Способ обезвреживания цианистых растворов


 


Владельцы патента RU 2526069:

Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" (RU)

Изобретение может быть использовано в металлургии благородных металлов, в том числе при обезвреживании сбросных цианистых растворов, образующихся при извлечении золота из коренных руд. Способ включает добавление к сбросным цианистым растворам соединений железа (2+) и обработку электроимпульсами высокого напряжения с удельным расходом энергии не более 100 кДж/моль. В качестве соединений железа (2+) используют пирит в количестве 10-100 кг на 1 т раствора. Полученную смесь обезвреженного раствора и пирита после электроимпульсной обработки подают на флотацию золотосодержащей сульфидной руды. Предлагаемый способ позволяет снизить расход электроэнергии на обезвреживание цианистых растворов и сократить потери золота со сбросом. 1 з.п. ф-лы, 1 табл., 1 пр.

 

Самый распространенный способ извлечения золота из коренных руд и концентратов включает обработку цианистыми растворами с концентрацией цианида от 0,1 до 10 г/л. После извлечения золота из продуктивного раствора цементацией или сорбцией растворы чаще всего возвращают на повторное использование, реже - вместе с хвостами цианирования направляют в отвал. При обороте цианистых растворов в них накапливаются примеси, осложняющие выщелачивание золота, поэтому часть растворов приходится сбрасывать.

Перед сбросом цианистые растворы и пульпы в обязательном порядке подвергают обезвреживанию - окислительной обработке с целью перевода циан-иона в нетоксичную форму. Обезвреживание стоков рекомендуется вести до предельно допустимых концентраций (ПДК), утвержденных действующим законодательством.

Известно множество методов нейтрализации цианистых растворов: подкисление растворов с отгонкой и регенерацией синильной кислоты; перевод цианидов в нерастворимые и относительно безвредные соединения, например с Fe2+; окисление хлором, гипохлоритом, озоном или электролизом с помощью постоянного тока, сорбцией на иониты (/1/ Металлургия благородных металлов: В 2-х кн. Кн. 1 / Ю.А. Котляр, М.А. Меретуков, Л.С. Стрижко. - М.: МИСИС, «Руда и металлы», 2005. г., - 432 с.; /2/ Масленицкий И.Н., Чугаев Л.Г. Металлургия благородных металлов. - М.: Металлургия, 1987. - 366 с.; /3/ Меретуков М.А., Орлов A.M. Металлургия благородных металлов. Зарубежный опыт. - М.: Металлургия, 1990. - 416). Каждый из указанных методов имеет свои недостатки, главными из которых являются высокие затраты на обезвреживание и низкая скорость процессов.

Известен способ очистки сточных вод от цианидов, выбранный в качестве прототипа и включающий окислительную обработку в присутствии соединений железа (3+) (/4/ RU 2154613 C1, 20.08.2000). Данный способ основан на разложении цианидов под воздействием смеси соединений железа и перекиси водорода в определенной пропорции и позволяет обеспечить очистку воды от цианида, уменьшить эксплуатационные расходы и снизить себестоимость очистки.

Химизм указанного способа сводится к окислению цианида ионами трехвалентного железа и перекиси водорода. Основным окислителем является катион железа (3+):

CN-+Fe3+→CNO-+Fe2+

Роль перекиси водорода сводится к регенерации железа (3+) и поддержанию требуемого окислительного потенциала системы:

Fe2++1/2H2O2→Fe3++H2O

Основным недостатком прототипа является необходимость в использовании перекиси водорода и недостаточно высокая степень обезвреживания цианидов. Золото, присутствующее в обезвреживаемом растворе, теряется со сбросным раствором.

Настоящее изобретение направлено на устранение указанных недостатков и основано на исключении расхода перекиси, использовании более эффективного варианта окисления и дополнительном извлечении золота из обезвреженного раствора.

Указанный технический результат достигается при использовании способа обезвреживания цианистых растворов, включающего обработку растворов соединениями железа, отличающегося тем, что в исходный раствор вводят соединения железа (2+) и обрабатывают электроимпульсами высокого напряжения с удельным расходом энергии не более 100 кДж/моль. В частности, в качестве источника железа в обезвреживаемый раствор добавляют пирит в количестве 10-100 кг на 1 т раствора, а смесь обезвреженного раствора и пирита после электроимпульсной обработки подают на флотацию золотосодержащей сульфидной руды.

В основе предлагаемого способа обработка обезвреживаемого раствора электроимпульсами высокого напряжения. При импульсах высоковольтного разряда образуется дуга с температурой более 5000°C, сопровождаемая ультрафиолетовым излучением. В результате действия указанных факторов происходит разложение воды с образованием газообразного кислорода O2 и озона O3.

Опыты показали, что кислород в условиях электроимпульсного разряда и, особенно, озон выступают в роли сильнейших окислителей, действие которых обеспечивает глубокое и быстрое разложение простых цианидов

CN-+O3→CNO-+O2

и других соединений в стоках золотоизвлекательных фабрик. При этом достигается высокая скорость и глубина обезвреживания.

