Способ изготовления листов и плит из алюминиевых сплавов

Изобретение относится к металлургии деформируемых термически неупрочняемых алюминиевых сплавов, предназначенных для использования в качестве конструкционного материала в виде деформируемых полуфабрикатов в морской и авиакосмической технике, транспортном и химическом машиностроении, в т.ч. в криогенной технике, например судах-газовозах для перевозки сжиженных при низких температурах газов. Способ включает получение слитка из алюминиевого сплава, содержащего магний и скандий, методом полунепрерывного литья, гомогенизирующий отжиг при температуре 300-360°C продолжительностью до 8 часов, механическую обработку слитка, нагрев литых заготовок под прокатку при 340-380°C до 8 часов, горячую прокатку с получением листа или плиты и последующий отжиг при температуре 380-440°C до 4 часов. Способ обеспечивает получение высоких механических свойств при комнатной и низких (криогенных) температурах. 1 пр., 1 табл.

 

Изобретение относится к области деформируемых термически неупрочняемых алюминиевых сплавов со скандием, предназначенных для использования в качестве конструкционного материала в виде деформируемых полуфабрикатов в различных областях техники: судостроении, авиакосмической и нефтегазодобывающей промышленности, в т.ч. для перевозки сжиженных газов, в транспортном машиностроении и т.д.

Существует ряд деформируемых термически неупрочняемых алюминиевых сплавов, легированных магнием, марганцем, цирконием и другими переходными металлами, из которых наиболее прочными являются сплавы системы Al-Mg-Sc.

Основными механизмами упрочнения сплавов этой системы являются твердорастворный, дисперсионного твердения за счет скандиевой фазы и структурного упрочнения вследствие повышения температуры рекристаллизации. Степень упрочнения определяется температурным воздействием в процессе производства полуфабрикатов, при гомогенизации слитка, при нагреве литой заготовки перед прокаткой и отжиге горячекатаного полуфабриката, а также величиной деформации.

Скандий наряду с другими легирующими элементами (Mg, Mn, Zr, Ti, Be и др.) в процессе плавления образует гомогенный расплав и после затвердевания слитка находится в пересыщенном твердом растворе, небольшая часть скандия, а также циркония и титана, при этом расходуется на модифицирование слитка. Прочность металла на этом этапе определяется твердорастворным механизмом упрочнения.

В процессе последующих нагревов слитка при гомогенизации и под прокатку происходит процесс высокотемпературного распада пересыщенного твердого раствора скандия в алюминии с образованием дисперсных выделений скандиевой фазы, прочность металла значительно увеличивается в результате дисперсного упрочнения. Наибольший упрочняющий эффект достигается при размере дисперсных выделений скандиевой фазы примерно в пределах от 8 до 60 мкм.

Температура обработки сплава в процессе отжигов и нагрева под прокатку не должна быть выше той, при которой происходит разупрочнение сплава в связи с коагуляцией выделений скандиевой фазы.

Температура нагрева литых заготовок из алюминиевых сплавов со скандием под горячую деформацию должна быть по возможности низкой с точки зрения сохранения прочностных свойств полуфабриката и в то же время обеспечивать достаточную пластичность обрабатываемого материала.

Структурное упрочнение происходит в результате пластической деформации и получения нерекристаллизованной фрагментированной структуры листов и плит из алюминиевых сплавов со скандием.

Известен способ получения катаных полуфабрикатов из алюминиевых сплавов системы Al-Mg-Sc, принятый нами за прототип (автореферат диссертации Филатова Ю.А. на соискание ученой степени доктора технических наук «Исследование и разработка новых высокопрочных свариваемых сплавов на основе системы Al-Mg-Sc и технологических параметров производства из них деформированных полуфабрикатов», ОАО «Всероссийский институт легких сплавов», Москва, 2000 г.), который заключается в гомогенизирующем отжиге слитков, полученных методом полунепрерывного литья, при температуре 350-370°С в течение до 24 часов, механической обработке слитков, нагреве литых заготовок под прокатку при температуре 380-410°С в течение 16 часов и последующей горячей прокатке литых заготовок.

