Способ сортировки алмазов по электрофизическим свойствам


 


Владельцы патента RU 2526216:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Иркутский государственный университет" (RU)

Изобретение относится к области измерительной техники, к измерению электрических свойств кристаллов алмаза, предназначенных для изготовления детекторов ионизирующих излучений. Способ сортировки алмазов по электрофизическим свойствам включает предварительную поляризацию алмазов, последующее нагревание с постоянной скоростью и регистрацию токов термостимулированной деполяризации, предварительную поляризацию алмаза производят путем облучения рентгеновским излучением при температуре 70-90°С в электрическом поле, после облучения алмаз охлаждают в электрическом поле до комнатной температуры, после чего начинают нагревание и измерение токов термостимулированной деполяризации, годными признают алмазы, у которых величина пиков тока в максимумах при 130-170°С и 190-230°С меньше пороговой величины. Технический результат - повышение выхода годных приборов. 2 з.п. ф-лы.

 

Изобретение относится к области измерительной техники, к измерению электрических свойств кристаллов алмаза, предназначенных для изготовления детекторов ионизирующих излучений.

Известен способ сепарации алмазов /Патент РФ №2470714, В03В 13/00, В07С 5/34, 2012/, в котором облучение породы в виде монослойного потока отдельных частиц рентгеновским излучением осуществляется двумя узкими последовательно расположенными моноэнергетичными пучками излучения, энергии которых не равны друг другу. Распределение интенсивности излучения каждого пучка, прошедшего через один и тот же участок потока породы, регистрируется с помощью двух последовательно расположенных линейных рентгеночувствительных детекторов. В качестве характеристики алмаза используется частное от деления натурального логарифма отношения интенсивности излучения, прошедшего через алмаз, к интенсивности излучения, прошедшего мимо алмаза и любой другой частицы породы, одного пучка излучения, к натуральному логарифму отношения интенсивности излучения, прошедшего через этот же алмаз, к интенсивности излучения, прошедшего мимо алмаза и любой другой частицы породы, другого пучка излучения.

Известен способ рентгенолюминесцентной сепарации минералов /Патент РФ №2356651, В07С 5/342, В03В 13/06, 2009 г./, в котором осуществляют возбуждение люминесценции минералов импульсным рентгеновским излучением (ИРИ), измеряют суммарную интенсивность короткой компоненты люминесценции (ККЛ) и длительной компоненты люминесценции (ДКЛ) в момент действия ИРИ, измеряют интенсивность ДКЛ с задержкой после окончания действия ИРИ, определяют значения отношения суммарной интенсивности ККЛ и ДКЛ к интенсивности ДКЛ, сравнивают его с пороговым значением и разделяют минералы согласно принятому решению. При этом люминесценцию минералов возбуждают, по крайней мере, двумя ИРИ. Определяют значение разности между текущим и предыдущими значениями отношения суммарной интенсивности ККЛ и ДКЛ к интенсивности ДКЛ и принимают решение «полезный минерал», если значение отношения суммарной интенсивности ККЛ и ДКЛ к интенсивности ДКЛ ниже заданного порогового значения и одновременно все значения разности между текущим и предыдущими значениями вышеупомянутого отношения - положительные.

Недостатком известных аналогов является то, что измеренное значение времени жизни относится только к приповерхностной области и может значительно отличаться от объемной области кристалла.

Известен способ изготовления алмазных детекторов ионизирующих излучений /Патент РФ №2167435, G01T 1/24 от 24.05.2000/. В известном способе для контроля качества алмазов используется облучение алмазных заготовок пучком низкоэнергетических электронов с энергией 24 кэВ, в процессе облучения регистрируется катодолюминесценция в двух полосах с максимумами при 420 и 520 нм.

Недостатком известного способа является то, что катодолюминесценция не связана напрямую с основными рабочими параметрами детекторов ионизирующих излучений. В частности, не наблюдается существенной корреляции между люминесценцией и поляризацией детекторов. Связь катодолюминесценции с основными показателями качества алмазных детекторов носит статистический характер. Кроме того, проведение измерений катодолюминесценции необходимо проводить в вакуумной камере, что неизбежно вызывает большие затраты времени на установку образца и откачку воздуха из камеры.

