Способ термической обработки отливок из коррозионностойкой стали мартенситного класса

Изобретение относится к области термической обработке отливок из коррозионно-cтойкой стали мартенситного класса, используемых для высокоточных деталей машиностроения и приборостроения. Для устранения химической и структурной неоднородности и обеспечения стабильных свойств отливок проводят нормализацию при 900-920°C, маятниковый отжиг, состоящий из трех-пяти циклов, включающих ускоренный нагрев до температуры 600-620°C, выдержку 2-3 мин и последующее охлаждение на воздухе до температуры 150-200°C, нормализацию при 1040-1060°C, отпуск при 600-620°C с охлаждением на воздухе, закалку с температуры 950-1050°C в масло, отпуск при 290-310°C с охлаждением на воздухе. 1 табл., 3 ил.

 

Изобретение относится к термической обработке отливок из коррозионно-стойкой стали мартенситного класса, используемых для высокоточных деталей машиностроения и приборостроения.

Известен способ термической обработки отливок из коррозионно-стойкой стали мартенситного класса 09Х16Н4БЛ по ГОСТ 977-88 «Отливки стальные. Общие технические условия», который заключается в последовательном проведении следующих термических операций:

- нормализация при 1040-1060°C, охлаждение на воздухе,

- отпуск при 600-620°C, охлаждение на воздухе,

- закалка с 950-1050°C, охлаждение в масле,

- отпуск при 290-310°C, охлаждение на воздухе.

Однако при изготовлении отливок согласно ГОСТ 977-88 отсутствует стабильность в получении твердости, механических свойств и обрабатываемости на металлорежущих станках.

Причиной этого является химическая и структурная неоднородность, обусловленная особенностями кристаллизации стали 09Х16Н4БЛ в процессе изготовления отливки.

Химическая неоднородность стали характеризуется наличием не травящихся «белых» зон, представляющих собой участки, обогащенные хромом, образующиеся вследствие дендритной ликвации при затвердевании отливки (фиг.1).

Структурная неоднородность стали характеризуется наличием свободного δ-феррита, который образуется на стадии кристаллизации при определенном соотношении легирующих элементов (фиг.2).

Задачей предлагаемого изобретения является устранение химической и структурной неоднородности для получения стабильных свойств отливок.

Поставленная задача решается за счет того, что известный способ термообработки отливок из коррозионно-стойкой стали мартенситного класса, включающий последовательно проводимые нормализацию при температуре 1040-1060°C с охлаждением на воздухе, отпуск при температуре 600-620°C с охлаждением на воздухе, закалку с температуры 950-1050°C в масло, отпуск при температуре 290-310°C с охлаждением на воздухе дополняют предварительной термической обработкой, при которой проводят низкотемпературную нормализацию при температуре 900-920°C, маятниковый отжиг, состоящий из трех-пяти циклов, включающих ускоренный нагрев до температуры 600-620°C, выдержку 2-3 мин и последующее охлаждение на воздухе до температуры 150-200°C.

Эффективность применения маятникового отжига основывается на факте существенного ускорения диффузионной подвижности элементов вблизи температур фазовых превращений.

Применение маятникового отжига обеспечивает более равномерное распределение легирующих элементов в структуре стали, что устраняет химическую неоднородность, обусловленную дендритной ликвацией.

Проблема структурной неоднородности решается путем ограничения количества хрома в марочном составе до 16,4% и ускоренного охлаждения в процессе кристаллизации отливок.

Однородная мартенситная микроструктура, полученная по результатам изобретения, наглядно представлена на фиг.3.

Сравнительные механические характеристики, соответствующие дефектным структурам (фиг.1, фиг.2) и структуре, полученной по результатам изобретения (фиг.3), представлены в таблице.

Таблица
Механические свойства отливок Микроструктура
Временное сопротивление
σb, кгс/мм2
Предел текучести σ0,2, кгс/мм2 Относительное удлинение δ, % Ударная вязкость кгс м/см2 Твердость HRC
132 46 32 14 15-17 Фиг.1
135 119 10 1,6 41-42 Фиг.2
137 113 10 5,5 41-42 Фиг.3
Механические свойства по НД
115 90 8 2,5 38-45 -

Осуществление изобретения проводится следующим образом.

Изготавливают отливки с образцами в защиту плавки с учетом содержания хрома в плавке на уровне 16,4%.

Затем проводят нагрев под нормализацию в камерной электропечи СНО-6.12.4/10-И2 при температуре 900-920°C в коробе с герметичной крышкой в течение одного часа после прогрева садки и охлаждают на воздухе до температуры цеха.

