Способ определения местоположения источника радиоизлучения

Способ местоопределения источника радиоизлучения (ИРИ) относится к радиотехнике, а именно к пассивным системам радиоконтроля. Достигаемый технический результат - повышение точности местоопределения ИРИ, функционирующих в труднодоступной местности. Сущность изобретения заключается в предварительной доставке в предполагаемый район нахождения источника радиоизлучения (ИРИ) множества датчиков (не менее четырех), конструктивно размещенных на беспилотных летательных аппаратах (БЛА) класса "мини" типа "мультикоптер". В состав каждого БЛА-датчика входит блок навигационно-временного обеспечения (НВО), ненаправленная антенна, панорамный приемник и приемопередатчик. В качестве средства доставки и обслуживания БЛА-датчиков, а также для ретрансляции координатной информации, поступающей с них, и передачи команд управления с наземного пункта управления и обработки (НПУО), используется беспилотный или пилотируемый летательный аппарат (ЛА) среднего класса (ЛА-ретранслятор). После доставки в предполагаемый район нахождения источников радиоизлучения, по командам с НПУО, БЛА-датчики распределяют в пространстве. Совокупность БЛА-датчиков и ЛА-ретранслятор формально образуют в пространстве многопозиционную систему радиоконтроля. Используется свойство мультикоптеров принимать неподвижное состояние в пространстве, позволяющее снизить фактор динамичности системы и сформировать в воздухе подобие стационарных наземных пунктов приема (один из которых центральный, расположенный на минимальном расстоянии от ЛА-ретранслятора, а остальные - периферийные) разностно-дальномерной системы (РДС) местоопределения. По сигналам блока НВО определяются координаты в пространстве каждого БЛА-датчика и осуществляется их высокоточная привязка к собственной системе координат РДС и к единому времени, для этого информация о координатах периферийных БЛА-датчиков в сформированной РДС передается на центральный БЛА-датчик. Каждый БЛА-датчик, имеющий панорамный приемник, осуществляет поиск сигналов ИРИ в заданном частотном диапазоне. При обнаружении сигнала ИРИ осуществляется его оцифровка и передача с помощью передающего устройства приемопередатчика на центральный БЛА-датчик. На центральном БЛА-датчике по поступившим данным осуществляется определение местоположения ИРИ. 4 ил.

 

Изобретение относится к области радиотехники, а именно к пассивным системам радиоконтроля, и, в частности, может быть использовано в системах местоопределения радиоизлучающих средств ОВЧ-УВЧ диапазона, функционирующих в труднодоступной местности.

Сущность изобретения заключается в предварительной доставке в предполагаемый район нахождения источника радиоизлучения (ИРИ) множества датчиков (не менее четырех), конструктивно размещенных на беспилотных летательных аппаратах (БЛА) класса "мини" типа "мультикоптер" (Фиг.1, см., например, Е. Ерохин, А. Коломиец «Мультикоптеры: новый вид», электронный ресурс - http://www.uav.ru/articles/multicopters.pdf. (дата обращения: 12.12.12 г.)). В состав каждого БЛА-датчика входит блок навигационно-временного обеспечения, ненаправленная антенна, панорамный приемник и приемопередатчик. В качестве средства доставки и обслуживания БЛА-датчиков, а также для ретрансляции координатной информации, поступающей с них и передачи команд управления с наземного пункта управления и обработки (НПУО), используется беспилотный или пилотируемый летательный аппарат (ЛА) среднего класса (ЛА-ретранслятор). После доставки в предполагаемый район нахождения источников радиоизлучения, по командам с наземного пункта управления и обработки, БЛА-датчики распределяют в пространстве. Совокупность БЛА-датчиков и ЛА-ретранслятор формально образуют в пространстве многопозиционную систему радиоконтроля. Используется свойство мультикоптеров принимать неподвижное состояние в пространстве, позволяющее снизить фактор динамичности системы и сформировать в воздухе подобие стационарных наземных пунктов приема (один из которых центральный, расположенный на минимальном расстоянии от ЛА-ретранслятора, а остальные - периферийные) разностно-дальномерной системы (РДС) местоопределения. По сигналам блока навигационно-временного обеспечения определяются координаты в пространстве каждого БЛА-датчика и осуществляется их высокоточная привязка к собственной системе координат разностно-дальномерной системы и к единому времени, для этого информация о координатах периферийных БЛА-датчиков в сформированной РДС передается на центральный БЛА-датчик. Каждый БЛА-датчик, имеющий панорамный приемник, осуществляет поиск сигналов ИРИ в заданном частотном диапазоне. При обнаружении сигнала ИРИ осуществляется его оцифровка и передача с помощью передающего устройства приемопередатчика на центральный БЛА-датчик. На центральном БЛА-датчике по поступившим данным осуществляется определение местоположения ИРИ.

