неразбавленной ди-2-этилгексилфосфорной кислотой в присутствии сульфата натрия и последующую фильтрацию под вакуумом. Экстракцию ведут при соотношении водной и органической фазы, равном (2,5÷3,0):1. Затем отделяют органическую фазу от водной фазы, охлаждают органическую фазу до 0±0,5°С с выдержкой при этой температуре в течение 20-30 мин. Далее к органической фазе добавляют ксилол при соотношении, равном 1:(0,5÷1,0), и промывают полученный продукт гексаном. Изобретение позволяет повысить выход тригидрата сульфата ванадила VOSO4·3Н2O приблизительно на 30%. 2 з.п. ф-лы, 1 ил., 4 пр.

 

Изобретение относится к способам получения ванадиевого компонента каталитических систем и может быть использовано для получения катализаторов получения углеводородов.

Известен способ получения тригидрата сульфата ванадила VOSO4·3H2O, в котором оксид ванадия V2O5 перемешивают с водой и концентрированной серной кислотой до образования густой оранжевой массы. Затем после выдержки в течение 12-24 часов смесь нагревают на водяной бане, пропуская через нее SO2. Загустевшую массу фильтруют на водяной бане. Полученный продукт промывают метанолом, затем ацетоном и сушат над P2O5 (Schneider R., Gunter J.R., Oswald H.R. “Thermal dehydration and structural models of two new vanadyl sulfate hydrates”, J. of solid state chemistry, 1982, V. 45, p.112-118).

Полученный тригидрат сульфата ванадила не устойчив на воздухе при комнатной температуре, что является основным недостатком способа. Кроме того, недостатком способа является его сложность и длительность.

Известен способ получения тригидрата сульфата ванадила путем экстракции из раствора сернокислого ванадия (IV) неразбавленной ди-2-этил-гексилфосфорной кислотой в интервале концентраций ванадия (IV) 0,01-0,3 моль/л в присутствии сульфата натрия в количестве 0,4 моль/л при температуре 25±0,5°С (Курбатова Л.Д., Слепухин П.А., Курбатов Д.И., Заболоцкая Е.В. “Комплексы при экстракции ванадия (IV) ди-2-этилгексилфосфорной кислотой”, В кн.: IV Международный симпозиум по сорбции и экстракции: материалы/ под общей редакцией д.х.н. Медкова М.А. - Владивосток: Дальнаука, 2011, с.264-267).

Недостатком известного способа является низкий выход конечного продукта.

Таким образом, перед авторами стояла задача разработать способ получения сульфата ванадила, обеспечивающий высокий выход конечного продукта.

Поставленная задача решена в способе получения сульфата ванадила, включающем экстракцию из сернокислого раствора ванадия (IV) неразбавленной ди-2-этилгексилфосфорной кислотой в присутствии сульфата натрия с последующей фильтрацией под вакуумом, в котором экстракцию ведут при соотношении водной и органической фазы, равном 2,5÷3,0:1; затем отделяют органическую фазу от водной фазы; охлаждают органическую фазу до 0±0,5°С с выдержкой при этой температуре в течение 20-30 мин, с последующим добавлением к органической фазе ксилола при соотношении, равном 1:0,5÷1,0; и промыванием полученного продукта гексаном.

При этом сульфат натрия присутствует в количестве 0,5±0,8 моль/л.

При этом экстракцию ведут при рН раствора, равном 2,2÷3,0.

В настоящее время из патентной и научно-технической литературы не известен способ получения сульфата ванадила, в котором экстракцию ведут при соотношении водной и органической фазы, равном 2,5÷3,0:1; затем отделяют органическую фазу от водной фазы; охлаждают органическую фазу до 0±0,5°С с выдержкой при этой температуре в течение 20-30 мин, с последующим добавлением к органической фазе ксилола при соотношении, равном 1:0,5÷1,0; и промыванием полученного продукта гексаном.

Экспериментальные исследования, проведенные авторами, позволили определить условия проведения процесса экстракции, позволяющие повысить выход конечного продукта - тригидрата сульфата ванадила. Экспериментально установлено, что проведение экстракции с использованием объема органической фазы в 2,5÷3,0 раза меньше, чем объем водной фазы; последующее охлаждение отделенной органической фазы до 0°С с выдержкой при этой температуре, смешивание органической фазы с ксилолом в определенном соотношении перед ее фильтрацией под вакуумом, обеспечивает повышение выхода конечного продукта в среднем на 30%. При этом уменьшение объема водной фазы по отношению к органической фазе менее чем 2,5:1 ведет к ухудшению процесса разделения водной и органической фаз. Увеличение объема водной фазы по отношению к органической фазе более чем 3,0:1 ведет к ухудшению процесса формирования кристаллов. Существенным фактором является также время выдержки при температуре 0°С. Так, при выдержке менее 20 мин наблюдается неполное образование кристаллов тригидрата сульфата ванадила, что ведет к уменьшению выхода конечного продукта. При выдержке более 30 мин наблюдаются потери при формировании кристаллов тригидрата сульфата ванадила, поскольку при увеличении времени выдержки становится возможным окисление ванадия (IV). Смешивание органической фазы после выдержки при температуре 0°С с ксилолом в отношении менее чем 1:0,5 ведет к ухудшению процесса фильтрации. Смешивание органической фазы после выдержки при температуре 0°С с ксилолом в отношении более чем 1:1 ведет к возможному разрушению сформированных кристаллов.

