Способ управления цилиндрическим линейным индукционным насосом


 


Владельцы патента RU 2526029:

Общество с ограниченной ответственностью научно-технический центр "АРГО" (ООО НТЦ "АРГО") (RU)

Изобретение относится к МГД-технике и может быть использовано в насосных установках для перекачивания электропроводных жидкостей. Технический результат состоит в повышении точности управления. Способ управления цилиндрическим линейным индукционным насосом заключается в регулировании амплитуды и частоты напряжения питания, для чего станавливают период регулирования подачи электропроводной жидкости потребителю, измеряют э.д.с., наводимую в электропроводной жидкости бегущим электромагнитным полем в перпендикулярном относительно оси насоса направлении, вычисляют расход электропроводной жидкости, который стабилизируют посредством коррекции амплитуды и/или частоты напряжения питания. Подачу электропроводной жидкости потребителю осуществляют с постоянным расходом в каждом периоде в форме импульса, длительностью меньшей или равной периоду регулирования подачи электропроводной жидкости. 1 ил.

 

Изобретение относится к МГД-технике и может быть использовано в насосных установках для перекачивания электропроводных жидкостей.

Известен способ регулирования режима работы индукционного насоса (Авторское свидетельство СССР №275329, B22D 27/02, 1969 г.), заключающийся в регулировании амплитуды и в изменении угла сдвига фаз напряжения питания.

Недостатком данного способа является низкая точность, обусловленная осуществлением регулирования в разомкнутой системе, а также недостаточная эффективность вследствие отсутствия регулирования частоты напряжения питания.

Наиболее близким к заявляемому способу является «Способ управления током разомкнутого контура для обмоток линейного асинхронного двигателя» (Патент РФ №2101225, B66B 1/06,1995 г.), принятый за прототип, заключающийся в регулировании амплитуды и частоты напряжения питания.

Недостаток указанного способа объясняется невозможностью обеспечения требуемой точности управления в разомкнутой системе.

Технический результат предлагаемого способа заключается в повышении точности управления цилиндрическим линейным индукционным насосом.

Технический результат достигается тем, что в способе управления цилиндрическим линейным индукционным насосом, заключающемся в регулировании амплитуды и частоты напряжения питания, устанавливают период регулирования подачи электропроводной жидкости потребителю, измеряют э.д.с, наводимую в электропроводной жидкости бегущим электромагнитным полем в перпендикулярном относительно оси цилиндрического линейного индукционного насоса направлении, вычисляют расход электропроводной жидкости и стабилизируют расход электропроводной жидкости посредством коррекции амплитуды и/или частоты напряжения питания, а подачу электропроводной жидкости потребителю осуществляют с постоянным расходом в каждом периоде в форме импульса, длительностью меньшей или равной периоду регулирования подачи электропроводной жидкости.

На фиг.1 приведена блок-схема устройства, реализующего предлагаемый способ управления цилиндрическим линейным индукционным насосом.

Устройство содержит цилиндрический линейный индукционный насос 1, включающий обмотку 2, обечайку 3 и внутренний магнитопровод 4. В кольцевом канале, образованном обечайкой 3 и внутренним магнитопроводом 4, размещены электроды 5, ориентированные в перпендикулярном оси цилиндрического линейного индукционного насоса 1 направлении.

Система управления цилиндрическим линейным индукционным насосом 1 содержит блок управления 6, подключенный первым выходом к входу цилиндрического линейного индукционного насоса 1. К первому входу блока управления 6 подсоединен первый выход блока задания расхода и объема 7 перекачиваемой электропроводной жидкости (не показана на чертеже). Ко второму входу блока управления 6 подключен блок коррекции импульса 8 подачи электропроводной жидкости потребителю. Третий вход блока управления 6 через блок вычисления расхода 9 перекачиваемой электропроводной жидкости связан с выходом измерителя э.д.с. 10, к соответствующим входам которого подсоединены электроды 5. Выход блока вычисления расхода 9, ко второму входу которого подключен второй выход блока управления 6, через блок вычисления объема 11 перекачиваемой электропроводной жидкости соединен с первым входом блока коррекции импульса 8, ко второму входу которого подключен второй выход блока задания расхода и объема 7 перекачиваемой электропроводной жидкости.

Способ осуществляется следующим образом.

В начале каждого периода регулирования подачи электропроводной жидкости потребителю блок управления 6 подает на обмотку 2 цилиндрического линейного индукционного насоса 1 напряжение питания с необходимой амплитудой и частотой. При этом в кольцевом канале, образованном обечайкой 3 и внутренним магнитопроводом 4, образуется бегущее магнитное поле, под воздействием которого возникают кольцевые токи и появляется осевое электромагнитное усилие, перемещающее электропроводную жидкость от входа к выходу цилиндрического линейного индукционного насоса 1.

Возникающая в движущейся в магнитном поле электропроводной жидкости э.д.с. контролируется измерителем э.д.с. 10 с помощью электродов 5.

Блок вычисления расхода 9 на основе информации о наведенной в электропроводной жидкости э.д.с. производит расчет мгновенного значения расхода электропроводной жидкости, которое сравнивается в блоке управления 6 с заданным значением расхода, определяемого блоком задания расхода и объема 7 перекачиваемой электропроводной жидкости, а блок управления 6, корректируя амплитуду и/или частоту напряжения питания, обеспечивает стабилизацию расхода электропроводной жидкости.

Блок вычисления объема 11 контролирует объем перекачиваемой электропроводной жидкости, при достижении которым заданного блоком задания расхода и объема 7 значения блок коррекции импульса 8 инициирует прекращение подачи блоком управления 6 на обмотку 2 цилиндрического линейного индукционного насоса 1 напряжения питания.

