Фотоэлектрический гибкий модуль



Фотоэлектрический гибкий модуль
Фотоэлектрический гибкий модуль

 


Владельцы патента RU 2526219:

Закрытое Акционерное Общество "ТЕЛЕКОМ-СТВ" (RU)

Изобретение относится к области солнечной энергетики, в частности к гибким фотоэлектрическим модулям, которые могут быть использованы в качестве элементов промышленного и строительного дизайна, подвергающихся упругой деформации в продольном и/или поперечном направлении (кручение или изгиб, в качестве элементов электропитания дирижаблей, аэростатов, беспилотных летательных аппаратов и т.п. Задачей изобретения является обеспечение обратимой (упругой) деформации плоскости фотоэлектрического модуля одновременно в двух и более направлениях при одновременном снижении веса и толщины модуля. Фотоэлектрический гибкий модуль представляет собой последовательно расположенные нижнюю несущую пленку, нижний армирующий слой, нижнюю скрепляющую пленку, электрически соединенные между собой солнечные элементы, верхнюю скрепляющую пленку, верхний армирующий слой и верхнюю несущую пленку, причем нижние и верхние несущие и скрепляющие пленки выполнены из прозрачного для солнечного света материала, при этом в качестве армирующих слоев используют непрозрачные для солнечного света перфорированные пленки из антиадгезивного материала, перфорация в которых выполнена в виде регулярно расположенных квадратных отверстий размером от 0,8×0,8 мм до 10,0×10,0 мм, расположенных на расстоянии 0,5÷0,8 мм друг от друга. Задачей изобретения является обеспечение обратимой (упругой) деформации плоскости фотоэлектрического модуля одновременно в двух и более направлениях при одновременном снижении веса и толщины модуля.2 ил.

 

Изобретение относится к области солнечной энергетики, в частности к гибким фотоэлектрическим модулям, которые могут быть использованы в качестве элементов промышленного и строительного дизайна, подвергающихся упругой деформации в продольном и/или поперечном направлении - кручение или изгиб.

Также возможно использование указанных модулей в качестве элементов электропитания дирижаблей, аэростатов, беспилотных летательных аппаратов и других.

Для применения фотоэлектрических модулей в таком качестве необходимо обеспечить:

- достаточную гибкость модуля, для того чтобы вписаться в общий конструктивный дизайн промышленного объекта или плоскости крыла/фюзеляжа малогабаритного беспилотного летательного устройства,

- достаточную жесткость конструкции модуля, способного сопротивляться распределенным (ветровым) или сосредоточенным нагрузкам, например удару ледяных градин или случайному надавливанию рукой,

- малый вес, что особенно актуально в случае использования гибких фотоэлектрических модулей в качестве элементов электрообеспечения малогабаритных беспилотных летательных устройств.

Известна конструкция фотоэлектрического гибкого модуля, состоящая из эластичного полимерного основания, на котором сформирован слой аморфного кремния методом осаждения из газовой фазы [1]. Подобная конструкция может иметь высокую гибкость, практически достигающую 100%, при использовании в качестве основания тонкой полимерной пленки. Простота и невысокая стоимость производства делает модули из аморфного кремния востребованными в самых широких сферах человеческой деятельности, однако их КПД составляет 8÷11%, что существенно ниже, чем КПД для модулей на основе монокристаллического кремния, который достигает 30%.

К тому же модули из аморфного кремния менее долговечны из-за значительной деградации электрофизических свойств аморфного кремния при длительном воздействии солнечного света.

Известна также конструкция фотоэлектрического гибкого модуля, предусматривающая размещение на поверхности гибкой сетчатой мембраны рамы из солнечных элементов, коммутированных между собой с помощью металлических шин и покрытых с лицевой и тыльной сторон защитными стеклянными пластинами [2].

Недостатком данной конструкции является большой вес, а также невозможность обеспечения регулярности деформируемой плоскости модуля. Деформируется лишь сетчатая мембрана, тогда как каждый из входящих в состав модуля солнечных элементов деформации не подвергается: изменяется лишь пространственное расположение элементов относительно друг друга.

Известна конструкция фотоэлектрического гибкого модуля, представляющая собой единую конструкцию близко расположенных между собой солнечных элементов на гибком основании из синтетического материала («Каптона»), в котором солнечные элементы соединяются с основанием посредством твердеющего полимерного адгезионного слоя, в котором имеются металлические частицы, обеспечивающие эффективное соединение солнечных элементов в единую электрическую цепь [3].