Недостатком известного способа является то, что он не применяется для исследования дефектности природных алмазов, предназначенных для изготовления детекторов ионизирующих излучений.

Задачей предлагаемого изобретения является повышение выхода годных приборов и экономия алмазного сырья.

Поставленная задача достигается тем, что в способе, включающем предварительную поляризацию алмазов, последующее нагревание с постоянной скоростью и регистрацию токов термостимулированной деполяризации, предварительную поляризацию алмаза производят путем облучения рентгеновским излучением при температуре 70-90°С в электрическом поле, после облучения алмаз охлаждают в электрическом поле до комнатной температуры, после чего начинают нагревание и измерение токов термостимулированной деполяризации, годными признают алмазы, у которых величина пиков тока в максимумах при 130-170°С и 190-230°С меньше пороговой величины;

- скорость нагревания выбирают из интервала 0,2-1,0°С/с, напряженность электрического поля выбирают равной 0,2-2,2 кВ/см, дозу выбирают равной 7-15 Гр, пороговое значение выбирают из интервала (0,5-5,0)10-13А/см2;

- скорость нагревания выбирают равной 0,4±0,04°С/с, напряженность электрического поля выбирают равной 0,5±0,05 кВ/см, дозу выбирают равной 10±1 Гр, пороговое значение выбирают из интервала (2,0±0,5)10-13 А/см2.

Заявляемый способ, также как и прототип, включает операцию исходной поляризации при низкой температуре, последующее нагревание с постоянной скоростью, регистрацию токов термостимулированной деполяризации. Основное отличие заключается в иных условиях и режимах выполнения измерений.

Способ осуществляется следующим образом.

Исходную поляризацию кристалла алмаза производят при температуре, выбранной из интервала 70-90°С, облучением рентгеновским излучением в приложенном электрическом поле. После завершения поляризации образец охлаждают до комнатной температуры в приложенном электрическом поле. Облучение при повышенной температуре и последующее охлаждение в поле необходимо для того, чтобы исключить влияние низкотемпературного пика термостимулированной поляризации с температурой максимума при 60-70°С, который не корелирует с характеристиками детекторов.

При комнатной температуре внешнее электрическое поле снимают и соединяют противоположные электроды ко входу электрометра. После затухания переходных процессов, связанных с переключением, начинают нагрев образца с постоянной скоростью. В процессе нагревания регистрируют пики, температуры максимумов которых лежит в двух интервалах. Признают годными для изготовления детекторов кристаллы, у которых величина тока в любом максимуме не превышает значение из интервала (0,5-5,0)10-13А. Признают негодными кристаллы, у которых величина тока в любом из максимумов превышает пороговое значение. Исходную поляризацию производят при напряженности электрического поля, выбранной из интервала 0,2-2,0 кВ/см при облучении дозой из интервала 7,0-15,0 Гр, скорость нагревания выбирают из интервала 0,2-1,0 град/с.

Конкретные значения параметров выбраны авторами экспериментально на основе статистических данных по измерениям на исходных образцах алмазов и последующему измерению характеристик изготовленных алмазных детекторов.

Численное значение пороговой величины и температуры пиков, кроме концентрации исследуемых дефектов кристаллической решетки, зависит от условий проведения измерений, от размеров образца и его геометрической формы, поэтому параметры измерений пересчитываются на напряженность электрического поля и плотность тока, что позволяет уменьшить зависимость параметров от толщины и площади поперечного сечения.

Скорость нагревания выбирается из интервала 0,2-1,0°С/с. С понижением скорости изменения температуры увеличивается разрешающая способность, но уменьшается амплитуда пиков. Снижение скорости нагревания ниже значения 0,2°С/с время измерения возрастает до 25 мин, что значительно снижает производительность измерений. При увеличении скорости нагревания до 1,0°С/с время измерения сокращается до 5 мин. Но разрешение снижается настолько, что два соседних пика трудно различить между собой. Для практической реализации способа можно рекомендовать значение 0,4±0,04°С/с. При такой скорости нагревания время измерения составляет 15 мин при хорошем разрешении двух соседних пиков.