При этом блок управления 6 сохраняет в памяти установившиеся значения амплитуды и частоты напряжения питания, блокирует расчет мгновенного значения расхода электропроводной жидкости до начала следующего периода регулирования подачи электропроводной жидкости потребителю, после чего процесс управления возобновляется. Одновременно блок управления 6 переходит в режим контроля э.д.с. и производит реверс бегущего магнитного поля для полного останова движения перекачиваемой электропроводной жидкости.

В стационарном режиме длительность импульсов подаваемой потребителю электропроводной жидкости постоянна и не может превышать длительность периода регулирования подачи электропроводной жидкости потребителю, а при необходимости слежения за технологическими параметрами (например, за температурой воздуха в помещении, где цилиндрический линейный индукционный насос 1 может функционировать, как циркуляционный насос системы отопления) длительность импульсов изменяется при постоянном периоде регулирования. В результате потребителю подается электропроводная жидкость со стабильным расходом и в требуемом объеме.

Контроль технологических параметров может осуществляться с помощью блока задания расхода и объема 7.

Таким образом, реализация предложенного способа позволяет обеспечить высокую точность и надежность управления цилиндрическим линейным индукционным насосом.

Способ управления цилиндрическим линейным индукционным насосом, заключающийся в регулировании амплитуды и частоты напряжения питания, отличающийся тем, что устанавливают период регулирования подачи электропроводной жидкости потребителю, измеряют э.д.с., наводимую в электропроводной жидкости бегущим электромагнитным полем в перпендикулярном относительно оси цилиндрического линейного индукционного насоса направлении, вычисляют расход электропроводной жидкости и стабилизируют расход электропроводной жидкости посредством коррекции амплитуды и/или частоты напряжения питания, а подачу электропроводной жидкости потребителю осуществляют с постоянным расходом в каждом периоде в форме импульса, длительностью меньшей или равной периоду регулирования подачи электропроводной жидкости.



 

Похожие патенты:

Изобретение относится к области электротехники, в частности к магнитно-индукционному насосу для прокачивания расплавленного металла. .

Изобретение относится к области электротехники и МГД техники и может быть использовано в индукционных электромагнитных насосах для перекачивания жидкометаллических теплоносителей в реакторах на быстрых нейтронах, в химической и металлургической промышленности, а также в магнитогидродинамических машинах и линейных индукционных двигателях.

Изобретение относится к области электротехники и МГД-техники, касается особенностей выполнения обмоток цилиндрических линейных индукционных насосов и может быть использовано в насосах для перекачивания жидкометаллических теплоносителей, применяемых в атомной, металлургической, химической и космической областях техники.

Изобретение относится к МГД технике и может быть использовано в перекачивании жидких металлов в атомной энергетике в реакторах на быстрых нейтронах, а также в металлургической, химической и других отраслях промышленности.

Изобретение относится к электротехнике и может быть использовано в линейных индукционных насосах для перекачивания жидких металлов в атомной энергетике, химической и металлургической промышленности, а также в линейных индукционных двигателях.

Изобретение относится к электротехнике и может быть использовано в линейных индукционных насосах для перекачивания жидких металлов в атомной энергетике, химической и металлургической промышленности.

Изобретение относится к индукционным цилиндрическим насосам, обеспечивающим электромагнитное силовое воздействие на жидкометаллический теплоноситель рабочего канала.

Изобретение относится к индукционным цилиндрическим насосам, обеспечивающим электромагнитное силовое воздействие на жидкометаллический теплоноситель рабочего канала.

Изобретение относится к индукционным цилиндрическим насосам, обеспечивающим электромагнитное силовое воздействие на жидкометаллический теплоноситель рабочих каналов.

Изобретение относится к МГД технике. .

Погружной электронный блок может быть использован для управления погружным электродвигателем. Он содержит корпус 1 цилиндрической формы, закрытый с торцов основанием 3 и обращенной к двигателю головкой 2, элементы электронной схемы, размещенные в герметичном отсеке, гермовводы, служащие для электрического соединения электронной схемы с цепями электродвигателя, и контактный электрический разъем из контактов 7, 9.

Изобретение относится к способу эксплуатации дозирующего насоса (12), в частности, подачи топлива для устройства обогрева транспортного средства. Дозирующий насос содержит поршень (14), перемещаемый возвратно-поступательно для подачи между начальным положением и конечным положением, и приводной блок (18), электрически возбуждаемый посредством приложения напряжения.

Изобретение может быть использовано в двигателях внутреннего сгорания. Электронный масляный насос, выполненный с возможностью управления электронным блоком управления (ЭБУ), содержит, по меньшей мере, одно впускное отверстие для смазки, по меньшей мере, одно выпускное отверстие для смазки и, по меньшей мере, один поршень, перемещаемый между положением полного хода и полностью втянутым положением с целью перекачки смазки из впускного отверстия в выпускное отверстие.

Изобретение относится к области машиностоения и может быть использовано в возвратно-поступательных поршневых насосах. .

Изобретение относится к насосным системам. .

Изобретение относится к гидравлическому приводу (1) с регулированием количества и/или давления для преобразователя давления устройства высокого давления, состоящему по существу из двигательного привода с насосом для рабочей среды (10), а также блока управления. В качестве гидравлического привода (1) применяется по существу насос (11) постоянной подачи, соответственно, насос (11), который за каждый оборот подает постоянный объем, с приводом от серводвигателя (12), при этом серводвигатель (12) выполнен с возможностью электрического управления (15), регулирования и/или переключения с помощью расположенных на стороне низкого давления средств (13) и/или с помощью расположенных на стороне высокого давления средств (14). Технический результат - улучшение работы устройства высокого давления. 3 з.п.ф-лы, 1 ил.
Наверх