Далее отливки с образцами подвергают маятниковому отжигу: нагревают садку, уложив отливки и образцы в решетчатую корзину, в шахтной электропечи СШЗ 6.12/7-И2 до температуры 600-620°C, выдерживают 2-3 минуты, охлаждают на воздухе вразброс до температуры ~150-200°C. Операции нагрева и охлаждения проводят последовательно пять раз.

Всю дальнейшую термообработку осуществляют в соответствии с ГОСТ 977-88.

Механические характеристики определяют на образцах в защиту плавки, прошедших ту же термообработку, что и отливки. Результаты испытания механических свойств полностью удовлетворяют требованиям ГОСТ 977-88.

Способ термической обработки отливок из коррозионно-стойкой стали мартенситного класса 09X16H4БЛ, включающий последовательно проводимые нормализацию при 1040-1060°C, отпуск при 600-620°C с охлаждением на воздухе, закалку с 950-1050°C с охлаждением в масле, отпуск при 290-310°C с охлаждением на воздухе, отличающийся тем, что перед нормализацией предварительно осуществляют низкотемпературную нормализацию при 900-920°C и маятниковый отжиг, состоящий из трех-пяти циклов, включающих ускоренный нагрев до температуры 600-620°C, выдержку 2-3 мин и последующее охлаждение на воздухе до температуры 150-200°C.



 

Похожие патенты:

Изобретение относится к области металлургии конструкционных сталей и сплавов, а именно к термомеханической обработке аустенитных коррозионно-стойких хромоникелевых сталей.
Изобретение относится к области металлургии, а именно к термомеханической обработке монокристаллов ферромагнитного сплава нового состава Fe-Ni-Co-Al-Ti, и может быть использовано для создания исполнительных механизмов, датчиков, актюаторов, демпфирующих элементов.

Изобретение относится к области металлургии, а именно к термической обработке заготовок из сплава Х65НВФТ на основе хрома. Для повышения жаростойкости сплава заготовку из сплава Х65НВФТ подвергают закалке путем нагрева до температуры 1270±10°C с выдержкой при этой температуре в течение 20 мин и охлаждают в масло.

Изобретение относится к области термической обработки. Техническим результатом изобретения является снижение твердости и стабилизация ее значений упрочненных заготовок из сплава Х65НВФТ.
Изобретение относится к области металлургии, в частности к производству магнитотвердых сплавов на основе системы Fe-Cr-Co, которые применяются в приборостроении, релейной технике, электромашиностроении, медицине, автомобильной промышленности.

Изобретение относится к нанокристаллическому сплаву на основе железа и способу его формирования и может быть использовано в трансформаторе, индукторе, входящем в состав двигателя магнитном сердечнике.

Изобретение относится к машиностроению и может быть использовано в промышленности при промежуточной термической обработке изделий из листового материала стали аустенитно-мартенситного класса марки 07Х16Н6.

Изобретение относится к области металлургии, а именно к стали, используемой для изготовления деталей режущих инструментов. Сталь содержит, в мас.%: от 0,28 до 0,5 С, от 0,10 до 1,5 Si, от 1,0 до 2,0 Mn, максимум 0,2 S, от 1,5 до 4 Cr, от 3,0 до 5 Ni, от 0,7 до 1,0 Mo, от 0,6 до 1,0 V, от следовых количеств до общего максимального содержания 0,4% мас.
Изобретение относится к области металлургии, а именно к термической обработке монокристаллов ферромагнитного сплава нового состава Fe-Ni-Co-Al-Nb, и может быть использовано в машиностроении, авиационной, космической промышленности, механотронике и микросистемной технике для создания исполнительных механизмов, датчиков, актюаторов, демпфирующих элементов.

Изобретение относится к области металлургии, в частности к обработке магнитотвердых сплавов на основе системы Fe-Cr-Co, которые применяются в приборостроении, релейной технике, электромашиностроении, медицине, автомобильной промышленности и т.д.

Изобретение относится к термообработке, такой как, например, высокочастотная закалка металлических деталей. Устройство для индукционной закалки содержит катушки (26) для индукционного нагрева, которые индуктивно нагревают различные части обрабатываемого целевого участка (A) в осевом направлении заготовки (12), причем заготовка (12) и катушка (26) для нагрева совершают относительное движение вдоль окружного направления (R) обрабатываемого целевого участка (A).
Изобретение относится к области металлургии, а именно к способу термической обработки жаропрочных сталей мартенситного класса, применяемых для изготовления элементов тепловых энергетических установок с рабочей температурой пара до 650°C.

Изобретение относится к способу термомеханической обработки для получения толстого листа (1) из исходного материала с повышенной вязкостью, в частности низкотемпературной вязкостью.