Недостатком такой конструкции является ее малая жесткость. Гибкость фотоэлектрического модуля обеспечивается, в первую очередь, возможностью упругой деформации его основания. При малой толщине слоя основания фотоэлектрический модуль обладает малой жесткостью, что в ряде случаев неприемлемо. Увеличение жесткости конструкции модуля возможно лишь за счет увеличения толщины основания, а это приводит к увеличению веса фотоэлектрического модуля, что также является неприемлемым решением.

Наиболее близким по технической сущности и достигаемому результату является фотоэлектрический гибкий модуль, содержащий прозрачные для солнечного света верхнюю и нижнюю несущие пленки, расположенные между несущими пленками электрически соединенные между собой солнечные элементы, скрепленные с несущими пленками прозрачными для солнечного света верхней и нижней скрепляющей пленками, содержащими армирующие слои в виде сетки из высокопрочных искусственных нитей, прозрачных для солнечного света и пропитанных веществом или содержащих такое вещество, с низким коэффициентом поглощения и рассеивания света [4].

Максимальная компенсация упругой деформации плоскости фотоэлектрического гибкого модуля за счет введенной в его конструкцию сетки из прозрачных высокопрочных нитей обеспечивается при расположении нитей параллельно плоскости фотоэлектрического гибкого модуля.

Если высокопрочные искусственные нити сориентировать в направлении вектора внутреннего напряжения предполагаемого изгиба фотоэлектрического гибкого модуля, то тем самым можно дополнительно повысить устойчивость фотоэлектрического гибкого модуля к деформирующим напряжениям, возникающим при конкретных условиях его эксплуатации.

Если фотоэлектрический гибкий модуль предполагается эксплуатировать в виде изогнутой в продольном и поперечном направлении упругодеформированной конструкции (при размещении его на сложнопрофилированных поверхностях, таких как бампер автомобиля, элементы такелажа катеров или яхт и т.п.), оптимальным расположением высокопрочных искусственных нитей в таком случае является диагонально-перекрестное.

Для того чтобы дополнительно введенная в конструкцию фотоэлектрического гибкого модуля сетка из высокопрочных искусственных нитей не ухудшала его электрофизические параметры, высокопрочные искусственные нити пропитывают веществом с низким коэффициентом поглощения и рассеивания света (например, кремнийорганической жидкостью, представляющей собой смесь полисилоксана, содержащего диметил- или/и диэтилвинилсилоксановые звенья, платинового катализатора и сшивающего агента).

Одним из вариантов конструкции сетки из высокопрочных искусственных нитей, пропитанных веществом с низким коэффициентом поглощения и рассеивания света, является сетка, в которой в качестве искусственных нитей используются нити из стекловолокна с низким коэффициентом поглощения и рассеивания света.

Указанный фотоэлектрический гибкий модуль может быть подвергнут упругой деформации только в одном (продольном, поперечном либо диагональном) направлении, при этом возможный радиус кривизны модуля примерно равен соответственно длине или ширине фотоэлектрического гибкого модуля при изгибающих напряжениях, приложенных соответственно к противоположным краям по длине или по ширине модуля.

Недостатком такой конструкции является невозможность упругой деформации плоскости гибкого модуля одновременно в нескольких направлениях без механического разрушения солнечных элементов модуля.

Кроме того, толщина такого модуля составляет на менее 2 мм, что является минимально достижимым значением при использовании армирующей сетки из стекловолоконных нитей или нитей вещества с низким коэффициентом поглощения и рассеивания света, технология производства которой не позволяет получать сетки толщиной менее 1 мм.

Задачей изобретения является обеспечение обратимой или упругой деформации плоскости фотоэлектрического модуля одновременно в двух и более направлениях при одновременном снижении веса и толщины модуля.

Это достигается за счет того, что в фотоэлектрическм гибком модуле, представляющем собой последовательно расположенные нижнюю несущую пленку, нижний армирующий слой, нижнюю скрепляющую пленку, электрически соединенные между собой солнечные элементы, верхнюю скрепляющую пленку, верхний армирующий слой и верхнюю несущую пленку, причем нижние и верхние несущие и скрепляющие пленки выполнены из прозрачного для солнечного света материала, в качестве армирующих слоев используют непрозрачные для солнечного света перфорированные пленки из антиадгезивного материала, перфорация в которых выполнена в виде регулярно расположенных квадратных отверстий.

В качестве антиадгезивного армирующего слоя используют пленку из фторполимеров, которые практически непрозрачны для солнечного света (например, тефлоновую пленку «FORFLON») толщиной 60÷80 мкм. При этом площадь неперфорированной поверхности пленки должна быть не более 5% от перфорированной площади. Это условие реализуется только для перфорации в виде отверстий, форма которых представляет собой правильный многогранник (квадрат, шестигранник и пр.). При использовании отверстий круглой или эллипсоидальной формы площадь неперфорированной поверхности пленки не может быть менее 5% перфорированной площади, что влечет снижение КПД модуля.