Технический результат достигается тем, что БЛА-датчики на базе мультикоптеров могут быть доставлены в труднодоступный район предполагаемого функционирования ИРИ, где за счет использования свойства мультикоптеров принимать неподвижное состояние в пространстве, а также за счет их маневренности, появляется возможность формировать подобие стационарных наземных пунктов приема разностно-дальномерной системы местоопределения с оптимальным геометрическим фактором, что, в свою очередь, позволяет повысить точность определения координат ИРИ.

Достигаемым техническим результатом изобретения является повышение точности местоопределения ИРИ, функционирующих в труднодоступной местности.

Известен способ местоопределения ИРИ, близкий по технической сущности к заявляемому изобретению (см., например, Кондратьев B.C., Котов А.Ф., Марков Л.Н. Многопозиционные радиотехнические системы - М.: «Радио и связь», 1986. - 264 с), основанный на измерении корреляционным методом временных задержек приема сигнала ИРИ, относительно одного из N≥2 пространственно разнесенных пунктов радиоконтроля. Недостатками указанного способа являются необходимость устойчивого приема пунктами радиоконтроля сигналов контролируемого ИРИ, что не всегда возможно в условиях сложного рельефа труднодоступной местности и недостаточная точность местоопределения ИРИ, связанная с большим удалением ИРИ от пунктов радиоконтроля.

Известен способ (прототип) местоопределения (см. Пат. РФ 2363011, МПК 00185/12, опубл. 27.07.2009 г.), сущность которого заключается в предварительной доставке в предполагаемый район нахождения ИРИ как минимум 3 кассет. Каждая из кассет содержит навигационный приемник и приемопередатчик. Приемопередатчик включает в себя панорамный приемник и передатчик параметров сигналов. После фиксации в грунте носителя навигационный приемник и приемопередатчик одновременно по сигналу «пуска» или автоматически приводятся в работоспособное состояние. По сигналам навигационно приемника определяют координаты мест фиксации в грунте каждого носителя. Каждый приемопередатчик, имеющий панорамный приемник, осуществляет поиск сигналов ИРИ в заданном частотном диапазоне. При обнаружении сигнала ИРИ осуществляется его оцифровка и передача с помощью передающего устройства приемопередатчика через спутник-ретранслятор на пункт радиоконтроля. На пункте радиоконтроля по поступившим данным осуществляется определение местонахождения ИРИ относительно координат навигационных приемников. Данный способ позволяет обеспечить ЭМД ИРИ и повысить точность местоопределения за счет уменьшения трассы распространения радиоволн от ИРИ к пунктам радиоконтроля. Недостатками данного способа местоопределения ИРИ являются трудности в обеспечении оптимального геометрического фактора, зависящего, в частности, от точности доставки кассет в район формирования системы местоопределения, отсутствие возможности перемещения зафиксированных в грунте кассет в зависимости от изменения положения ИРИ, необходимость обеспечения электромагнитной доступности к спутнику-ретранслятору.

Для достижения технического результата изобретения предлагается в указанном способе-прототипе вместо кассет использовать множество K≥4 пространственно-разнесенных малых размеров БЛА-датчиков, каждый из которых содержит блок навигационно-временного обеспечения, ненаправленную антенну, панорамный приемник и приемопередатчик. Базой для размещения аппаратуры датчиков выбраны мультикоптеры, которые имеют ряд преимуществ перед кассетами, указанными в способе-прототипе. Основными преимуществами использования мультикоптеров являются их высокая маневренность и возможность принимать неподвижное состояние в пространстве, за счет чего появляется возможность формировать подобие стационарных наземных пунктов приема разностно-дальномерной системы местоопределения с оптимальным геометрическим фактором, что, в свою очередь, позволяет повысить точность определения координат ИРИ. Еще одним существенным отличием предлагаемого способа от способа-прототипа является то, что обработка координатной информации производится не на наземном пункте радиоконтроля, а на центральном БЛА-датчике, после чего информация о местоположении ИРИ ретранслируется через ЛА-ретранслятор на НПУО, где оператор оценивает точность местоопределения и принимает решение о дальнейшем перестроении множества БЛА-датчиков для формирования в пространстве разностно-дальномерной системы с учетом обеспечения оптимального геометрического фактора, при этом вместо спутника-ретранслятора для ретрансляции команд управления и координатной информации используется пилотируемый или беспилотный летательный аппарат среднего класса, что позволяет обеспечить бесперебойную связь с НПУО.