Вместе с тем, озон относительно неустойчив и в водных растворах быстро разлагается с образованием кислорода, выделяющегося в атмосферу. Установлено, эффективность при использовании электроимпульсного обезвреживания возрастает, если высокий окислительный потенциал озона будет направлен на синтез какого-либо устойчивого продукта, обладающего окислительным потенциалом, достаточным для окисления цианида. Из числа доступных указанному условию соответствуют соединения на основе железа, например сульфат или гидроксид Fe2+. Под действием озона происходит образование Fe3+:

Fe2++O3+H2O=Fe3++2OH-+O2.

Образующийся молекулярный кислород усиливает образование трехвалентного железа, хоть и заметно меньшей скоростью. Соединения Fe3+, как растворимые - Fe2(SO4)3, так и нерастворимые - Fe(OH)3, в соответствии с термодинамическими характеристиками и практическими данными окисляют циан-ион с высокой скоростью:

NaCN++Fe2(SO4)3+H2O=NaCNO+2FeSO4+2HCl.

В присутствии катионов железа (3+) в системе скорость обезвреживания цианидов резко возрастает. Эффективность электроимпульсного обезвреживания оценивают, как количество энергии, достаточное для полного разложения цианидов в единице объема исходного раствора. Количество энергии, выделяемое в единичном высоковольтном импульсе, принято измерять в кДж на 1 л раствора. С учетом этого показателя, количества импульсов в 1 секунду и продолжительности обработки удельный расход энергии на обезвреживания измеряют в кДж на 1 литр раствора. Опыты показали, что в присутствии соединений железа эта величина не превышает 100 кДж/л.

В качестве источника железа можно использовать растворимые соли, а также его труднорастворимые соединения. Исследования показали, что сульфиды железа - пирит и пирротин энергично окисляются озоном:

2FeS2+5O3+H2O=Fe2(SO4)3+H2SO4

и, в конечном итоге, способствуют обезвреживанию цианида. С учетом установленной возможности для нейтрализации цианидов целесообразно использовать не представляющие ценности пиритные концентраты, например хвосты обогащения цветных металлов или хвосты цианистого выщелачивания золота из таких концентратов. Оптимальное отношение массы добавляемого пирита и раствора, как показали опыты, находится в пределах 10-100 кг на 1 т обеззараживаемого раствора. Большая добавка пирита положительного эффекта уже не приносит.

В обезвреживаемых растворах цианистого выщелачивания руд и концентратов неизбежно содержится незначительное количество золота. При разрушении цианистых комплексов, в частности, электроимпульсной обработкой растворов золото частично восстанавливается и переходит в твердую фазу в виде мельчайших частиц. Частично остается в растворе в составе менее прочных комплексов с лигандами, которые в микроколичествах могут присутствовать в системе, например, с хлор-ионом. Представляется целесообразным это золото, по-возможности, извлечь из пульпы нейтрализации (смеси обезвреженного раствора и пирита). Исследованиями установлено, что флотацией в обычных режимах в концентрат извлекаются частицы металлического золота. Растворенное золото, которое с флотореагентом-собирателем (ксантогенатом) образует гидрофобные частицы труднорастворимых соединений и также концентрируется во флотоконцентрате.

При наличии на предприятии отделения флотации исходной руды, проводимой с целью выделения сульфидного золотосодержащего концентрата, пульпу нейтрализации следует направить в схему флотации. При этом обеззараженная от цианидов вода используется для технологических нужд, а золото из сбрасываемого раствора концентрируется в товарном концентрате и извлекается при последующих операциях.

Примером реализации предлагаемого способа являются результаты следующих опытов.

Оборотные цианистые растворы после извлечения из них золота цементацией (маточные растворы) имели pH=10,4 и содержали в сумме 300 мг/л свободного и связанного цианида и 0,05 мг/л золота. Этот раствор подвергали обезвреживанию различными методами, включая обезвреживание гипохлоритом и обработкой смесью железа (3+) и перекиси водорода по способу прототипа и по предлагаемому способу.

Обработку электроимпульсами проводили на опытно-промышленной установке, включающей генератор наноимпульсов с мощностью энергии в каждом импульсе 2 кДж и реактор периодического действия объемом 10 л. В реактор загружали 5 л обезвреживаемого раствора и пиритный концентрат с содержанием пирита 92%. После заданной продолжительности обработки от раствора отбирали пробу и определяли в ней остаточное содержание цианида и золота. Результаты опытов представлены в таблице.

