Способ определения закрепленности петли в структуре трикотажного полотна

Изобретение относится к текстильному материаловедению и предназначено для объективной оценки свойств трикотажных полотен для одежды в текстильной и легкой промышленности. Способ состоит в том, что образец из испытуемого трикотажного полотна подвергают испытаниям путем извлечения одной петли из структуры трикотажного полотна по предварительно рассчитанной длине нити в петле с последующим расчетом усилия, требуемого для извлечения единицы длины нити в петле, по формуле:

,

где fn - закрепленность петли в структуре трикотажного полотна, мН/мм; Fn - усилие, требуемое для извлечения петли из трикотажного полотна, мН; ln - длина нити в петле, мм. Достигается повышение объективности и достоверности определения. 2 табл., 3 ил.

 

Изобретение относится к текстильному материаловедению и предназначено для объективной оценки свойств трикотажных полотен для одежды в текстильной и легкой промышленности, а также может быть использовано для стандартизации, при проведении научно-исследовательских работ, периодических и сертификационных испытаний.

Технической задачей изобретения является разработка способа оценки предлагаемого нового показателя качества трикотажных полотен - закрепленности петли в структуре трикотажного полотна. Предлагаемый показатель может служить косвенным критерием оценки стабильности структуры трикотажного полотна.

Наиболее близкими к предлагаемому способу являются способы оценки сопротивления тканей к смещению нитей [1]. Способность нитей к смещению в структуре ткани проявляется в виде следующих свойств: раздвижка нитей в ткани [2] и осыпаемость [3, 4]. Осыпаемость и раздвигаемость нитей характеризуют степень закрепления одной системы нитей в ткани относительно другой. Первое из этих свойств обычно проявляется в процессе изготовления из них одежды, когда наблюдается выпадение нитей по обрезному краю. Второе свойство наблюдается у тканей в процессе эксплуатации, когда материал испытывает местные значительные напряжения. Стойкость ткани к осыпаемости (для хлопчатобумажных тканей) определяется величиной усилия, необходимого для сбрасывания двухмиллиметрового слоя одной системы нитей относительно другой. Стойкость ткани к раздвигаемости определяется величиной усилия, необходимого для свигания одной системы нитей относительно другой.

Из двух рассмотренных выше свойств раздвигаемость нитей является по сущности более близкой к предлагаемому новому показателю оценки стабильности структуры трикотажного полотна - закрепленности петли в структуре трикотажного полотна. При недостаточной закрепленности петли в структуре трикотажного полотна будет ухудшаться внешний вид полотна, снижаться срок эксплуатации вследствие искажения формы петель и увеличения зазора между нитями.

Техническим результатом изобретения является получение достоверных и объективных сведений, определяющих закрепленность петли в структуре трикотажного полотна. Полученные при испытании характеристики позволяют оценить сопротивляемость элементов трикотажного полотна к нарушению петельной структуры и прогнозировать стабильность структуры трикотажных полотен в процессе эксплуатации.

Возможность прогнозирования стабильности структуры трикотажных полотен позволит проектировать рациональные структуры трикотажных полотен, устойчивые к действию эксплуатационных нагрузок.

Указанный технический результат достигается за счет разработки способа оценки закрепленности петли в структуре трикотажного полотна. В качестве критерия закрепленности петли в структуре трикотажного полотна предлагается использовать усилие, необходимое для извлечения единицы длины нити в петле (1 мм) из трикотажного полотна. Способ заключается в том, что образец из испытуемого трикотажного полотна подвергают испытаниям путем извлечения одной петли из структуры трикотажного полотна (фиг.1). Предварительно рассчитывается длина нити в петле, на величину которой осуществляется извлечение петли из структуры трикотажного полотна.

Длину нити в петле определяют расчетным способом по формулам А.С. Далидовича [5] или стандартным методом [6]. При использовании стандартного метода осуществляется роспуск элементарной пробы. На элементарной пробе, например, для полотен главных кулирных переплетений длиной 10 см отсчитывается 100 петельных столбиков (для одинарных полотен) и делается надрез; далее распускают пять рядов и каждую нить измеряют в распрямленном состоянии. В полотнах гладких кулирных переплетений с однородной петельной структурой среднюю длину нити в петле определяют как среднеарифметическое всех измерений длин нитей, деленное на 100. Для полотен других переплетений при определении длины нити в петле стандартным методом роспуска используют формулы, приведенные в [6].