Оптимальной формой отверстий является квадратная как самая технологичная с точки зрения техники перфорирования пленок. Оптимальным соотношением размеров при использовании пленки с отверстиями квадратной формы являются:

- размер отверстий: от 0,8×0,8 мм до 10,0×10,0 мм;

- расстояние между соседними отверстиями: от 0,5 до 0,8 мм.

При использовании отверстий иной формы (шестигранник, восьмигранник и т.п.) существенно снижаются прочностные характеристики пленки после перфорирования и усложняются процессы, связанные с укладкой перфорированной пленки в пакет перед операцией ламинирования.

Обеспечение расстояния между соседними перфорированными областями пленки менее 0,5 мм для случая тефлоновой пленки неприемлемо с точки зрения технологии перфорации пленки и снижения ее механической прочности.

За счет естественного рассеивания светового пучка в просветляющем покрытии солнечного элемента обеспечивается практически полная засветка поверхности солнечного элемента, и потери в КПД солнечного элемента не превышают 1÷2%.

При расстоянии между соседними перфорированными областями пленки более 0,8 мм увеличивается площадь затенения солнечных элементов модуля, что ведет к снижению КПД преобразования солнечного света солнечными элементами модуля более чем на 2%.

Использование же в качестве антиадгезивного армирующего слоя прозрачных для солнечного света перфорированных полимерных пленок (например, этиленвинилацетатной пленки «ЭВА», обработанной антиадгезивным составом, например силиконовым антиадгезивом «SYL-OFF» фирмы «Dow Coming») неэффективно из-за невозможности существенного снижения веса модуля (толщина такой пленки составляет не менее 200 мкм, что обусловлено технологией производства таких пленок) из-за невысоких прочностных характеристик пленки (прочность на разрыв составляет менее 270 н/5 см, тогда как для тефлоновых пленок эта величина составляет не менее 800 н/5 см).

Сцепление несущей и скрепляющей пленок друг с другом в заявляемой конструкции фотоэлектрического гибкого модуля осуществляется только через отверстия в перфорированной пленке в процессе изготовления модуля (на операции ламинирования солнечных элементов).

Соотношение площадей перфорируемых отверстий и площади неперфорированной поверхности пленки может варьироваться в широких пределах и определяется только условиями дальнейшей эксплуатации модуля: чем меньше это соотношение, тем большую жесткость имеет конструкция и, соответственно, тем меньшей пластической деформации может быть подвергнут модуль.

Оптимальное соотношение площадей перфорируемых отверстий и площади неперфорированной поверхности пленки обеспечивается в случае, когда перфорация выполнена в виде регулярно расположенных квадратных отверстий размером от 0,8×0,8 мм до 10,0×10,0 мм, расположенных на расстоянии 0,5÷0,8 мм друг от друга.

При этом потери КПД фотоэлектрического модуля за счет неполной засветки солнечных элементов не превышают 1÷2%, а вес снижается на минимум на 20%.

Большие соотношения площадей перфорируемых отверстий и площади неперфорированной поверхности пленки (90% и более) неприемлемы с точки зрения технологии перфорации пленки и снижения ее механической прочности, что в свою очередь затрудняет технологические операции с использованием такой пленки (в частности, процесс ламинирования модуля).

Конструкция заявляемого фотоэлектрического гибкого модуля поясняется фиг.1, где:

1 и 7 - верхняя и нижняя несущая пленки соответственно;

2 и 6 - верхняя и нижняя скрепляющая пленки соответственно;

3 и 5 - верхний и нижний армирующие слои соответственно;

4 - солнечные элементы;

8 и 9 - отверстия в верхнем и нижнем армирующих слоях

соответственно.

На фиг.2 показан нижний фрагмент модуля после ламинирования, где:

10 - область отсутствия сцепления пленок 7 и 5;

11 - область отсутствия сцепления пленок 6 и 5.

За счет антиадгезивных свойств пленки 5 вне областей сцепления 9 пленка 5 оказывается нежестко прикрепленной к поверхностям пленок 6 и 7 в местах 10 и 11. Таким образом, области 9 выполняют функцию демпферов упругой деформации в любом направлении плоскости модуля.

Поскольку отверстия в перфорированной пленке имеют правильную геометрическую форму, в этом случае обеспечиваются условия пластической деформации конструкции модуля как минимум в двух плоскостях одновременно, не приводящей к механическим повреждениям солнечных элементов.

В известных науке и технике решениях аналогичной задачи не обнаружено использование в фотоэлектрических гибких модулях в качестве армирующего слоя дополнительно введенной непрозрачной для солнечного света перфорированной пленки из антиадгезивного материала.