Изобретение относится к области металлургии и машиностроения. Для предотвращения брака по механическим свойствам непрерывно отожженной металлической заготовки и обеспечения максимального выхода годного осуществляют управление непрерывной термообработкой металлических заготовок, которое включает неразрушающий непрерывный контроль получаемой в результате термообработки характеристики механических свойств, при этом в качестве контрольной характеристики используют значение удельных энергозатрат, проводят сравнение значений текущих энергозатрат со значениями энергозатрат, полученными из предварительно установленных регрессионных зависимостей механических свойств от удельных энергозатрат, обеспечивающими получение необходимых механических свойств, и регулируют режим термообработки заготовки, обеспечивая попадание величины удельных энергозатрат в интервал допустимых значений.

Изобретение относится к области машиностроения, в частности к обработке лазером при изготовлении и ремонте различных машин и механизмов. Для повышения физико-механических свойств инструментальных и конструкционных материалов осуществляют лазерную обработку изделий с использованием лазера импульсного действия при полезной энергии импульса 60-500 Дж, плотности мощности импульса 1,2·1010-4,3·1011 Вт/м2, длине волны 1,064·10-6 м, продолжительности импульса 0,8·10-3 с, диаметре луча 1,2·10-3-2,5·10-3 м и расстоянии от места облучения до упрочняемой поверхности 12-30 мм.

Изобретение относится к прокатному производству и может быть использовано при производстве холоднокатаной ленты из низкоуглеродистых марок стали, применяемой для холодной вырубки.

Изобретение относится к области термомеханической обработки для изготовления стального проката с требуемыми свойствами. Для обеспечения требуемого уровня потребительских свойств металлопроката получают заготовку из стали, содержащей, мас.%: C 0,05-0,18, Si 0,05-0,6, Mn 1,30-2,05, S не более 0,015, P не более 0,020, Cr 0,02-0,35, Ni 0,02-0,45, Cu 0,05-0,30, Ti не более 0,050, Nb 0,010-0,100, V не более 0,120, N не более 0,012, Al не более 0,050, Mo не более 0,45, железо и неизбежные примеси остальное.
Изобретение относится к области металлургии. Для снижения магнитных потерь при повышении уровня магнитной индукции и обеспечения температурной устойчивости величины магнитных потерь в готовой листовой стали к последующему отжигу способ включает выплавку электротехнической стали, непрерывную разливку, горячую прокатку, холодную прокатку, обезуглероживающий отжиг, вторую холодную прокатку с получение листа конечной толщины, обработку лазером, нанесение защитного покрытия, высокотемпературный отжиг, нанесение электроизоляционного покрытия, выпрямляющий отжиг, при этом обработку лазером осуществляют с помощью источника непрерывного лазерного луча и источника импульсного лазерного луча, причем импульсный лазерный луч имеет меньший диаметр проекции на поверхность листа, чем непрерывный лазерный луч, и большее значение плотности энергии излучения в проекции на поверхность полосы стали, чем непрерывный лазерный луч, каждый линейный след лазерного воздействия образуют путем синхронизованного перемещения проекций непрерывного и импульсного лазерных лучей по поверхности листа с отставанием импульсного лазерного луча от непрерывного, причем воздействием непрерывного лазерного луча формируют осевую область линейного следа лазерного воздействия с литой структурой и периферийную область со структурой частичной рекристаллизации, а воздействием импульсного лазерного луча образуют в осевой области листа канавку с литой структурой.
Изобретение относится к области машиностроения. Для обеспечения требуемого распределения физико-механических свойств оправку длиной до 15 метров и диаметром от 137 до 200 мм из легированной инструментальной стали с содержанием хрома свыше 4 мас.%, каждого другого карбидообразующего элемента и кремния до 1 мас.%, углерода в пределах от 0,32 до 0,44 мас.% подвергают закалке путем индукционного нагрева при частоте тока 50-1000 Гц до температуры от 1040°С до 1080°С, охлаждения спрейером и отпуску при температуре от 705°С до 725°С с охлаждением на воздухе, при этом оправку при закалке перемещают со скоростью от 70 мм/мин до 180 мм/мин, а при отпуске - со скоростью от 70 мм/мин до 180 мм/мин.
Изобретение относится к области металлургии, в частности к производству магнитотвердых сплавов на основе системы Fe-Cr-Co, которые применяются в приборостроении, релейной технике, электромашиностроении, медицине, автомобильной промышленности.
Изобретение относится к области машиностроения и металлургии. Для повышения твердости и увеличения глубины прокаливаемости осуществляют предварительную обработку путем нагрева изделия выше критической точки стали, из которой изготовлено это изделие, выдержки и последующего охлаждения на воздухе, причем в процессе охлаждения к изделию прикладывают ударно-импульсные колебания с частотой нанесения ударов от 30 до 10000 герц, а затем проводят закалку. 1 з.п. ф-лы, 2 пр.
Наверх