Исходную поляризацию кристаллов алмаза целесообразно проводить при напряженности электрического поля, выбранной из интервала 0,2-2 кВ/см. При напряженности поля менее 0,2 кВ/см высота пика становится сравнимой по величине с шумами электрометра. При напряженности поля выше 2,0 кВ/см в отдельных случаях начинается поверхностный пробой по поверхности образцов. Для практической реализации способа можно рекомендовать напряженность поля 0,5±0,05 кВ/см (например, 200В при толщине кристалла 4 мм).

Доза облучения выбирается так, чтобы высота пиков не зависела от конкретного значения дозы. Экспериментально установлено, что при значениях дозы выше 7 Гр в большей части образцов достигается максимально возможное значение высоты пика. Дальнейшее повышение дозы до 15 Гр не приводит к увеличению сигнала. Для проведения экспериментальных работ можно рекомендовать среднее значение из указанного интервала, равное 10±1 Гр.

При указанных выше условиях пороговое значение следует выбирать из интервала (0,5-5,0)10-13А/см2. При рекомендованных для реализации средних значениях пороговое значение следует выбирать из более узкого интервала (0,15-0,25)10-13А/см2.

Пример. Измерение проводится на алмазе толщиной 3 мм и площадью поперечного сечения 10 мм2. Напряжение, прикладываемое при исходной поляризации, равно 200 В, при этом напряженность электрического поля в кристалле равна 600 В/см. Образец нагревают до температуры 80°С, прикладывают электрическое поле и облучают рентгеновским излучением дозой 10 Гр. После завершения облучения, не снимая электрического поля, образец охлаждают до температуры 30°С. Электрическое поле снимают, а электроды образца подключают к входу электрометра, например, с входным сопротивлением 1011Ом. После затухания переходных процессов, связанных с отключением поля, начинают нагрев образца с постоянной скоростью 0,4°С/с. Одновременно регистрируют ток термостимулированной деполяризации. Нагревание завершают при 300°С. Наблюдается один из пиков или одновременно два пика при температурах 130-170°С и 190-230°С. Если значение пиков в максимумах не превышает 2·10-13А/см, то кристалл признают годным для изготовления алмазного детектора.

Технический эффект заявляемого изобретения заключается в повышении выхода годных приборов и экономии алмазного сырья, так как заявляемый способ позволяет отбраковать целые необработанные кристаллы алмазов, которые могут использоваться в традиционных целях для ювелирных изделий или для инструмента.

1. Способ сортировки алмазов по электрофизическим свойствам, включающий предварительную поляризацию алмазов, последующее нагревание с постоянной скоростью и регистрацию токов термостимулированной деполяризации, предварительную поляризацию алмаза производят путем облучения рентгеновским излучением при температуре 70-90°С в электрическом поле, после облучения алмаз охлаждают в этом же электрическом поле до комнатной температуры, после чего начинают нагревание и измерение токов термостимулированной деполяризации, годными признают алмазы, у которых величина пиков тока в максимумах при 130-170°С и 190-230°С меньше пороговой величины.

2. Способ по п.1, отличающийся тем, что скорость нагревания выбирают из интервала 0,2-1,0°С/сек, напряженность электрического поля выбирают равной 0,2-2,2 кВ/см, дозу выбирают равной 7-15 Гр, пороговое значение выбирают из интервала (0,5-5,0)·10-13А/см2.

3. Способ по п.1, отличающийся тем, что скорость нагревания выбирают равной 0,4±0,04°С/сек, напряженность электрического поля выбирают равной 0,5±0,05 кВ/см, дозу выбирают равной 10±1 Гр, пороговое значение выбирают из интервала (2,0±0,5)·10-13 А/см2.



 

Похожие патенты:

Использование: для регистрации электромагнитного излучения, особенно рентгеновских лучей. Сущность изобретения заключается в том, что детектор рентгеновского излучения и цепь его пикселя позволяют покрывать широкий динамический диапазон с использованием автоматического выбора параметра чувствительности в каждом пикселе, таким образом обеспечивая улучшенное отношение сигнал-шум при всех уровнях воздействия.