При помощи разработанного программного обеспечения автоматически определяется усилие, требуемое для извлечения петли из структуры трикотажного полотна, и строится график зависимости нагрузки от времени. Далее осуществляется пересчет усилия на единицу длины нити в петле.

Способом определяют закрепленность петли в структуре трикотажного полотна. Полученные при испытании данные являются косвенной характеристикой стабильности структуры трикотажного полотна.

Способ осуществляется на автоматизированном устройстве (фиг.2) следующим образом. Вырезают образец 1 из трикотажного полотна в форме квадрата со стороной 50 мм. Образец закрепляется в рамке 2 (фиг.1, фиг.2). Рамку с образцом устанавливают на датчик усилия 3 устройства. Петлю трикотажного полотна зацепляют крючком 4, нижний конец которого закреплен в зажиме 5. При опускании с помощью шагового двигателя 7 зажима 6 вниз датчик 3 воспринимает усилие, необходимое для извлечения петли из образца трикотажного полотна, и передает информацию в ЭВМ 8. Перед проведением эксперимента производится тарировка устройства, коэффициент преобразования заносится в управляющую программу.

Проектные решения, положенные в основу метода определения закрепленности петли в структуре трикотажного полотна с использованием разработанного устройства, позволяют достичь следующих технических результатов:

- получение численных данных, определяющих сопротивляемость элементов трикотажного полотна к нарушению петельной структуры;

- прогнозирование стабильности и рациональности структуры трикотажного полотна;

- повышение достоверности и точности полученных результатов за счет использования автоматизированных устройств и вычислительной техники;

- снижение затрат времени на проведение эксперимента за счет получения числовых результатов испытаний в автоматизированном режиме.

Величина усилия (Fn, мН), требуемого для извлечения петли из структуры трикотажного полотна, определяется программой автоматически. Алгоритм определения следующий:

- сигнал с датчика усилия 3 (фиг.2) поступает в аналого-цифровой преобразователь и далее в ЭВМ;

- управляющая программа напрямую считывает преобразованный цифровой сигнал, который соответствует усилию, умножает его на коэффициент преобразования датчика для получения размерности усилия Fn, мН;

- управляющая программа подставляет полученное значение Fn в формулу, по которой находится удельная закрепленность петли в структуре трикотажного полотна, fn;

- формируется файл данных;

- строится график зависимости усилия во времени.

Далее рассчитывается усилие, необходимое для извлечения единицы длины нити в петле (удельная закрепленность петли в структуре трикотажного полотна, fn, мН), по формуле:

,

где fn - закрепленность петли в структуре трикотажного полотна, мН/мм;

Fn - усилие, требуемое для извлечения петли из трикотажного полотна, мН;

ln - длина нити в петле, мм.

По величине усилия определяется группа стабильности структуры трикотажного полотна (неустойчивая, среднеустойчивая, устойчивая). В результате экспериментальных исследований установлено, что для полотен разного волокнистого состава целесообразно устанавливать различные численные значения границ групп стабильности структуры трикотажного полотна. Установление численных значений границ групп стабильности структуры трикотажного полотна (неустойчивая, среднеустойчивая, устойчивая) осуществлялось в результате исследования деформационных свойств полотен. В качестве критерия оценки стабильности структуры полотен использовалась величина остаточной деформации после однократного и многократного эксплуатационного растяжения. Проведенный парный корреляционный анализ показал тесную взаимосвязь показателя закрепленности петли в структуре трикотажного полотна с величиной остаточной деформации после однократного и многократного эксплуатационного растяжения.

Полученные данные подтверждают возможность использования предлагаемой характеристики закрепленности петли для проектирования рациональных структур трикотажных полотен, устойчивых к действию эксплуатационных нагрузок.

Для льняных трикотажных полотен определены границы групп стабильности структуры трикотажного полотна. В таблице 1 приведена градация льняных трикотажных полотен по стабильности структуры трикотажного полотна.

Результаты экспериментального исследования закрепленности петли в структуре полотна для льняных трикотажных полотен по предлагаемому способу приведены в таблице 2. В качестве примера на фиг.3 показана графическая зависимость, полученная при экспериментальном исследовании закрепленности петли в структуре льняного трикотажного полотна №1.