Недостатком этого способа является:

- недостаточно высокий уровень механических свойств алюминиевых сплавов системы Al-Mg-Sc в катаных полуфабрикатах вследствие продолжительного нагрева при температурах выше 350°С;

- наличие грубых первичных интерметаллидов, выделившихся при литье слитка из твердого раствора в алюминии марганца, циркония и титана, которые являются центрами концентраций напряжений, что ведет к снижению механических свойств.

Техническим результатом предложенного изобретения является создание способа изготовления горячекатаных полуфабрикатов, листов и плит, из алюминиевых сплавов, обеспечивающего регламентировано высокие механические свойства листов и плит при комнатной и криогенных температурах, который достигается снижением температуры и продолжительности нагрева слитков при повышенной температуре в процессе изготовления горячекатаных полуфабрикатов и использования последующего кратковременного отжига горячекатаных полуфабрикатов.

Технический результат достигается тем, что изготовление горячекатаных полуфабрикатов из алюминиевых сплавов, включающего получение слитков методом полунепрерывного литья, гомогенизирующий отжиг слитков, механическую обработку слитков, нагрев литых заготовок под прокатку и горячую прокатку литых заготовок, согласно изобретению гомогенизирующий отжиг слитков проводят при температуре 300-360°С продолжительностью до 8 часов, нагрев литых заготовок под прокатку при температуре 340-380°С продолжительностью до 8 часов и отжиг горячекатаных плит при температуре 380-440°С продолжительностью до 4 часов.

Отжиг слитков при температуре 300-360°С продолжительностью до 8 часов достаточен для снятия остаточных напряжений, возникающих в слитке при его охлаждении в процессе полунепрерывного литья. Это предотвращает появление трещин и позволяет проводить механическую обработку слитков перед прокаткой для удаления с поверхности дефектов литейного происхождения.

В процессе отжига при температуре 300-360°С скандий в основном находится в твердом растворе процесс распада твердого раствора и выделения из него дисперсных частиц скандиевой фазы при этих температурах носит замедленный характер.

Повышение температуры отжига слитков свыше 360°С с увеличением продолжительности нагрева, как отмечалось ранее, ускоряет процесс выделений дисперсных частиц скандиевой фазы в слитках и их коагуляцию, что в итоге приводит к снижению механических свойств полуфабрикатов.

Снижение температуры отжига до температуры менее 300°С значительно увеличивает продолжительность отжига для снятия остаточных термических напряжений, и процесс отжига становится экономически невыгоден.

Температура нагрева литых заготовок под прокатку в пределах 340-380°С соответствует области технологической пластичности сплава со скандием, и снижение температуры нагрева по сравнению с прототипом позволит замедлить процесс распада твердого раствора и выделения дисперсных частиц скандиевой фазы и их коагуляции. Снижение температуры нагрева под прокатку менее 340°С сопровождается увеличением прочностных свойств сплава и соответственно значительным сопротивлением деформации, что затрудняет или делает невозможным процесс прокатки.

Помимо температуры нагрева на динамику процесса выделений частиц скандиевой фазы и их роста влияет продолжительность нагрева.

Увеличение общей продолжительности нагрева литых заготовок во время отжига и перед прокаткой свыше 16 часов приводит к коагуляции дисперсных частиц и снижению механических свойств катаных полуфабрикатов.

Гомогенизирующий отжиг слитков при температурах 300-360°С и их нагрев под прокатку при температурах 340-380°С при ограничении продолжительности нагрева позволяет предотвратить не только коагуляцию дисперсных частиц скандиевой фазы, но и затормозить сам процесс распада твердого раствора и выделений дисперсных частиц скандиевой фазы.