Изобретение относится к полупроводниковым координатным детекторам радиационных частиц. МОП диодная ячейка монолитного детектора излучений содержит МОП транзистор, шину высокого положительного (отрицательного) напряжения питания и выходную шину, при этом для повышения качества детектирования, т.е.

Изобретение относится к области измерения излучения физических частиц с помощью полупроводниковых детекторов и может быть использовано при создании многоэлементных детекторов заряженных частиц на основе полупроводниковых кристаллов.

Изобретение относится к детекторным модулям, также относится к детекторным устройствам, кроме того, относится к способам детектирования электромагнитного излучения.

Изобретение относится к медицинским системам визуализации, в частности, находит применение в компьютерной томографии (СТ) и, более конкретно, для реконструкции энергетического спектра.

Изобретение относится к технике регистрации ионизирующего излучения, в частности к детекторам рентгеновского излучения. .

Изобретение относится к полупроводниковым приборам для преобразования воздействий радиационного излучения, преимущественно нейтронного, в электрический сигнал, измерение которого позволяет определить уровень радиации или набранную дозу облучения.

Изобретение относится к устройствам формирования изображения для медицинских диагностических устройств с использованием излучения. .

Изобретение относится к области ядерного приборостроения и может быть использовано при создании измерителей мощности дозы гамма-излучения ядерной энергетической установки, размещаемой на космическом аппарате. Сущность изобретения заключается в том, что устройство для измерения мощности дозы гамма-излучения ядерной энергетической установки в условиях фоновой помехи от высокоэнергетичных заряженных частиц содержит металлический корпус-коллиматор, внутри которого помещены две параллельные кремниевые пластины, выходы которых подключены к схеме антисовпадений, при этом с целью расширения энергетического диапазона регистрируемых гамма-квантов до 10 МэВ между пластинами кремния установлен фильтр из вольфрамового сплава для поглощения вторичных электронов, возникающих при взаимодействии гамма-квантов с металлическим корпусом-коллиматором. Технический результат - расширение энергетического диапазона регистрируемых гамма-квантов до энергий, характерных для излучения ядерной энергетической установки. 1 ил.

Изобретение относится к области ядерной физики и может быть использовано для регистрации сопутствующих нейтронам заряженных частиц в нейтронном генераторе малого диаметра со статическим (неоткачиваемым) вакуумом. Полупроводниковый детектор для регистрации сопутствующих нейтронам заряженных частиц в нейтронном генераторе со статическим вакуумом содержит полупроводниковый регистрирующий элемент, размещенный в диэлектрическом корпусе, закрытый как со стороны потока заряженных частиц, так и с противоположной стороны слоями металла, электрически соединенными с токоотводами, при этом диэлектрический корпус выполнен из вакуум-плотного материала с газовой десорбционной способностью не более 5·10-8 мбар·см-2·с-1, регистрирующий элемент выполнен в виде гетероструктуры, включающей подложку из карбида кремния типа n+6H-SiC, на которой выращен эпитаксиальный слой карбида кремния типа n-6H-SiC, снабженный с противоположной подложке стороны выпрямляющим слоем в виде барьера Шоттки. Технический результат - повышение радиационной стойкости полупроводникового детектора и эффективности регистрации сопутствующих нейтронам заряженных частиц. 2 ил.

Предлагаемое изобретение «Монолитный быстродействующий координатный детектор ионизирующих частиц» относится к полупроводниковым координатным детекторам ионизирующих частиц. Целью изобретения является повышение быстродействия и технологичности координатного детектора, что особенно важно для создания нового поколения «детекторов меченных нейтронов» для обнаружения взрывчатых веществ, сканеров рентгеновских лучей медицинского, таможенного и иного назначения, отличающихся от известных более высоким качеством изображений объектов. Поставленные цели достигаются за счет использования оригинальной схема - техники детектора, в которой используются только биполярные транзисторы, включенные по схеме с общим коллектором, также за счет функционально-интегрированной монолитной конструкции детектора, где полупроводниковая подложка, в которой генерируются носители заряда, является одновременно общей коллекторной областью биполярных структур транзисторов. 2 з.п. ф-лы, 5 ил.