Реализация предлагаемой конструкции фотоэлектрического гибкого модуля с использованием непрозрачной для солнечного света пленки из антиадгезивного материала осуществляется следующим образом.

На монтажном столе раскладывается пленка первого пластика (прозрачная этилен-тетрафлюроэтиленовая пленка «TEFZEL»). На нее сверху укладывается пленка SK-10-AD толщиной 60 мкм и размером 1265×600 мм (неармированная самоклеящиеся антиадгезивная тефлоновая лента (PTFE) марки «FORFLON»), в которой предварительно методом прокатки ленты через ошипованные валики сделаны отверстия размером 10,0×10,0 мм на расстоянии 0,8 мм друг от друга. Сверху этой пленки укладывается этиленвинилацетатная пленка «ЭВА». Поверх этой стопки укладывается распаянная цепочка из 36 шт. солнечных элементов из монокристаллического кремния размером 125×125 мм каждый. Толщина каждого солнечного элемента составляет ~200 мкм. Напряжение холостого хода распаянной цепочки солнечных элементов составляла Uxx=22 В, напряжение в рабочей точке Umax=19 В, ток в рабочей точке Iк.з.=5,5 А.

Поверх распаянной цепочки солнечных элементов последовательно укладывают пленку «ЭВА», сверху перфорированную пленку SK-10-AD) и сверху пленку «TEFZEL».

Приготовленная слоистая заготовка помещается в ламинатор, где происходит формирование фотоэлектрического модуля при температуре ~150-160°С в течение 20 мин.

Изготовленный фотоэлектрический гибкий модуль имел мощность 105 Вт, толщину 0,9 мм и вес 1,25 кГ.

Изготовленный таким образом фотоэлектрический гибкий модуль сравнивался по основным параметрам с фотоэлектрическим гибким модулем той же мощности 105 Вт и тех же габаритных размеров (1200х560 мм), изготовленным по стандартной технологии [4].

В качестве армирующих слоев была использована сетка стеклотканевая (производство фирмы «X-GLASS») с ячейкой 5×5 мм и толщиной нитей 0,2÷0,3 мм.

Габаритная толщина сетки составляла ~1 мм, что определяется ее толщиной в узлах пересечения нитей.

Толщина верхней и нижней несущей пленки составляла суммарно ~0,35 мм. Толщина верхней и нижней скрепляющих пленок составлла суммарно ~0,2 мм. Толщина армирующих сеток составляла суммарно ~1,6 мм (в процессе ламинирования модуля вследствие пластической деформация сеток при температуре ламинации ~160°С происходит их усадка с 1 мм до ~0,8 мм). Толщина кремниевых монокристаллических солнечных элементов составляла 0,2÷0,25 мм.

Толщина изготовленного фотоэлектрического гибкого модуля составила - 2,4 мм, вес - 1,5 кГ.

Таким образом, толщина заявляемого фотоэлектрического модуля и его вес в сравнении с прототипом оказались меньше соответственно на ~62% и на ~16%.

Заявляемый фотоэлектрический гибкий модуль может быть подвергнут упругой деформации как в продольном, так и в поперечном направлении одновременно, при этом возможный радиус кривизны модуля примерно равен соответственно длине или ширине фотоэлектрического гибкого модуля.

Технический результат, достигаемый при использовании предлагаемой конструкции, заключается в обеспечении упругой деформации плоскости фотоэлектрического гибкого модуля одновременно в двух и более направлениях при одновременном снижении толщины модуля на 50-60% и снижении веса модуля на 15-16%.

Источники информации

1. Патент РФ №2190901.

2. Патент РФ №2234166.

3. Патент США №4043834.

4. Патент РФ №2416056 - прототип.

Фотоэлектрический гибкий модуль, представляющий собой последовательно расположенные нижнюю несущую пленку, нижний армирующий слой, нижнюю скрепляющую пленку, электрически соединенные между собой солнечные элементы, верхнюю скрепляющую пленку, верхний армирующий слой и верхнюю несущую пленку, причем нижние и верхние несущие и скрепляющие пленки выполнены из прозрачного для солнечного света материала, отличающийся тем, что в качестве армирующих слоев используют непрозрачные для солнечного света перфорированные пленки из антиадгезивного материала, перфорация в которых выполнена в виде регулярно расположенных квадратных отверстий размером от 0,8×0,8 мм до 10,0×10,0 мм, расположенных на расстоянии 0,5÷0,8 мм друг от друга.



 

Похожие патенты:

Изобретение относится к электротехнике, в частности к устройствам для генерирования электрической энергии путем преобразования светового излучения в электрическую энергию, и может быть использовано при создании и производстве малоразмерных космических аппаратов с солнечными батареями (СБ).