Предлагаемый способ может быть осуществлен следующим образом. В емкость помещают сернокислый раствор ванадия (IV) с концентрацией ванадия в растворе не более 0,3 моль/л. Затем в емкость добавляют раствор сульфата натрия до его содержания 0,5-0,8 моль/л и доводят рН полученного раствора, например, серной кислотой, до значений 2,2-2,8. После чего проводят экстракцию неразбавленной ди-2-этилгексилфосфорной кислотой при соотношении водной и органической фазы, равном 2,5÷3,0: 1, до полного разделения водной и органической фазы. Затем органическую фазу отделяют от водной и охлаждают ее до 0±0,5°С с выдержкой при этой температуре в течение 20-30 мин. После чего органическую фазу разбавляют ксилолом в соотношении, равном 1:0,5÷1, и фильтруют под вакуумом. Полученный продукт промывают гексаном и идентифицируют рентгеноструктурным анализом. Выход конечного продукта рассчитывают относительно выхода продукта по способу-прототипу (пример 4), приняв его за базовый уровень, равный 1.

Предлагаемый способ иллюстрируется следующими примерами.

Пример 1. В стакан емкостью 50 мл вливают 6 мл сернокислого раствора ванадия (IV) (1,0 моль/л). Затем добавляют 12 мл Na2SO4 (1 моль/л) и 2 мл Н2O, при этом концентрация сульфата натрия в растворе соответствует 0,6 моль/л и концентрация сернокислого ванадия (IV) соответствует 0,3 моль/л. Доводят рН раствора до 2,2, добавляя несколько капель серной кислоты, и экстрагируют неразбавленной ди-2-этилгексилфосфорной кислотой при соотношении объемов органической и водной фазы, равном 1:2,5, в течение 15 мин до полного разделения водной и органической фаз. Органическую фазу отделяют от водной и охлаждают органическую фазу до 0±0,5°С с выдержкой при этой температуре в течение 20 мин. Затем к полученной массе добавляют ксилол в отношении, равном 1:0,5, и смесь фильтруют под вакуумом. Полученный продукт промывают гексаном. По данным рентгеноструктурного анализа полученный продукт является кристаллами тригидрата сульфата ванадила. Выход тригидрата сульфата ванадила VOSO4·3H2O составляет 1,055 г, что на 33% выше, чем по способу-прототипу. На фиг.1 изображены кристаллы тригидрата сульфата ванадила, изображение получено на сканирующем электронном микроскопе JSM JEOl 6390 LA.

Пример 2. В стакан емкостью 50 мл вливают 6 мл сернокислого раствора ванадия (IV) (1,0 моль/л). Затем добавляют 10 мл Na2SO4 (1,0 моль/л) и 4 мл Н2О, при этом концентрация сульфата натрия в растворе соответствует 0,5 моль/л и концентрация сернокислого ванадия (IV) соответствует 0,3 моль/л. Доводят рН раствора до 2,8, добавляя несколько капель серной кислоты, и экстрагируют неразбавленной ди-2-этилгексилфосфорной кислотой при соотношении объемов органической и водной фазы, равном 1:3, в течение 15 мин до полного разделения органической и водной фаз. Органическую фазу отделяют от водной и охлаждают органическую фазу до 0°С с выдержкой при этой температуре в течение 30 мин. Затем к полученной массе добавляют ксилол в отношении, равном 1: 1, и фильтруют под вакуумом. Полученный продукт промывают гексаном. По данным рентгеноструктурного анализа полученный продукт является кристаллами тригидрата сульфата ванадила. Выход тригидрата сульфата ванадила VOSO4·3Н2О составляет 1,0998 г, что на 31,34% выше, чем по способу-прототипу.