Изобретение относится к области формирования радиологических изображений, компьютерной томографии (СТ), эмиссионной томографии, радиационных детекторов и их предшествующему уровню техники. Сущность изобретения заключается в том, что узел (20) детектора излучения содержит модуль (40) матрицы детектора, выполненный с возможностью преобразования частиц излучения в электрические импульсы детектирования, и специализированную интегральную схему (ASIC) (42), соединенную при функционировании с матрицей детектора. ASIC содержит схему (60) обработки сигналов, выполненную с возможностью оцифровки электрического импульса детектирования, принятого от матрицы детектора, и тестовую схему (80), выполненную с возможностью введения тестового электрического импульса в схему обработки сигналов. Тестовая схема содержит измеритель (84) тока, выполненный с возможностью измерения электрического импульса, введенного в схему обработки сигналов, и генератор (82) импульсов заряда, выполненный с возможностью генерации тестового электрического импульса, который вводится в схему обработки сигналов. Узел (20) детектора излучения собирают посредством соединения при функционировании ASIC (42) с модулем (40) матрицы детектора и схему (60) обработки сигналов ASIC собранного узла детектора излучения тестируют без использования излучения. Технический результат - повышение качества тестирования устройства детектирования. 2 н. и 13 з.п. ф-лы, 3 ил.

Изобретение относится к области преобразователей энергии оптических и радиационных излучений в электрическую энергию (э.д.с). Согласно изобретению предложен кремниевый монокристаллический многопереходный фотоэлектрический преобразователь оптических и радиационных излучений, содержащий диодные ячейки с расположенными в них перпендикулярно горизонтальной светопринимающей поверхности вертикальными одиночными n+-p--p+(p+-n--n+) переходами и расположенными в диодных ячейках параллельно к светопринимающей поверхности горизонтальными n+-p-(p+-n-) переходами, причем все переходы соединены в единую конструкцию металлическими катодными и анодными электродами, расположенными соответственно на поверхности областей n+(p+) типа вертикальных одиночных n+-p--p+(p+-n--n+) переходов, при этом он содержит в диодных ячейках дополнительные вертикальные n+-p-(p+-n-) переходы, причем их области n+(p+) типа подсоединены соответственно областями n+(p+) типа n+-p-(p+-n-) горизонтальных переходов к областям - n+(p+) типа вертикальных одиночных n+-p--p+(p+-n--n+) переходов, при этом на его нижней и боковых поверхностях расположен слой диэлектрика толщиной менее длины пробега радиационных частиц в диэлектрике, на поверхности которого размещен слой радиоактивного металла толщиной, равной длине пробега электронов в металле, при этом расстояние между электродами диодных ячеек не превышает 2-х длин пробега радиационных частиц. Также предложен способ изготовления описанного выше кремниевого монокристаллического многопереходного фотоэлектрического преобразователя оптических и радиационных излучений. Изобретение обеспечивает повышение КПД преобразователей энергии излучения в электрическую энергию, уменьшение их веса на единицу площади и расширение области их применения. 2 н.п. ф-лы, 4 ил.

Изобретение относится к детектору излучения и соответствующему способу детектирования излучения. Детектор (100-400) излучения содержит элемент-преобразователь (110) для преобразования падающего излучения (X) в электрические сигналы; периодический или квазипериодический массив анодов (130-430), расположенный на первой стороне элемента-преобразователя (110); по меньшей мере два направляющих электрода (140-440), которые расположены примыкающими к двум различным анодам; блок (150) управления, который подсоединен к упомянутым по меньшей мере двум направляющим электродам (140-440) и приспособлен подавать различные электрические потенциалы на упомянутые по меньшей мере два направляющих электрода (140-440), при этом упомянутые потенциалы являются функцией напряжений холостого хода, которые возникают между направляющим электродом (140-440) и соответствующим анодом, когда между соответствующими анодами (130-430) и катодом (120) подается напряжение. Технический результат - повышение точности детектирования излучения. 3 н. и 10 з.п. ф-лы, 4 ил.