№ опыта Расход энергии,
кДж/л
Расход пирита на 1 л
раствора, г
Остаточное
содержание
CN-, мг/л
Остаточное содержание
золота, мг/л
1 10 5 70 0,05
2 20 10 23 0,05
3 40 20 5,7 0,04
4 80 40 0,7 0,02
5 100 50 0,5 0,01
6 120 70 0,5 0,01
7 100 FeSO4 - 10 г/л 0,9 0,01
8 Прототип Fe2(SO4)3+H2O2 8 0,13
9 Хлорная известь 3,5 0,04

Сопоставительный анализ известных технических решений, в т.ч. способа, выбранного в качестве прототипа, и предлагаемого изобретения позволяет сделать вывод, что именно совокупность заявленных признаков обеспечивает достижение усматриваемого технического результата. Реализация предложенного технического решения дает возможность снизить затраты на обезвреживание, степень обезвреживания и сократить потери золота со сбросом.

1. Способ обезвреживания цианистых растворов, включающий обработку растворов соединениями железа, отличающийся тем, что в исходный раствор вводят соединения железа (2+) и обрабатывают электроимпульсами высокого напряжения с удельным расходом энергии не более 100 кДж/моль.

2. Способ по п.1, отличающийся тем, что в обезвреживаемый раствор добавляют пирит в количестве 10-100 кг на 1 т раствора, а смесь обезвреженного раствора и пирита после электроимпульсной обработки подают на флотацию золотосодержащей сульфидной руды.



 

Похожие патенты:

Изобретение относится к области переработки отходов, в частности к системам фильтрации жидких отходов, установленным на транспортных средствах. Транспортное средство имеет средство извлечения 2 для извлечения жидких отходов, находящихся в контейнере 9 для жидких отходов в качестве обрабатываемого раствора.
Изобретение относится к биохимии. Предложен способ очистки воды и мерзлотной почвы от нефти и нефтепродуктов.

Заявляемое изобретение относится к химии высокомолекулярных соединений, нанотехнологий и фотохимии и касается разработки фотополимеризующейся композиции для получения полимерного материала, обладающего трехмерной нанопористой структурой с гидрофобной поверхностью пор, одностадийного способа его получения и пористого полимерного материала с селективными сорбирующими свойствами и одностадийного формирования на его основе водоотделяющих фильтрующих элементов с заданной геометрией и требуемой механической прочностью, применяемых в устройствах для очистки органических жидкостей, преимущественно углеводородных топлив, масел, нефтепродуктов, от эмульгированной воды и механических примесей.

Изобретение относится к очистке природных и сточных вод от механических примесей, и может быть использовано в системах очистки сточных вод в системе жилищно-коммунального хозяйства, а также в системах очистки природных питьевых вод городов и поселений.

Изобретение относится к очистке сточных вод, содержащих ионы тяжелых металлов и органические вещества, и может быть использовано в промышленности для получения воды для технических нужд.

Изобретение может быть использовано для очистки водопроводной воды в бытовых условиях от вредных примесей, в том числе от тяжелых изотопов дейтерия. Устройство содержит корпус (1) с находящейся внутри него герметичной емкостью изменяющегося объема (14), состоящую из верхнего цилиндра меньшего диаметра (5), нижнего цилиндра большего диаметра (10) и находящейся между ними гибкой оболочки (9).

Изобретение относится к способам извлечения тяжелых металлов и может быть использовано для выделения, например, ионов меди, цинка, кобальта или никеля из водных растворов.

Изобретение может быть использовано для очистки поверхностных сточных вод и нефтезагрязненных производственных стоков. Для осуществления способа очищаемую воду предварительно обрабатывают флокулянтом с гидрофобизирующими свойствами.
Изобретение может быть использовано в области водоочистки подземных и поверхностных вод от железа и для получения питьевой воды для небольших населенных пунктов, сельскохозяйственных комплексов.

Изобретение может быть использовано для кристаллизационной очистки питьевой воды от примесей, в том числе от тяжелых изотопов дейтерия. Устройство содержит корпус (5) с находящимся внутри него герметичным сосудом изменяющегося объема (10), в верхней части которого расположен фильтр (4) для отделения кристаллов тяжелой воды, выше которого расположено отверстие (3) для выхода легкой воды.

Изобретение может быть использовано для получения растворов ферроцианида лития, который применяется в синтезе нормальных ферроцианидов переходных металлов (Cu2+, Ni2+, Co2+, Zn2+, Fe3+ и др.) общей формулы Ме2[Fe(CN)6].

Изобретение относится к химической промышленности и может использоваться для удаления аммиака из газов при производстве HCN. .

Изобретение относится к строительству автомобильных дорог и может быть использовано для приготовления горячей асфальтобетонной смеси. .
Изобретение относится к способам очистки и выделения нитропруссида натрия, широко применяемого в отечественной и зарубежной медицинской кардиологической практике в качестве высокоэффективного лекарственного средства для лечения гипертанических кризов и инфаркта миокарда.

Изобретение относится к способам очистки вод, содержащих цианиды, тиоцианаты и тяжелые металлы, и может найти применение на предприятиях цветной металлургии, золотодобывающей промышленности и в гальваническом производстве.
Наверх