Таблица 1
Градация стабильности структуры льняных трикотажных полотен
Группа стабильности структуры трикотажных полотен Закрепленность петли в структуре полотна, fn, мН/мм
неустойчивая <100
среднеустойчивая 100-150
устойчивая >150
Таблица 2
Результаты исследования закрепленности петли в структуре трикотажного полотна
№ трикотажного полотна Наименование текстильного материала Поверхностная плотность полотна, г/м2 Плотность (число петель на 100 мм) Длина нити в петле, lп, мм Усилие, требуемое для извлечения петли, Fп, мН Закрепленность петли в структуре полотна, fп, мН/мм Группа стабильности структуры полотна
по горизонтали Пг по вертикали Пв
1 Чистольняное трикотажное полотно переплетением гладь 334 29 50 11,5 1274 111 среднеустойчивая
2 Чистольняное трикотажное полотно переплетением гладь 419 29 38 12,0 1470 147 среднеустойчивая
3 Чистольняное трикотажное полотно переплетением гладь 353 33 60 10,0 981 81 неустойчивая

Список использованных источников

1. Додонкин Ю.В., Кирюхин С.М. Ассортимент, свойства и оценка качества тканей. - М.: Легкая индустрия, 1979. - 240 с.

2. ГОСТ 28073-89. Изделия швейные. Методы определения разрывной нагрузки, удлинения ниточных швов, раздвигаемости нитей ткани в швах.

3. ГОСТ 3814-81. Полотна текстильные. Метод определения осыпаемости.

4. ГОСТ 29104.18-91. Ткани технические. Метод определения стойкости к осыпаемости.

5. Флерова Л.Н. Материаловедение трикотажа [Текст] / Л.Н. Флерова, Г.И. Сурикова. - М.: Легкая индустрия, 1972. - 184 с.

6. ГОСТ 8846-87. Полотна и изделия трикотажные. Методы определения линейных размеров, перекоса, числа петельных рядов и петельных столбиков и длины нити в петле.

Способ определения закрепленности петли в структуре трикотажного полотна, по которому образец из испытуемого трикотажного полотна подвергают испытаниям путем извлечения одной петли из структуры трикотажного полотна по предварительно рассчитанной длине нити в петле с последующим расчетом усилия, требуемого для извлечения единицы длины нити в петле, по формуле:
,
где fn - закрепленность петли в структуре трикотажного полотна, мН/мм;
Fn - усилие, требуемое для извлечения петли из трикотажного полотна, мН;
ln - длина нити в петле, мм.



 

Похожие патенты:

Изобретение относится к области оптико-физических исследований состава естественных материалов, таких как шерсть и растительные волокна (лен, хлопок, шелк и др.), и может быть использован в текстильной промышленности, в зоотехнике, при археологических исследованиях, при определении качества сырья и изготовленной из него продукции.

Изобретение относится к области легкой промышленности и может быть использовано для определения раздвигаемости нитей текстильных материалов. Устройство для оценки раздвигаемости нитей текстильных материалов содержит средства фиксации исследуемого образца, средства нагружения исследуемого образца в виде выполненного с возможностью управления величиной нагружения мотора-редуктора, средства измерения величины нагружения и перемещения нитей и процессор, который через микроконтроллер и блок сопряжения связан с мотором-редуктором.

Изобретение относится к биотехнологии. Предложен способ оценки токсичности продукции из полимерных и текстильных материалов.

Изобретение относится к оборудованию для швейной промышленности, в частности, к техническим средствам для экспериментальной оценки повреждаемости нитей текстильных материалов при изготовлении швейных изделий.

Изобретение может быть использовано для измерения основных технологических структурных параметров, связанных с периодичностью структуры текстильных материалов, при текущем автоматическом контроле.

Изобретение относится к материаловедению производств текстильной и легкой промышленности и предназначено для объективной оценки определения силы трения текстильных полотен.

Изобретение относится к приборостроению для легкой и текстильной промышленности и предназначено для исследования свойств легкодеформируемых высокоэластичных материалов, преимущественно трикотажных полотен.

Группа изобретений относится к швейной промышленности применительно к определению стойкости пакета одежды с несвязным объемным утеплителем к воздействию деформаций.

Изобретение относится к текстильной промышленности и представляет собой емкостный способ определения неравномерности линейной плотности продуктов прядения. Образец пропускают между двумя пластинами конденсатора, измеряют реактивное сопротивление конденсатора, определяют изменение емкости, которое пропорционально изменениям диэлектрической проницаемости образца и регистрируют их как коэффициент вариации по линейной плотности или коэффициент неровноты по линейной плотности.