Изобретение относится к полимерному фотоэлектрическому модулю, выполненному на основе допированной пленки проводящего полимера полианилина. Модуль характеризуется тем, что полианилин допирован гетерополианионным комплексом 2-18 ряда, имеющим химическую формулу [P2W18O62]6-.

Использование: для реализации панелей солнечных генераторов с целью обеспечения питания электрической энергией космических аппаратов, в частности спутников. Сущность изобретения заключается в том, что каждый фотогальванический элемент решетки крепят на подложке при помощи мягкого самоклеящегося и легко отсоединяемого устройства крепления, при этом заднюю сторону каждой ячейки и переднюю сторону подложки покрывают слоем, улучшающим их свойства теплового излучения.

Настоящее изобретение относится к области кремниевых многопереходных фотоэлектрических преобразователей (ФЭП) солнечных батарей. Конструкция «наклонного» кремниевого монокристаллического многопереходного (МП) фотоэлектрического преобразователя (ФЭП) согласно изобретению содержит диодные ячейки (ДЯ) с n+-p--p+ (р+-n--n+) переходами, параллельными горизонтальной светопринимающей поверхности, диодные ячейки содержат n+(p+) и р+(n+) области n+-p--p+(p+-n--n+) переходов, через которые они соединены в единую конструкцию металлическими катодными и анодными электродами, расположенными на поверхности n+(p+) и p+(n+) областей с образованием соответствующих омических контактов - соединений, при этом, что n+(p+) и p+(n+) области и соответствующие им катодные и анодные электроды расположены под углом в диапазоне 30-60 градусов к светопринимающей поверхности, металлические катодные и анодные электроды расположены на их поверхности частично, а частично расположены на поверхности оптически прозрачного диэлектрика, расположенного на поверхности n+(p+) и p+(n+) областей, при этом они с металлическими электродами и оптически прозрачным диэлектриком образуют оптический рефлектор.

Согласно изобретению предложенный генератор (100) на солнечной энергии содержит термоэлектрические элементы, примыкающие к солнечным элементам и расположенные ниже солнечных элементов.

Многофункциональная солнечноэнергетическая установка (далее МСЭУ) относится к возобновляемым источникам энергии, в частности к использованию солнечного излучения для получения электрической энергии, обеспечения горячего водоснабжения и естественного освещения помещений различного назначения, содержащая оптически активный прозрачный купол, представляющий собой двояковыпуклую прямоугольную линзу, фотоэлектрическую панель, солнечный коллектор, круглые плоские горизонтальные заслонки полых световодов, полые световодные трубы, теплоприемную медную пластину солнечного коллектора, рассеиватель солнечного света, микродвигатели круглых плоских горизонтальных заслонок полых световодных труб, круговые светодиодные лампы, аккумуляторные батареи, датчики света и температуры, электронный блок управления, пульт управления, бак-аккумулятор, теплообменник, насос, обратный клапан, шестигранные медные трубопроводы, инвертор и опору с опорными стойками для поддержания конструкции МСЭУ.