Заявленный способ поясняется иллюстрацией, представленной на фиг.2. На фиг.2 приняты следующие обозначения: 1 - наземный пункт управления и обработки (НПУО); 2 - пилотируемый или беспилотный летательный аппарат среднего класса (ЛА-ретранслятор), который одновременно является носителем БЛА-датчиков и ретранслятором сигналов между НПУО и центральным пунктом (БЛА-датчиком) системы; 3 - периферийные БЛА-датчики (пункты) РДС; 4 - центральный БЛА-датчик (пункт) РДС; 5 - источник радиоизлучений, местоположение которого определяется; 6 - препятствие, ограничивающее зону приема сигналов ИРИ.

Множество БЛА-датчиков доставляют в предполагаемый район нахождения ИРИ посредством беспилотного или пилотируемого летательного аппарата 2 среднего класса. Совокупность БЛА-датчиков 3, 4, по командам с НПУО 1, размещают в пространстве на границе (вокруг) предполагаемого района функционирования источника радиоизлучений 5 за препятствием, ограничивающим зону приема сигналов ИРИ 6, затем назначают центральный БЛА-датчик 4, формируя, таким образом, разностно-дальномерную систему радиоконтроля. В этом случае вся зона радиоконтроля покрывается сетью БЛА-датчиков. По сигналам блока навигационно-временного обеспечения определяются координаты в пространстве каждого БЛА-датчика и осуществляется высокоточная привязка к собственной системе координат РДС, происходит передача координатной информации о пунктах сформированной РДС на центральный БЛА-датчик. Каждый БЛА-датчик, имеющий панорамный приемник, по команде с центрального БЛА-датчика, осуществляет поиск сигналов ИРИ в заданном частотном диапазоне. При обнаружении сигнала ИРИ осуществляется его оцифровка и передача с помощью передающего устройства приемопередатчика на центральный БЛА-датчик системы радиоконтроля. На центральном БЛА-датчике, по поступившим данным осуществляется определение местоположения ИРИ. При определении местоположения источников радиоизлучений используется корреляционный метод, основанный на измерении временных задержек приема БЛА-датчиками РДС обнаруженных сигналов относительно центрального. После определения местоположения обнаруженного источника радиоизлучения, центральный БЛА-датчик РДС через ЛА-ретранслятор отправляет координаты обнаруженного ИРИ на НПУО, где оператор оценивает точность местоопределения и принимает решение о дальнейшем перестроении множества БЛА-датчиков для формирования в пространстве разностно-дальномерной системы с учетом обеспечения оптимального геометрического фактора.

Предложенный способ позволяет обеспечить прием сигналов от ИРИ, функционирующего в труднодоступной местности, а использование множества K≥4 датчиков позволяет сформировать на границе (вокруг) предполагаемого района нахождения ИРИ разностно-дальномерную систему радиоконтроля с оптимальным геометрическим фактором, обеспечивающим высокую точность местоопределения.

Таким образом, повышение точности местоопределения достигается за счет обеспечения оптимального геометрического фактора формируемой разностно-дальномерной системы радиоконтроля, а высокая маневренность БЛА-датчиков системы позволяет по команде оператора НПУО за короткие интервалы времени перестроить ее таким образом, что источник радиоизлучения попадает в рабочую зону местоопределения РДС с минимальной погрешностью местоопределения координат.