Изобретение относится к текстильному материаловедению. При осуществлении способа образец нагружают, разгружают и после отдыха определяют сминаемость, причем погружение выполняется после формирования неориентированных складок с последующей цифровой фотосъемкой несмятого и смятого образца, передачей изображения на экран ЭВМ в реальном времени и обработкой цифровых изображений путем выделения областей интегральной яркости и сопоставления интенсивности распределения яркости участков изображений по этим областям, а о степени сминаемости судят по коэффициенту, рассчитываемому по формуле: K = S o − S k S o ∗ 100 где S0 - величина спектра изображения несмятого образца в средней области гистограммы, %; Sk - величина спектра изображения смятого образца в средней области гистограммы, %. Достигается моделирование реального процесса смятия текстильных материалов в швейных изделиях, повышение достоверности результатов испытаний за счет использования более объективного критерия сминаемости.

Изобретение относится к области строительства и машиностроения, а именно, к определению физико-механических свойств изделий, и может быть использовано для исследования прочностных свойств твердых материалов.

Изобретение относится к испытательной технике, а именно к стендам для определения предела прочности хрупких и малопрочных материалов. Стенд содержит основание, опоры, нагружающее устройство, снабженное силоизмерителем, и образец в виде диска, размещенный между опорами через прокладки из материала, модуль упругости которого меньше модуля упругости материала образца, причем одна из опор жестко закреплена на основании и является неподвижной, а другая опора - подвижная и соединена через шток с нагружающим устройством.

Изобретение относится к испытательной технике, а именно к устройствам для определения физико-механических свойств образцов. Реверсор содержит попарно соединенные направляющими колонками внешние и внутренние траверсы с отверстиями, силовой шток и две соединительные втулки, установленные в отверстиях траверс и связанные с внешними траверсами.

Изобретение относится к механическим испытаниям горных пород и материалов, имеющих хрупкий характер разрушения, и может быть использовано при инженерно-геологических изысканиях.

Изобретение относится к оценке эксплуатационных свойств топлив для реактивных двигателей (авиакеросинов), в частности определения в них количества антиоксидантов, и может быть применено в нефтехимической, авиационной и других отраслях промышленности.

Изобретение относится к испытательной технике и применяется при исследованиях влияния массовых сил на энергообмен при деформировании и разрушении материалов и изделий.

Изобретение относится к испытательной технике, к центробежным установкам для исследования энергообмена при деформировании и разрушении образцов материалов. Центробежная установка содержит основание, установленные на основании платформу с приводом вращения, закрепленный на платформе пассивный захват образца, активный захват образца, центробежный груз, соединенный с активным захватом, и электромагниты для взаимодействия с центробежным грузом по количеству пиков в цикле.

Изобретение относится к области исследования прочностных свойств металлов и касается оценки их деформационно-прочностных характеристик путем приложения к ним растягивающих нагрузок.

Изобретение относится к области механики конструкций и материалов и может быть использовано при испытании образцов тонкостенных плоских силовых элементов конструкций летательных аппаратов, машин и др.

Изобретение относится к области определения и контроля качества строительных материалов и конструкций, а именно к разрушающему определению физико-механических свойств бетонов в конструкциях - прочности на сжатие, на растяжение при изгибе и при раскалывании через разрушение образца при раскалывании по указанной схеме приложения нагрузки к образцу.

Изобретение относится к испытательной технике, а именно к нагружающим механизмам установок для испытания образцов материалов на ползучесть и длительную прочность при комнатной температуре, и может быть применено в заводской и исследовательской лабораториях. Нагружающий механизм установки содержит каркас, рычажное нагружающее устройство со штангой и тарелкой для грузов, тяги и балки, соединяющие нижний рычаг с образцами, четыре планки с продолговатыми отверстиями на одних концах планок и четыре образца, испытывающие изгиб с кручением. Стороны планок, не имеющие продолговатых отверстий, жестко соединены винтами с одними головками образцов, испытывающих изгиб с кручением, а другие головки этих образцов соединены болтами с каркасом. Стороны планок с винтами в них, имеющие продолговатые отверстия, соединены осями с нижними головками образцов, испытывающих растяжение, а винты в планках позволяют изменять расстояние от осей до продольных осей образцов, испытывающих изгиб с кручением. Верхние головки образцов, испытывающих растяжение, соединены с двумя балками, с которыми в свою очередь соединены нижние головки дополнительно установленных четырех образцов, испытывающих растяжение, а верхние головки дополнительно установленных четырех образцов, испытывающих растяжение, соединены с балкой, которая с помощью двух тяг соединена с нижним рычагом рычажного нагружающего устройства. Технический результат - повышение производительности за счет обеспечения одновременных испытаний восьми образцов на растяжение и расширение функциональных возможностей путем одновременного испытания четырех образцов на изгиб с кручением. 2 ил.
Наверх