Изобретение относится к гелиотехнике, в частности к солнечным модулям с концентраторами для получения электрической и тепловой энергии. В солнечном модуле с концентратором, содержащем прозрачную фокусирующую призму с углом полного внутреннего отражения где n - коэффициент преломления материала призмы, с треугольным поперечным сечением, имеющую грань входа, на которую падает излучение по нормали к поверхности грани входа, и грань переотражения излучения, образующую острый двухгранный угол φ с гранью входа, и грань выхода концентрированного излучения и устройство отражения, образующее с гранью переотражения острый двухгранный угол ψ, который расположен однонаправленно с острым двухгранным углом φ фокусирующей призмы, устройство отражения состоит из набора зеркальных отражателей длиной L0 с одинаковыми острыми углами ψ, установленных на некотором расстоянии друг от друга, на поверхности грани входа установлены дополнительные зеркальные отражатели, которые наклонены к поверхности грани входа под углом 90°-δ, который расположен разнонаправленно с острым двухгранным углом φ фокусирующей призмы, линии касания плоскости дополнительного зеркального отражателя с гранью входа и линия касания плоскости зеркального отражателя устройства переотражения с гранью переотражения находятся в одной плоскости, перпендикулярной поверхности входа, длина проекции дополнительного зеркального отражателя на поверхность грани входа больше длины проекции зеркального отражателя устройства отражения на поверхность грани входа на величину В другом варианте солнечного модуля с концентратором, содержащем прозрачную фокусирующую призму с треугольным поперечным сечением, с углом входа лучей β0 и углом полного внутреннего отражения , где n - коэффициент преломления призмы, имеющую грань входа и грань переотражения излучения, образующие общий двухгранный угол φ, грань выхода концентрированного излучения и устройство отражения, образующее с гранью переотражения острый двухгранный угол ψ, который расположен однонаправлено с острым двухгранным углом φ фокусирующей призмы, устройство отражения состоит из набора установленных на некотором расстоянии друг от друга зеркальных отражателей длиной L0 с одинаковыми острыми углами ψ, с устройством поворота относительно грани переотражения, на поверхности грани входа установлены дополнительные зеркальные отражатели, которые наклонены к поверхности грани входа под углом 90°-δ и выполнены в виде жалюзи с устройством поворота относительно поверхности грани входа, угол наклона дополнительных зеркальных отражателей к поверхности грани входа расположен разнонаправленно с острым двухгранным углом φ фокусирующей призмы, оси устройства поворота дополнительного зеркального отражателя на грани входа и оси устройства поворота зеркального отражателя на устройстве переотражения с гранью переотражения находятся в одной плоскости, перпендикулярной поверхности входа, длина проекции дополнительного зеркального отражателя на поверхность входа больше длины проекции зеркального отражателя устройства отражения на поверхность входа на величину В способе изготовления солнечного модуля с концентратором путем изготовления фокусирующей призмы из оптически прозрачного материала, установки приемника излучения, устройства переотражения с зеркальными отражателями из закаленного листового стекла или другого прозрачного листового материала изготавливают и герметизируют стенки полости фокусирующей призмы с острым двухгранным углом при вершине 2-12° и затем заполняют полученную полость оптически прозрачной средой, устанавливают герметично приемник излучения и производят сборку дополнительных зеркальных отражателей с устройствами поворота на рабочей поверхности фокусирующей призмы и устройства поворота для устройства переотражения.

Изобретение относится к изготовлению модулей солнечных элементов, а также к соответствующим модулям солнечных элементов. Предложено применение а) по меньшей мере одного полиалкил(мет)-акрилата и b) по меньшей мере одного соединения формулы (I), в которой остатки R1 и R2 соответственно независимо друг от друга означают алкил или циклоалкил с 1-20 атомами углерода, для изготовления модулей солнечных элементов, прежде всего для изготовления световых концентраторов модулей солнечных элементов. Заявлен также модуль солнечных элементов и вариант модуля.

Задний лист для модуля солнечных элементов содержит лист подложки и отвержденный слой пленки покрытия из материала покрытия, сформированного на одной стороне или на каждой стороне листа подложки, причем указанный материал покрытия содержит фторполимер (А), имеющий повторяющиеся звенья на основе фторолефина (а), повторяющиеся звенья на основе мономера (b), содержащего группы для поперечного сшивания и повторяющиеся звенья на основе мономера (с), содержащего алкильные группы, где C2-20 линейная или разветвленная алкильная группа не имеет четвертичного атома углерода, а ненасыщенные группы, способные к полимеризации, связаны друг с другом посредством эфирной связи или сложноэфирной связи.

Изобретение относится к области солнечной энергетики, в частности к гибким фотоэлектрическим модулям, которые могут быть использованы в качестве источников электричества в системах энергообеспечения различных объектов - автомобилей, катеров, яхт, пунктов метеонаблюдения, телекоммуникационных систем, информационных стендов.

Раскрыт модуль солнечной батареи, в котором расположены поочередным образом: первый солнечный элемент, содержащий подложку первого типа проводимости, имеющую светоприемную поверхность и несветоприемную поверхность и электроды взаимно противоположной полярности, соответственно сформированные на светоприемной и несветоприемной поверхностях, и второй солнечный элемент, содержащий подложку второго типа проводимости, имеющую светоприемную поверхность и несветоприемную поверхность и электроды взаимно противоположной полярности, соответственно сформированные на светоприемной и несветоприемной поверхностях, при этом солнечные элементы отрегулированы во время изготовления таким образом, что разность в плотности тока короткого замыкания между первым и вторым солнечными элементами составляет вплоть до 20%. Модуль солнечных элементов согласно изобретению обладает улучшенной эффективностью преобразования посредством увеличения плотности расположения солнечных элементов по отношению к площади модуля солнечных элементов. 5 з.п. ф-лы, 4 ил.