Ограниченный 4 часами во времени отжиг горячекатаных плит при температурах 360-440°С позволяет обеспечить:

- Полный распад твердого раствора скандия в алюминии;

- Контроль степени коагуляции дисперсных частиц скандиевой фазы, получая требуемый размер дисперсных частиц, изменяя температуру нагрева и время выдержки при температуре отжига. Это позволяет получать катаные полуфабрикаты с регламентируемым сочетанием прочностных и пластических свойств;

- Растворение грубых включений интерметаллидов переходных металлов (марганца, хрома, циркония и др.), которые являются концентраторами напряжений и оказывают отрицательное влияние на механические свойства полуфабрикатов;

- Растворение 8-фазы, выделившегося из пересыщенного магнием твердого раствора, что обеспечивает высокие коррозионные свойства.

Таким образом, предложенный способ изготовления горячекатаных полуфабрикатов замедляет процесс распада твердого раствора скандия в алюминии и коагуляцию дисперсных частиц скандиевой фазы и сохраняет размеры частиц менее критического размера и позволяет получать регламентировано высокий уровень механических и требуемое сочетание прочностных и пластических свойств полуфабрикатов (при комнатной и криогенных температурах).

Пример

С использованием технического алюминия А85, магния Мг90, двойных лигатур алюминий-марганец, алюминий-бериллий, алюминий-цирконий, алюминий-скандий, алюминий-хром и алюминий-титан в электропечи готовили расплав и методом полунепрерывного литья отливали плоские слитки сечением 65×240 мм из алюминиевого сплава следующего состава: масс.% 6,3 Mg-0,64 Mn-0,15 Cr-0,15 Zr-0,16 Sc-0,026 Ti, остальное - алюминий.

В соответствии с предложенным способом слитки для снятия остаточных напряжений отжигались в шахтной электропечи с принудительной вентиляцией воздуха при температурах 300 и 360°С в течение 8 часов, с охлаждением на воздухе, после разрезки слитков на заготовки шириной по 300 и 200 мм, заготовки механически обрабатывались. Боковые поверхности заготовок фрезеровались на глубину 5,0 мм, а на малых гранях заготовок фрезеровали замок Петрова.

Перед прокаткой заготовки нагревались в электрической печи при температуре 340 и 380°С в течение 8 и 6 часов соответственно.

По запредельному варианту слитки отжигались при температурах 380 и 280°С в течение 10 и 12 часов соответственно, литые заготовки перед прокаткой нагревались при температурах 320 и 400°С в течение 10 часов.

Прокатка заготовок после нагрева при температуре 380°С производилась поперек оси слитка на реверсивном стане ДУО 600 на толщину 10 мм с суммарной относительной деформацией 85%. После нагрева заготовки при температуре 320°С выкатать лист толщиной 10 мм не удалось

После прокатки заготовок, нагретых при температуре 380°С, были изготовлены листы толщиной 10 мм, шириной 300 мм, длиной 1700 мм.

В соответствии с прототипом слитки, полученные методом полунепрерывного литья, подвергались гомогенизирующему отжигу в шахтной электропечи с принудительной вентиляцией воздуха при температуре 370°С в течение 24 часов с последующим охлаждением на воздухе. После разрезки слитков на заготовки и их механической обработки заготовки нагревались в электропечи при температуре 400°С в течение 14 часов, прокатка заготовок производилась по режиму аналогичному в предлагаемом способе на толщину 10 мм.

Из полученных плит вырезались пятикратные образцы для испытания на растяжение при комнатной и криогенных температурах.

Результаты механических испытаний образцов, вырезанных из плит, полученных по предлагаемому способу и по прототипу, приведены в таблице.

Как видно из приведенных данных у горячекатаных плит, изготовленных по предлагаемому способу, механические свойства выше, чем у прототипа, особенно это преимущество проявляется при криогенных температурах (-153 - -253°С).