Справедливость данного утверждения подтверждается следующей оценкой. Пусть задано местоположение БЛА-датчиков 1, K≥4, (фиг.3) многопозиционной разностно-дальномерной системы радиоконтроля. В предлагаемой геометрической конфигурации БЛА-датчиков расстояние от ИРИ r0 до центрального БЛА-датчика (пункта) 2 сопоставимо с расстоянием базы РДС, в результате чего выполняется условие функционирования системы в ближней зоне радиоконтроля d r 0 1 , в таком случае погрешность определения координат зависит от погрешности измерения расстояний баз разностно-дальномерной системы (см. Кондратьев B.C., Котов А.Ф., Марков Л.Н. Многопозиционные радиотехнические системы - М.: «Радио и связь», 1986. - 264 с.). В предлагаемой геометрической конфигурации рабочей системы и, исходя из условия ее функционирования в ближней зоне, оптимально располагать БЛА-датчики в вершинах квадрата. Тогда вариант разностно-дальномерной системы радиоконтроля будет включать в себя K=4 БЛА-датчиков 1 из всего множества K≥4, которые будут располагаться в вершинах квадрата (фиг.2). Поскольку базы датчиков взаимно перпендикулярны (γ=γ1234=90°), а их значения равны (d=d1=d2=d3=d4), то обеспечивается повышение точности местоопределения внутри квадрата (см. Белавин О.В. Основы радионавигации - М.: «Советское радио», 1977. - 320 с.).

Для определения точности местоопределения построим кривые равной точности для выбранной геометрической конфигурации РДС. Используя выражение (см., например, Семенюк С.С., Уткин В.В., Бердинских Л.Н. Геометрический фактор разностно-дальномерной сети датчиков в пространстве. Наукоемкие технологии, 2012, №8. - С.66-72)

k Г = σ σ R = σ x 2 + σ y 2 + σ z 2 σ R = t r ( K S ) σ R ( 1 )

где: tr(KS) - след матрицы; K S = σ R 2 ( G T G ) 1 ковариационная матрица ошибок определения вектора координат ИРИ.

Полученные линии равной точности (в плановых координатах) с использованием выражения (1) отображены на фиг.4, откуда видно, что наибольшая точность местоопределения располагается в центре квадрата данной геометрической конфигурации РДС.

В случае, когда источник радиоизлучения располагается ближе к одной из баз системы радиоконтроля или требуется повышение точности определения его координат, то оператор дает команду на формирование (перестроение) в пространстве из множества БЛА-датчиков конфигурации системы с учетом оптимального геометрического расположения датчиков в пространстве, или назначить для формирования из множества те БЛА-датчики, которые имеют оптимальную геометрическую конфигурацию РДС, которая позволяет определять координаты ИРИ с заданной точностью.

Таким образом, предлагаемый способ местоопределения обладает рядом существенных преимуществ перед прототипом, которые позволяют повысить точность местоопределения ИРИ, функционирующих в труднодоступной местности, а использование пилотируемого или беспилотного летательного аппарата среднего класса (ЛА-ретранслятора) позволяет обеспечить бесперебойную связь с НПУО.

Способ определения местоположения источника радиоизлучения (ИРИ), основанный на измерении корреляционным методом временных задержек приема сигнала ИРИ относительно одного из N≥4 пространственно разнесенных пунктов (приема) радиоконтроля, при этом один из пунктов радиоконтроля является центральным (опорным) и осуществляет прием и обработку сигналов, а остальные осуществляют прием сигналов, отличающийся тем, что в предполагаемый район нахождения ИРИ доставляют посредством беспилотного или пилотируемого летательного аппарата (ЛА) среднего класса, одновременно являющегося носителем мультикоптеров и ретранслятором сигналов между наземным пунктом управления и обработки (НПУО), множество N≥4 пунктов радиоконтроля (датчиков), размещенных на БЛА типа "мультикоптер", каждый из которых содержит блок навигационно-временного обеспечения, ненаправленную антенну, панорамный приемник и приемопередатчик, распределяют в пространстве по команде с наземного пункта обработки и управления через ЛА-ретранслятор, назначают из множества датчиков центральный, который расположен на минимальном расстоянии от ЛА-ретранслятора, далее БЛА-датчики (пункты радиоконтроля) определяют свое местоположение с помощью блока навигационно-временного обеспечения, осуществляют частотный поиск, оцифровку обнаруженных сигналов и передачу на центральный БЛА-датчик (пункт радиоконтроля) данных о своем местоположении в пространстве, а также оцифрованные сигналы обнаруженного источника радиоизлучения, при этом центральный БЛА-датчик по поступившим данным от множества БЛА-датчиков определяет координаты ИРИ и осуществляет передачу данных на НПУО, где оператор оценивает точность местоопределения и принимает решение о дальнейшем перестроении множества БЛА-датчиков для формирования в пространстве разностно-дальномерной системы с учетом оптимального размещения в пространстве БЛА-датчиков (пунктов радиоконтроля), с целью повышения точности местоопределения координат ИРИ, формируя команды управления и передачу их через ЛА-ретранслятор на центральный БЛА-датчик формируемой многопозиционной системы местоопределения в пространстве.