Изобретение относится к детектору для обнаружения высокоэнергетического излучения. Детектор (100) излучения содержит преобразовательный элемент (102) для преобразования падающего высокоэнергетического излучения (X) в зарядовые сигналы, катод (101) и решетку (104) анодов (103), расположенные на разных сторонах преобразовательного элемента, для генерации электрического поля (Е0, Ed) в преобразовательном элементе (102), при этом преобразовательный элемент (102) имеет пространственную неоднородность, за счет которой напряженность упомянутого электрического поля (Е0, Ed) увеличивается в первой области (Rd) вблизи анодной решетки и/или уменьшается во второй области (R0) на удалении от анодной решетки. Технический результат - повышение точности регистрации падающих высокоэнергетических фотонов. 3 н. и 10 з.п. ф-лы, 4 ил.

Использование: для регистрации электромагнитного излучения со сложным спектральным составом. Сущность изобретения заключается в том, что полупроводниковый комбинированный приемник электромагнитного излучения включает соосно расположенные каналы регистрации оптического и жесткого электромагнитного излучения, созданный на основе чередующихся эпитаксиально согласованных слоев чувствительных в соответствующих спектральных диапазонах полупроводниковых материалов с электронно-дырочными переходами или без них, чувствительные слои располагают по разные стороны подложки, толщина чувствительного к жесткому электромагнитному излучению материала приемника на два порядка больше, чем у чувствительного материала фотоприемника, в качестве фильтра для приемника жесткого электромагнитного излучения, обрезающего излучение оптического диапазона, используют слой чувствительного к этому излучению полупроводникового материала, на основе которого формируют фотоприемник оптического диапазона. Технический результат: обеспечение возможности упрощения конструкции и расширение возможностей систем регистрации электромагнитного излучения. 1 ил.

Изобретение относится к системе визуализации и более конкретно к детектору со счетом фотонов с разрешением по энергии. Система визуализации содержит источник излучения, испускающий излучение, проходящее через область исследования, и детекторную матрицу с множеством пикселей детектора со счетом фотонов, которые детектируют излучение, проходящее через область исследования, и соответствующим образом генерируют сигнал, показывающий детектированное излучение. Пиксель детектора со счетом фотонов содержит слой прямого преобразования, который имеет первую принимающую излучение сторону и вторую противоположную сторону, катод, прикрепленный к и покрывающий всю или значительную часть первой стороны, анод, прикрепленный к центрально расположенной области второй стороны, причем анод содержит по меньшей мере два под-анода, и металлизацию, прикрепленную ко второй стороне, окружающую анод и область анода, с зазором между анодом и металлизацией. Система также содержит реконструктор, который реконструирует сигнал для того, чтобы генерировать данные объемного изображения, показывающие область исследования. Технический результат - повышение выхода соединений пайкой для пикселя детектора. 2 н. и 13 з.п. ф-лы, 6 ил.

Изобретение относится к полупроводниковым координатным детекторам радиационных частиц. Изобретение обеспечивает повышение эффективности регистрации оптических и глубоко проникающих излучений и повышение быстродействия детектора излучений. Биполярная ячейка координатного фотоприемника - детектора излучений может использоваться в современных системах дальнометрии, управления неподвижными и движущимися объектами, зондирования облачности и контроля рельефа местности, оптических линий связи. Технический результат достигается за счет применения новой электрической схемы, в которой имеется собирающий ионизационный ток p-i-n-диод, а также 2-эмиттерный биполярный n-p-n (p-n-p)транзистор, первый эмиттер которого подключен соответственно к первой выходной адресной шине, а второй - ко второй выходной адресной шине, а база биполярного транзистора через резистор подключена к шине напряжения смещения, а коллектор - к шине питания. При этом данная электрическая схема реализуется в конструкции интегральной схемы, в которой функционально совмещены высоковольтный p-i-n-диод и низковольтный усиливающий ионизационный ток биполярный транзистор. 2 н.п. ф-лы, 2 ил.
Наверх