Механические свойства горячекатаных листов, изготовленных по предлагаемому способу и прототипу
Варианты Параметры способа Т°С испытания Механические свойства
Отжиг слитков Нагрев для прокатки Отжиг ГК плит
Т°С час Т°С час Т°С τ, час σв, МПа σ0,2, МПа δ, % ψ, %
Предлагаемый способ 20 445 322 19,8 32,7
300 8 380 6 380 4 -60 459 335 20,8 33,5
-196 574 402 21,2, 22,8
20 425 312 20,8 32
360 6 340 8 440 2 -60 439 315 21,4 30,5
-196 562 394 24,2 24,8
Запредельный способ 20 388 240 18,6 34
380 10 400 10 460 5 -60 394 252 19,0 33,8
-196 480 320 19,8 29,0
20
280 12 320 10 - - -60 - - - -
-196
Прототип 406 280 18,8 34,6
370 24 400 14 - - 424 290 19,4 34,2
- 480 345 20,4 32,2
Примечание:
В таблице приведены средние значения результатов испытаний 3 образцов на точку. После нагрева при 320°С прокатка заготовки не удалась

Технико-экономический эффект от использования изобретения по сравнению с прототипом заключается в повышении прочностных и снижении массогабаритных характеристик конструкций за счет увеличения механических свойств листов и плит, особенно при низких температурах, и в расширении областей применения деформируемых термически не упрочняемых алюминиевых сплавов в морской и авиа космической технике, транспортном и химическом машиностроении, в криогенной технике, например, в корпусных конструкциях по хранению и перевозке сжиженного газа при низких температурах и в нагруженных конструкциях двойного назначения

Способ изготовления горячекатаных листов из деформируемых термически неупрочняемых алюминиевых сплавов, содержащих магний и скандий, включающий получение слитков методом полунепрерывного литья, гомогенизацию слитков, механическую обработку слитков, нагрев литых заготовок и их горячую прокатку, отличающийся тем, что гомогенизацию слитков ведут при температуре 300-360°C продолжительностью до 8 часов, нагрев литых заготовок под прокатку ведут при температуре 340-380°C продолжительностью до 8 часов, после чего осуществляют отжиг горячекатаных листов при температуре 380-440°C продолжительностью до 4 часов.



 

Похожие патенты:

Изобретение относится к алюминиевому сплаву для производства подложек для офсетных печатных форм. Алюминиевый сплав содержит следующие компоненты, в мас.%: 0,2% ≤ Fe ≤0,5%, 0,41% ≤ Mg ≤ 0,7%, 0,05% ≤ Si ≤ 0,25%, 0,31% ≤ Mn ≤0,6%, Cu ≤0,04%, Ti ≤ 0,05%, Zn ≤ 0,05%, Cr ≤ 0,01%, остальное - Al и неизбежные примеси, каждая из которых присутствует в количестве не более 0,05%, а в целом они составляют максимум 0,15%.
Изобретение относится к обработке металлов давлением, например, к производству тонких лент из сплавов систем Al-Mg, Al-Mg-Mn и может быть использовано для производства упаковочной тары в пищевой промышленности.
Изобретение относится к области металлургии, а именно к разработке новых сплавов и технологий получения из них листовых полуфабрикатов методами термической обработки и обработки давлением.
Изобретение относится к области металлургии, а именно к способам получения сверхпластичных заготовок из алюминиевых сплавов на основе системы алюминий-магний-скандий (Al-Mg-Sc), содержащих также цирконий или цирконий и марганец, применяемых для сверхпластической формовки изделий сложной формы, а также в качестве конструкционного материала.

Изобретение относится к листовому изделию из алюминиевого сплава и может быть использовано для изготовления броневого листа. .
Изобретение относится к области металлургии, а именно к способам получения деформированных заготовок из алюминиевых сплавов системы алюминий-магний-марганец-скандий-цирконий, применяемых в качестве конструкционного материала.

Изобретение относится к литейному и прокатному производству. .

Изобретение относится к области металлургии, а именно к способам получения сверхпластичных листов из алюминиевых сплавов системы алюминий-магний-литий, и может быть использовано для сверхпластической формовки изделий сложной формы, а также при производстве прессованных профилей в качестве конструкционного материала.