 

Похожие патенты:

Изобретение относится к способу спутниковой навигации мобильных объектов железнодорожного транспорта на основе известной траектории движения. .

Изобретение относится к области радиотехники, а именно к пассивным системам радиоконтроля, и, в частности, может быть использовано в системах местоопределения радиоизлучающих средств УКВ-диапазонов.

Изобретение относится к спутниковой навигации и может быть использовано для повышения точности определения вектора состояния космических аппаратов. .

Изобретение относится к области радиоэлектроники и может быть использовано в радионавигационных системах ближней навигации. .

Изобретение относится к области радиотехники, а именно к пассивным системам радиоконтроля. .

Изобретение относится к определению местоположения объектов с помощью спутников, в частности к способу определения местоположения абонентского аппарата в спутниковой системе связи с использованием характеристик сигналов связи.

Изобретение относится к радиотехнике и может быть использовано в системах определения местоположения объекта. .

Изобретение относится к спутниковым радионавигационным системам и может быть использовано для определения местоположения одного движущегося объекта относительно другого с сантиметровой точностью.

Изобретение относится к области радионавигации и может быть использовано для точного определения вектора состояния (пространственных координат, составляющих вектора скорости и времени) различных объектов по сигналам спутниковой радионавигационной системы (СРНС).

Изобретение относится к пассивным системам радиомониторинга и может быть использовано в системах местоопределения источников радиоизлучения (ИРИ). Достигаемый технический результат - сокращение времени определения принадлежности местоположения ИРИ к ограниченной области пространства. Сущность способа заключается в реализации синхронного по пространству и времени пеленгования ИРИ с последующей корреляционной обработкой потока сигналов от каждого из пеленгаторов для выявления сигналов тех ИРИ, координаты которых принадлежат априорно заданной «просматриваемой» области пространства. Пространственно-временная синхронизация реализуется путем одновременного формирования диаграмм направленности пеленгаторов, направление максимума которых ориентированоы на геометрический центр просматриваемого элемента области пространственного мониторинга ИРИ. 2 ил.

Изобретение относится к области радиотехники и может найти применение при обработке радиосигналов, а также в разностно-дальномерной системе местоопределения источников радиоизлучений. Достигаемый технический результат - повышение точности измерения взаимной задержки случайных сигналов в условиях аддитивного Гауссова шума и расширение арсенала действующих способов. Указанный результат достигается за счет того, что формируют и запоминают эталонные, рассчитанные аналитически, фазовые линии для различных значений задержек с шагом Δτ без учета воздействия аддитивного Гауссова шума; с помощью двух синхронно действующих аналого-цифровых преобразователей осуществляют дискретизацию зашумленного Гауссовым аддитивным шумом аналогового случайного сигнала x(t) и его задержанной на время τ3 копии y(t)=х(t-τ3); рассчитывают взаимную спектральную плотность (взаимный Фурье-спектр) сигналов х(t) и y(t); рассчитывают фазовую линию взаимной спектральной плотности (взаимного фазового Фурье-спектра) сигналов x(t) и y(t). По степени близости рассчитанной фазовой линии взаимной спектральной плотности к одной из эталонных фазовых линий взаимного фазового спектра принимается окончательное решение о значении взаимной задержки этих сигналов. 4 ил.