Фотогальваническое устройство, содержащее: набор по меньшей мере из двух фотогальванических элементов (160, 260), промежуточный листовой материал (300), расположенный между каждым фотогальваническим элементом, при этом каждый фотогальванический элемент содержит: два токовых вывода (185, 185'), по меньшей мере один фотогальванический переход (150, 250), токосъемную шину (180, 180'), и соединительные полосы (190, 190'), которые проходят от токосъемной шины до токовых выводов, при этом все токовые выводы расположены с одной стороны. Фотогальваническое устройство согласно изобретению позволяет удовлетворить потребность в мультипереходном и многотерминальном фотогальваническом устройстве, в котором риск короткого замыкания между токосъемными полосами каждого из элементов сведен к минимуму и которым можно управлять при помощи только одной соединительной коробки, и кроме того, удовлетворить потребность в способе изготовления мультипереходного фотогальванического устройства, который позволяет облегчить подсоединение токовых выводов каждого фотогальванического элемента к соединительной коробке. 4 н. и 22 з.п. ф-лы, 14 ил.

В настоящем изобретении предложены оконные жалюзи для сбора солнечной энергии с регулируемым положением. В оконных жалюзи используются солнечный датчик и амперметр для определения зависимости между углом падения солнечного света и оптимальным расположением солнечного датчика. Эта зависимость может быть далее использована для регулировки положения множества солнечных элементов. Кроме того, оконные жалюзи содержат световой датчик для определения интенсивности света в целевой области, что может быть дополнительно использовано для регулировки положения множества солнечных элементов. Предложенные жалюзи должны обеспечить эффективный сбор солнечной энергии. 8 з.п. ф-лы, 4 ил.

Изобретение относится к способам и устройствам для измерения углов в машиностроении, а также к приборам навигации космических аппаратов. Способ повышения разрешающей способности измерения угловых координат светящегося ориентира по величинам сигналов и порядковым номерам фоточувствительных элементов, расположенных симметрично с заданным угловым шагом относительно некоторой оси, заключается в увеличении скорости изменения сигнала по углу указанных фоточувствительных элементов. Многоэлементный приемник оптического излучения состоит не менее чем из трех фоточувствительных элементов, расположенных симметрично с заданным угловым шагом относительно некоторой оси, причем фоточувствительные элементы имеют устройства, повышающие скорость изменения их сигнала по углу. Технический результат заключается в обеспечении возможности повышения разрешающей способности измерения угловой координаты светящегося ориентира. 3 н.п. ф-лы, 7 ил., 1 табл.

Фотогальваническое устройство, содержащее по меньшей мере один фотогальванический элемент (60), содержащий нанесенные на подложку (10) тонкие активные слои (15), при этом указанные активные слои не подвергают сегментированию, и по меньшей мере один статический преобразователь (50), связанный с каждым фотогальваническим элементом (60). Каждый фотогальванический элемент (60) выдает электрическую мощность с максимальным током (Icс) и номинальным напряжением (Vp), и каждый статический преобразователь (50) выполнен с возможностью передачи электрической мощности, производимой фотогальваническим элементом, на нагрузку (100), понижая передаваемый ток и повышая передаваемое напряжение. При этом активные слои фото гальванического элемента покрывают более 95% площади подложки, и указанный фотогальванический элемент способен выдавать ток, достигающий 150 A при номинальном напряжении ниже 1 В. Таким образом, на одной панели ограничивают и даже полностью исключают лазерное сегментирование фотогальванических элементов. За счет этого повышают производительность изготовления фотогальванического устройства и ограничивают мертвые площади. 2 н. и 16 з.п. ф-лы, 8 ил.

Изобретение относится к гелиотехнике, в частности к солнечным энергетическим модулям для получения электричества и тепла. Техническим результатом является повышение эффективности преобразования солнечной энергии, снижение удельных затрат на получение электроэнергии и тепла. В гибридном фотоэлектрическом модуле, содержащем защитное стеклянное покрытие, соединенные солнечные элементы, размещенные между стеклом и корпусом с теплообменником, солнечные элементы электроизолированы от теплообменника, пространство между солнечными элементами и теплообменником, а также между стеклянным покрытием и теплообменником заполнено слоем силоксанового геля толщиной 0,5-5 мм, защитное стеклянное покрытие выполнено в виде вакуумированного стеклопакета из двух стекол с вакуумным зазором 0,1-0,2 мм с вакуумом 10-3-10-5 мм рт.ст. Теплообменник выполнен в виде герметичной камеры с патрубками для циркуляции теплоносителя, а общая площадь соединенных солнечных элементов соизмерима с площадью верхнего основания корпуса теплообменника. В гибридном фотоэлектрическом модуле цепочки из последовательно соединенных солнечных элементов могут быть соединены электрически параллельно при помощи коммутационных шин. 1 з.п. ф-лы, 2 ил.