Пример 3. В стакан емкостью 50 мл вливают 6 мл сернокислого раствора ванадия (IV) (1,0 моль/л). Затем добавляют 14 мл Na2SO4 (1,15 моль/л), при этом концентрация сульфата натрия в растворе соответствует 0,8 моль/л и концентрация сернокислого ванадия (IV) соответствует 0,3 моль/л. Доводят рН раствора до 2,5, добавляя несколько капель серной кислоты, и экстрагируют неразбавленной ди-2-этилгексилфосфорной кислотой при соотношении объемов органической и водной фазы, равном 1:2,5, в течение 15 мин до полного разделения органической и водной фаз. Органическую фазу отделяют от водной и охлаждают ее до 0°С с выдержкой при этой температуре в течение 30 мин. Затем к полученной массе добавляют ксилол в отношении, равном 1:1, и фильтруют под вакуумом. Полученный продукт промывают гексаном. По данным рентгеноструктурного анализа полученный продукт является кристаллами тригидрата сульфата ванадила. Выход тригидрата сульфата ванадила VOSO4·3Н2O составляет 1,046 г, что на 32% выше, чем по способу-прототипу.

Пример 4. В стакан емкостью 50 мл вливают 6 мл сернокислого раствора ванадия (IV) (1,0 моль/л). Затем добавляют 8 мл Na2SO4 (1,0 моль/л) и 6 мл H2O, при этом концентрация сульфата натрия в растворе соответствует 0,4 моль/л и концентрация сернокислого ванадия (IV) соответствует 0,3 моль/л. Экстракцию проводят неразбавленной ди-2-этилгексилфосфорной кислотой при соотношении объемов органической и водной фазы, равном 1:1, и многократном контактировании (≈4 мин) с сернокислым раствором ванадия (IV). Органическую фазу отделяют от водной при температуре 25±0,5°С и фильтруют под вакуумом. Выход тригидрата сульфата ванадила VOSO4·3H2O составляет 0,792 г.

Таким образом, предлагаемое техническое решение позволило разработать более эффективный способ синтеза тригидрата сульфата ванадила VOSO4·3H2O, позволяющий увеличить выход конечного продукта приблизительно на 30% по сравнению с прототипом.

1. Способ получения сульфата ванадила, включающий экстракцию из сернокислого раствора ванадия (IV) неразбавленной ди-2-этилгексилфосфорной кислотой в присутствии сульфата натрия с последующей фильтрацией под вакуумом, отличающийся тем, что экстракцию ведут при соотношении водной и органической фазы, равном (2,5÷3,0):1, затем отделяют органическую фазу от водной фазы, охлаждают органическую фазу до 0±0,5°С с выдержкой при этой температуре в течение 20-30 мин, с последующим добавлением к органической фазе ксилола при соотношении, равном 1:(0,5÷1,0), и промыванием полученного продукта гексаном.

2. Способ по п.1, отличающийся тем, что сульфат натрия присутствует в количестве 0,5±0,8 моль/л.

3. Способ по п.1, отличающийся тем, что экстракцию ведут при рН раствора, равном 2,2÷2,8.



 

Похожие патенты:

Изобретение относится к лакокрасочной промышленности. .

Изобретение относится к способу определения концентрации ванадия в атмосферном воздухе методом масс-спектрометрии с индуктивно связанной плазмой (вариантам). .

Изобретение относится к области люминофоров, применяемых для изготовления светодиодных систем, включая органические светоизлучающие OLED системы с белым спектром свечения, а также люминофоров, используемых для изготовления индикаторов фотонного и корпускулярного излучения и рентгеновских люминесцентных экранов.

Изобретение относится к способам осаждения ванадия из водных растворов и может быть использовано в гидрометаллургии редких тугоплавких металлов, в частности получения оксида ванадия (V+5) высокой чистоты.
Изобретение относится к металлургической промышленности, в частности к гидрометаллургии, более конкретно к способам извлечения ванадия из производственных растворов, и может быть использовано в технологических процессах получения ванадия или в аналитической химии.

Изобретение относится к разработке новых сульфидных соединений с особыми магнитоэлектрическими свойствами, которые могут быть использованы в микроэлектронике. .

Изобретение относится к металлургической промышленности, в частности к способам извлечения ванадия из производственных растворов, и может быть использован в технологии получения ванадия и аналитической химии.

Изобретение относится к получению нового соединения, а именно к получению оксидной ванадиевой бронзы перовскитоподобного типа. .

Изобретение относится к химии гидридов металлов и может быть использовано, например, в компактных источниках изотопов водорода. .

Изобретение относится к химии гидридов металла и может быть использовано для длительного хранения водорода в химически связанном состоянии. .

Изобретение предназначено для очистки жидких сред. Устройство включает средства ввода и вывода фазовых компонентов и проточную трубчатую экстракционную камеру со штуцерами для ввода и вывода жидкой среды и газа-носителя.