Изобретение относится к пассивным системам радиомониторинга радиоэлектронных средств, в частности может быть использовано в системах местоопределения источников радиоизлучения (ИРИ). Сущность способа определения координат местоположения ИРИ заключается в доставке в предполагаемый район нахождения ИРИ элементов пеленгации с учетом их взаимного расположения на местности и формирования угломерной системы определения местоположения. При этом угломерная система определения местоположения ИРИ формируется путем доставки пеленгационных постов (ПП) с учетом пространственных требований базы угломерной системы, состоящих минимум из двух измерительных элементов, осуществляющих оценку фазы принимаемого сигнала. На борту каждого носителя размещены средства поиска, обнаружения и определения параметров сигналов ИРИ, радионавигационного определения координат и приемопередачи данных. Для формирования одного ПП производится запуск по заданным координатам доставки в район размещения ИРИ минимум двух носителей. После фиксации в грунте и приведения в работоспособное состояние с помощью средств радионавигационного определения координат определяют координаты местоположения средств поиска, обнаружения и определения параметров сигналов ИРИ, значения которых передают на опорный пункт радиоконтроля (ПРК). Средства поиска, обнаружения и определения параметров сигналов каждого ПП осуществляют частотный поиск сигналов ИРИ и в случае их обнаружения измеряют значение фазы. Значения фазы и частоты принятого сигнала средства поиска, обнаружения и определения параметров сигналов ИРИ передают на опорный пункт радиоконтроля (ПРК), в котором на основе принятых данных определяют координаты местоположения ИРИ относительно координат точек доставки элементов ПП. Техническим результатом является повышение точности определения координат ИРИ, размещенных в труднодоступной местности. 1 ил.

Изобретение относится к пассивным системам радиоконтроля и может быть использовано в системах местоопределения радиоизлучающих средств. Достигаемый технический результат - снятие ограничения по взаимному пространственному расположению приемных каналов пеленгационных пунктов. Указанный результат достигается за счет того, что используют многопозиционную систему, содержащую минимум два разнесенных в пространстве пункта приема и обработки сигналов (ППОС) и информационно связанный с ними пункт определения пространственных параметров источника радиоизлучения (ПОПП). ППОС содержат по три произвольно расположенных относительно друг друга приемных канала (точки), в каждом из них производится оценка фазы принимаемой волны. При этом ППОС имеют координатную привязку каждого приемного канала (точки) в декартовой системе координат. Значения координат точек приема (каналов) и значения оценки фазы прихода волны в каждом канале поступают на ПОПП, в котором с использованием измеренных значений фаз ИРИ строят фазовые плоскости принимаемого поля каждым ППОС, а координаты ИРИ определяют по координатам середины минимального отрезка, соединяющего прямые нормалей к этим фазовым плоскостям. 2 ил.

Изобретение относится к пассивным системам радиомониторинга и может быть использовано в системах местоопределения источников радиоизлучения (ИРИ). Достигаемый технический результат изобретения - повышение эффективности определения координат ИРИ, размещенных в труднодоступной местности. Сущность изобретения заключается в предварительной доставке в предполагаемый район нахождения ИРИ минимум трех самораскрывающихся дистанционно управляемых летательных аппаратов (СДУБЛА), на борту которых установлена требуемая для радиомониторинга радиоэлектронная аппаратура. При этом доставка осуществляется пуском минимум трех носителей. Бортовая радиоэлектронная аппаратура включает устройства определения координат СДУБЛА, поиска и определения параметров сигналов ИРИ и приемопередачи необходимых данных. После доставки СДУБЛА в район размещения ИРИ бортовая радиоэлектронная аппаратура одновременно по сигналу «пуска» или автоматически приводится в работоспособное состояние, при этом определяют координаты местоположения СДУБЛА, передают их значения на пункт радиоконтроля. При необходимости изменяют местоположение СДУБЛА путем передачи соответствующих сигналов управления полетом. Осуществляют поиск, обнаружение и определение параметров сигналов ИРИ, значения которых также передают на пункт радиоконтроля. На пункте радиоконтроля по поступившим данным осуществляется определение местонахождения ИРИ относительно координат СДУБЛА. 1 ил.