Изобретение относится к новым редокс парам для применения в сенсибилизированных красителем солнечных элементах СКСЭ. Редокс-пары образованы по общей формуле (производное бипиридина)nMe(Ion)m, где производное бипиридина есть: где R1, R2, R3 - любой заместитель из ряда метил, этил, пропил, бутил, пентил, гексил, Me - металл из ряда Cr, Mo, Nd, Ni, Pd, Pt, Ir, Co, Rh, Cu, W, Mn, Та, Fe, Ru, Ion - противоион - любой анион из ряда ClO4 -, Cl-, I-, BF4 -, PF6 -, CF3SO3 -, n, m - соответствуют валентности иона металла. Также предложены новые редокс-пары (вариант) и электролит для применения в СКСЭ. Новые редокс-пары применяются в СКСЭ и обладают наинизшими редокс-уровнями для повышения напряжения холостого хода. 3 н.п. ф-лы, 1 ил., 1 табл., 3 пр.

Устройство относится к области электротехники. Техническим результатом является повышение прочности. Зажимное соединение (1) для закрепления на направляющих балках (8) пластинообразных конструктивных элементов (13), в частности солнечных модулей, состоит из опоры (2), имеющей ориентированную в продольном направлении зажимного соединения (1) упорную балку (4) с боковыми крыловидными планками (5, 6) с поверхностями (10, 11) прилегания для конструктивных элементов (13), а также предусмотренную на нижней стороне пяту (7) для крепления опоры (2) на балке (8), а также - из зажимной крышки (3) с продольным пазом (9), охватывающим верхнюю часть упорной балки (4), и с покрывающими поверхности (10, 11) прилегания опоры (2) зажимными поверхностями (13, 14) и с удерживающим соединением (25, 28, 29) для фиксации зажимной крышки (3) на опоре (2), причем балка (8) имеет направляющие пазы с выступающими внутрь паза краями (34), и пята (7), выполненная Т-образной, своей поперечиной (36) вставлена в направляющий паз и после поворота на 90° зацепляется позади выступающих краев (34). Опора (2) имеет проход (24), по центру которого расположена пружинная шайба (31), которая с силовым замыканием захватывает вдавленный, соединенный с зажимной крышкой (3) удерживающий штифт (30) и тем самым фиксирует зажимную крышку (3) на опоре (2). 25 з.п. ф-лы, 8 ил.

Изобретение относится к области солнечной энергетики. Устройство для преобразования солнечной энергии содержит, по крайней мере, одну пару подложек, каждая из которых выполнена в виде полосы, при этом, по крайней мере, одна из полос выполнена профилированной с периодически повторяющимся профилем, образующим полости траншейного типа, и установлена с возможностью соединения своей лицевой поверхностью с тыльной поверхностью второй полосы, при этом полосы выполнены из материала, обеспечивающего возможность формирования их профилированными посредством изгибания, полоса, выполненная профилированной с периодически повторяющимся профилем, образующим полости траншейного типа, установлена с возможностью соединения своей лицевой поверхностью с тыльной поверхностью второй полосы и образования их профилями, по крайней мере, одного ряда траншей, а из полос одной пары - гибкого устройства для преобразования солнечной энергии, профили, по крайней мере, одного ряда траншей выполнены с возможностью образования части окружности, и/или части гиперболы, и/или части параболы, и/или траншеи с плоским, выпуклым или вогнутым дном и наклонными расширяющимися боковыми стенками, при этом все траншеи выполнены с направленными наружу перпендикулярными или наклонными относительно воображаемой плоскости, наложенной на края соответствующей траншеи первой полосы, бортами по контуру соответствующей траншеи, причем траншеи выполнены с нанесенным на их рабочую поверхность фотоприемным слоем, а борты траншей - с нанесенным на их поверхность фотоприемным слоем или отражающим покрытием. Изобретение обеспечивает повышение КПД посредством увеличения коэффициента поглощения фотоприемного слоя за счет увеличения количества переотражений отраженного от фотоприемного слоя излучения внутри трехмерной структуры траншейного типа, снижения зависимости коэффициента поглощения от угла падения солнечного излучения при упрощении технологии изготовления, снижении веса и снижения зависимости коэффициента поглощения от угла падения солнечного излучения при упрощении технологии изготовления. 13 з.п. ф-лы, 6 ил.

Изобретение относится к композиционным материалам, используемым в сверхлегких каркасах солнечных батарей и элементов конструкций космических аппаратов, и касается трехслойной панели. Состоит из обшивок и расположенного между ними каркаса, соединенных между собой. Каркас представляет собой ячеистый заполнитель в виде плоских элементов, образующих ячейки треугольной, прямоугольной или квадратной формы. В одной или обеих обшивках выполнены вырезы, повторяющие форму ячеек. Изобретение обеспечивает создание трехслойной панели, обладающей требуемой прочностью и жесткостью при минимально возможной массе. 9 з.п. ф-лы, 8 ил.
Наверх