Изобретение предназначено для газожидкостной экстракции. Способ включает организацию потоков жидкости и газа-носителя, формирование в экстракционной камере поверхности раздела фаз и проведение массообмена с последующим разделением проэкстрагированной жидкости и обогащенного летучими компонентами газа-носителя.

Изобретение предназначено для использования в радиохимическом производстве для очистки и разделения радиоактивных жидких сред, а также в химической, металлургической и фармацевтической отраслях промышленности.

Изобретение может быть использовано в аналитической химии для контроля полноты очистки технологических растворов от ионов ртути. Способ экстракционного извлечения ртути (II) из хлоридных растворов включает экстракцию ртути из водной фазы в органическую компоненту расслаивающей системы вода-антипирин-органическая кислота.

Изобретение относится к химическим аппаратам для экстракции в системах «жидкость-жидкость». Экстрактор содержит вертикальный корпус, разделенный перегородками на секции-отстойники, в которых установлены смесительные устройства, выполненные в виде концентрично расположенных внутренних, наружных и конических патрубков, газораспределительные насадки с отверстиями, установленные соосно патрубкам, и переточные трубки, размещенные в перегородках.

Изобретение относится к химическим аппаратам для экстракции в системах «жидкость-жидкость». При изменении числа смесительных элементов в секции-отстойнике от 6 и более они располагаются на перегородках в горизонтальном и вертикальном рядах соответственно в соотношении «К×(К-1)», а переточные трубки располагаются между смесительными элементами на пересечении диагоналей квадратов, соединяющих центры смесительных элементов, и их количество в горизонтальном и вертикальном рядах соответственно определяется соотношением «(K-1)×К», при этом значение К изменяется от 3 и более.
Изобретение может быть использовано в химической промышленности. На первой стадии извлечения гадолиния из смеси редкоземельных элементов в органическую фазу извлекают тербий, диспрозий и более тяжелые РЗЭ.

Изобретение относится к химической и фармацевтической промышленности и может быть использовано для извлечения новокаина из водных сред с целью его дальнейшего определения.
Изобретение относится к области сельского хозяйства, в частности к способам переработки белоксодержащих отходов жизнедеятельности животных и птиц, преимущественно птичьего помета.

Изобретение относится к получению фосфатов аммония из фосфорсодержащих растворов. Способ получения включает стадии: обеспечения обогащенной фосфором жидкой фазы, не смешивающейся с водой (210); добавления безводного аммиака в обогащенную фосфором жидкую фазу (212); осаждения моноаммоний фосфата и/или диаммоний фосфата из указанной жидкой фазы (214); регулирования температуры жидкой фазы в ходе указанных стадий добавления и осаждения в заранее заданном интервале температур (216); извлечения осажденного моноаммоний фосфата и/или диаммоний фосфата из указанной жидкой фазы (218); промывки кристаллов извлеченного осажденного моноаммоний фосфата и/или диаммоний фосфата (220) и сушки промытых кристаллов (228).

Изобретение относится к многоступенчатому барботажному экстрактору и может быть использовано в химической, нефтехимической, пищевой, фармацевтической и других отраслях. Многоступенчатый барботажный экстрактор включает в себя вертикальный корпус, разделенный перегородками на секции-отстойники с расположенными внутри них смесительными устройствами, выполненными в виде двух концентрических патрубков, газораспределительные насадки с отверстиями, насадки для перетока тяжелой жидкости и переточные трубки для легкой жидкости с отверстиями. В каждой секции-отстойнике наружный патрубок смесительного устройства установлен на нижней перегородке, а его верхний срез расположен на середине высоты секции-отстойника. Внутренний патрубок смесительного устройства установлен с зазором к нижней перегородке, а в его верхнем торце выполнены отверстия для выхода газа из смесительного устройства. Газораспределительный насадок выполнен в виде перевернутого стакана с отверстиями в верхней крышке, расположенными выше нижнего среза внутреннего патрубка смесительного устройства. Нижний срез газораспределительного насадка расположен ниже отверстий для выхода газа из смесительного устройства нижележащей секции-отстойника. В полотне верхней крышки газораспределительного насадка концентрично смесительному устройству установлена переточная трубка для легкой жидкости, нижний срез которой расположен ниже отверстий для выхода газа из смесительного устройства нижележащей секции-отстойника, а отверстия в ее верхней части расположены внутри насадка для перетока тяжелой жидкости, нижний срез которого расположен ниже отверстий для выхода газа из смесительного устройства. Достигаемый при этом технический результат заключается в расширении технологических возможностей экстрактора путем использования его для переработки жидкостных систем, в которых диспергированию подвергается легкая жидкость, а тяжелая жидкость является сплошной средой. 1 ил.
Наверх