Изобретение относится к сплавам типа Al-Zn-Mg, а именно к сплавам, предназначенным для сварных конструкций, таких как конструкции, используемые в области морского строительства, при изготовлении кузовов автомобилей, промышленных транспортных средств и неподвижных или подвижных резервуаров.

Изобретение относится к области обработанных прецизионным точением деталей, полученных из выдавленных продуктов типа прутков, стержней, брусков, или даже труб из деформируемого алюминиевого сплава для прецизионного точения.
Изобретение относится к области металлургии, в частности к деформируемым алюминиевым сплавам, используемым в качестве высокопрочного конструкционного материала пониженной плотности разового применения.

Изобретение относится к области металлургии, в частности к деформируемым термически неупрочняемым сплавам на основе алюминия, предназначенным для использования в виде деформированных полуфабрикатов и в качестве конструкционного материала.
Сплав на основе алюминия предназначен для изготовления деформированных полуфабрикатов в виде штамповок и труб для использования в газовых центрифугах, в компрессорах низкого давления, вакуумных молекулярных насосах и в других сильно нагруженных изделиях, работающих при умеренно повышенных температурах.

Изобретение относится к порошковой металлургии, в частности к получению композиционных материалов, упрочненных нанодисперсными частицами. Упрочняющие нанодисперсные частицы оксида циркония вводят в расплав на основе сплава алюминий-магний.

Изобретение относится к производству алюминиевых сплавов, в частности алюминиевых сплавов, содержащих обладающий высокой реакционной способностью магний. При приготовлении алюминиевого сплава, содержащего Mg, к расплаву сплава добавляют Са, Sr и Ва в таком количестве, чтобы содержание кальция составляло 0,001-0,5 мас.%, а их соотношение находилось в пределах, заключенных между линиями, соединяющими пять точек на фиг.1: точку Е (Са: 28 ат.%, Sr: 0 ат.%, Ва: 72 ат.%), точку F (Са: 26 ат.%, Sr: 30 ат.%, Ва: 44 ат.%), точку G (Са: 54 ат.%, Sr: 46 ат.%, Ва: 0 ат.%), точку Н (Са: 94 ат.%, Sr: 6 ат.%, Ва: 0 ат.%), точку I (Са: 78 ат.%, Sr: 0 ат.%, Ва: 22 ат.%), при исключении соотношений на образованных между указанными точками линиях.
Изобретение относится к области металлургии, а именно к разработке новых сплавов и технологий получения из них листовых полуфабрикатов методами термической обработки и обработки давлением.

Изобретение относится к области металлургии и может быть использовано для изготовления отливок, предназначенных для получения деталей ответственного назначения, работающих под действием высоких нагрузок при температурах до 300-350°С, автомобильных двигателей, деталей водозаборной арматуры, ступеней погружного насоса для нефтегазового комплекса, деталей радиаторов отопления и др.
Изобретение относится к области металлургии, в частности к деформируемым сплавам на основе алюминия, используемым в качестве конструкционного материала в авиационной промышленности.
Изобретение относится к экструдированному или катаному плакированному металлическому изделию и может быть использовано в транспортной промышленности, аэрокосмических изделиях, судах. Изделие содержит плакируемый металлический слой и плакирующий металлический слой на по меньшей мере одной поверхности плакируемого слоя, при этом плакируемый и плакирующий металлические слои выполнены из алюминиевых сплавов, содержащих, вес.%: от 3 до 8 Mg и Sc в диапазоне от 0,05 до 1 и при этом содержание Sc в сплаве плакируемого слоя ниже, чем его содержание в сплаве плакирующего слоя на 0,02% или более. Изобретение также относится к сварной структуре, включающей такое металлическое изделие. В результате использования изобретения получают изделия из алюминиевого сплава, содержащего Sc, с улучшенным балансом прочности и свариваемости. 4 н. и 10 з.п. ф-лы, 1 пр.
Наверх