Изобретение относится к радиотехнике, а именно к пассивным системам радиоконтроля, и, в частности, может быть использовано для высокоточного определения с помощью летательных аппаратов координат источников радиоизлучений (ИРИ), излучающих непрерывные или квазинепрерывные сигналы. Достигаемый технический результат - снижение аппаратурных затрат при реализации способа на базе изделий функциональной электроники, а при реализации способа на базе аппаратных средств цифровой обработки сигналов - повышение быстродействия за счет уменьшения количества арифметических операций. Указанный результат достигается за счет того, что способ определения координат ИРИ заключается в приеме сигналов ИРИ на трех летательных аппаратах, их ретрансляции на центральный пункт обработки и вычислении координат ИРИ по разностям радиальных скоростей, при этом дополнительно находятся доплеровские сдвиги частоты как аргумент максимизации амплитудного спектра произведения сигнала с одного ретранслятора на сигнал с другого ретранслятора, подвергнутый комплексному сопряжению и сдвигу на временную задержку, которая определяется как аргумент максимизации модуля функции взаимной корреляции преобразованных сигналов, полученных путем перемножения исходных сигналов на эти же сигналы, подвергнутые комплексному сопряжению и временному сдвигу на интервал T, превышающий величину, обратно пропорциональную удвоенной ширине спектра сигнала.

Изобретение относится к области радиотехники и может быть использовано в пассивных системах местоопределения (МО) источников радиоизлучения (ИРИ), размещенных на неровных участках местности. Достигаемый технический результат – снижение погрешности определения координат ИРИ. Сущность изобретения заключается в расположении четырех приемных пунктов (ПП), размещенных на беспилотных летательных аппаратах (БЛА) типа "мультикоптер" в районе предполагаемого нахождения ИРИ. В указанный район ПП доставляются посредством беспилотного или пилотируемого летательного аппарата среднего класса. В состав каждого ПП входят блок навигационно-временного обеспечения, ненаправленная антенна, панорамный приемник, приемопередатчик. В районе предполагаемого нахождения ИРИ приемные пункты распределяют в пространстве по команде с наземного пункта управления и обработки (НПУО), формируя, таким образом, разностно-дальномерную систему (РДС) МО. Приемные пункты располагают в вершинах тетраэдра: периферийные ПП в вершинах его нижнего основания, а опорный в вершине над основанием. В образованной РДС по сигналам блоков навигационно-временного обеспечения каждого ПП осуществляется определение их координат в пространстве, высокоточная привязка к собственной системе координат РДС и передача координатной информации о периферийных ПП на опорный. По команде с него все ПП выполняют поиск сигнала ИРИ в заданном частотном диапазоне и при обнаружении сигнала ретранслируют его на опорный. Прием и ретрансляция сигнала ИРИ приемными пунктами осуществляются их панорамными приемниками и приемопередатчиками соответственно. На опорном ПП на основе вычисления корреляции между сигналом, принятым на нем, и сигналами, ретранслированными с периферийных ПП, вычисляются и отправляются на НПУО координаты обнаруженного ИРИ. На НПУО оценивается значение погрешности полученных координат и в случае превышения требуемого значения, установленного оператором, осуществляется пересчет собственных координат всех ПП для их перестроения. Такое перестроение ПП относительно ИРИ выполняется до тех пор, пока погрешность определения его координат не установится ниже требуемого значения. 8 ил.

Изобретение относится к радиотехнике, а именно к способам определения местоположения источника радиоизлучения (ИРИ), и может быть использовано в навигационных, пеленгационных, локационных средствах для определения местоположения ИРИ с летательного аппарата (ЛА), в частности с беспилотного ЛА. Техническим результатом изобретения является повышение точности определения координат ИРИ в пространстве на основе использования сферических поверхностей положения (СПП) ИРИ, формируемых вращением окружностей Аполлония вокруг осей, соединяющих соответствующие фокусы. При этом в качестве фокусов окружностей Аполлония выступают точки расположения ЛА в 3-мерном пространстве в различные моменты времени. Способ основан на приеме радиосигналов ИРИ в заданной полосе частот ∆F перемещающимся в пространстве измерителем, размещенным на ЛА, измерении и запоминании первичных координатно-информативных параметров, в качестве которых используют амплитуды напряженностей электрического поля (АНЭП), с одновременным измерением и запоминанием вторичных параметров (ВП) - пространственных координат ЛА, при этом измеряют и запоминают N≥5 раз совокупности АНЭП и ВП в процессе перемещения ЛА по произвольной траектории, вычисляют N-1 коэффициентов окружностей Аполлония, формируют N-1 СПП ИРИ, а в качестве координат ИРИ в пространстве принимают координаты точки пересечения N-1 указанных СПП ИРИ. 1 з.п. ф-лы, 3 ил.
Наверх