Конвертер вакуумного ультрафиолетового излучения в излучение видимого диапазона в виде аморфной пленки оксида кремния siox на кремниевой подложке



Конвертер вакуумного ультрафиолетового излучения в излучение видимого диапазона в виде аморфной пленки оксида кремния siox на кремниевой подложке
Конвертер вакуумного ультрафиолетового излучения в излучение видимого диапазона в виде аморфной пленки оксида кремния siox на кремниевой подложке
Конвертер вакуумного ультрафиолетового излучения в излучение видимого диапазона в виде аморфной пленки оксида кремния siox на кремниевой подложке
Конвертер вакуумного ультрафиолетового излучения в излучение видимого диапазона в виде аморфной пленки оксида кремния siox на кремниевой подложке
Конвертер вакуумного ультрафиолетового излучения в излучение видимого диапазона в виде аморфной пленки оксида кремния siox на кремниевой подложке
Конвертер вакуумного ультрафиолетового излучения в излучение видимого диапазона в виде аморфной пленки оксида кремния siox на кремниевой подложке

 

H01L33/26 - Полупроводниковые приборы по меньшей мере с одним потенциальным барьером или с поверхностным барьером, предназначенные для светового излучения, например инфракрасного; специальные способы или устройства для изготовления или обработки таких приборов или их частей; конструктивные элементы таких приборов (соединение световодов с оптоэлектронными элементами G02B 6/42; полупроводниковые лазеры H01S 5/00; электролюминесцентные источники H05B 33/00)

Владельцы патента RU 2526344:

Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" (RU)

Изобретение относится к люминесцентным материалам - конвертерам вакуумного ультрафиолетового излучения в излучение видимого диапазона, выполненным в виде аморфной пленки оксида кремния SiOX на кремниевой подложке, предназначенным для создания функциональных элементов фотонных приборов нового поколения, а также для контроля жесткого ультрафиолетового излучения в вакуумных технологических процессах. Толщина аморфной пленки оксида кремния SiOX конвертера составляет 20÷70 нм. Содержание ионов кислорода в упомянутой пленке соответствует количеству, при котором стехиометрический коэффициент Х находится в пределах от 2,01 до 2,45. Увеличиваются интенсивности красного излучения конвертера, а также обеспечивается красное свечение при сохранении конверсии вакуумного ультрафиолетового излучения в видимое. 6 ил., 1 табл., 4 пр.

 

Изобретение относится к люминесцентным материалам - конвертерам вакуумного ультрафиолетового излучения в излучение видимого диапазона в виде аморфной пленки оксида кремния SiOX на кремниевой подложке, предназначенным для создания функциональных элементов фотонных приборов нового поколения, для использования в фотосенсорике, солнечной энергетике, авиационно-космическом приборостроении, в частности, для энергообеспечения систем навигации и управления беспилотных летательных аппаратов, а также для контроля жесткого ультрафиолетового излучения в вакуумных технологических процессах, например, при изготовлении микросхем по 32-нанометровой и более «тонкой» технологии.

Известен люминесцентный материал [патент РФ 2251761], представляющий собой активированный двухвалентным европием ортосиликат щелочно-земельного металла следующего состава: (2-x-y)SrO·x(Bau, Cav)O·(1-a-b-c-d)SiO2·aP2O5bAl2O3cB2O3 dGeO2:yEu2+ и/или (2-x-y)BaO·x(Sru, Cav)O·(1-a-b-c-d)SiO2·aP2O5bAl2O3cB2O3dGeO2:yEu2+. При облучении этого люминесцентного материала квантами ближнего ультрафиолетового диапазона (370÷390 нм) материал излучает свет в желто-зеленой, желтой или оранжевой областях спектра. Практически данный люминесцентный материал является преобразователем (конвертером) ультрафиолетового излучения в излучение видимого диапазона.

Недостатком является то, что этот известный конвертор обеспечивает преобразование в видимый свет только излучения ближнего ультрафиолетового излучения с энергией фотонов 3,35÷3,18 эВ (370÷390 нм). При этом отсутствует возможность использования излучения вакуумного ультрафиолетового диапазона, что не позволяет применять материал в перспективных фотонных технологиях.

В статье [ЖТФ, 2012, т.82, вып.2, стр.153-155] описаны свойства люминесцентных материалов на основе (CaO·0,5Al2O3·5SiO2):Eu и (CaO·0,2Al2O3·SiO2):Eu с добавкой В2O3 в количестве 3 вес.%, позволяющие использовать их в качестве конвертеров ближнего ультрафиолетового излучения (пик излучения 3,2 эВ или 380 нм) в видимое излучение (350÷675 нм, 1,84÷3,54 эВ).

Вышеуказанные известные конвертеры обеспечивают преобразование в видимый свет только ближнего ультрафиолетового излучения, отсутствует возможность конверсии вакуумного ультрафиолетового излучения, которое представляет интерес для космического приборостроения, солнечной энергетики, а также при контроле наличия или отсутствия жесткого ультрафиолетового излучения в технологических процессах, например, при создании «чипов» по 32-нанометровой и более «тонкой» технологии.

Ближайшим к предложенному является описанный в статье [Journal of Non-Crystalline Solids 357 (2011) 1977-1980] люминесцентный материал в виде имплантированной ионами кислорода аморфной пленки оксида кремния SiO2:O+(или SiOX, где x=2) толщиной 500 нм на кремниевой подложке, работающий в качестве конвертера жесткого (вакуумного) ультрафиолетового излучения (8,25÷10,25 эВ или 150,18÷120,88 нм) в видимое излучение (1,5÷3,2 эВ, 387÷826 нм). Этот конвертер обеспечивает излучение в видимой области спектра с отношением интенсивности пика красного излучения (1,9 эВ) к интенсивности излучения середины остальной части видимого спектра (2,55 эВ), равным 1,87 (Фиг.1).

Недостатком конвертера-прототипа является наличие видимого спектра излучения (1,5÷3,2 эВ), содержащего красную, оранжевую, зеленую, голубую, синюю и фиолетовую компоненты с преобладанием красной компоненты. При этом свечение имеет смешанный характер, не является ни чисто белым, ни чисто красным.

Задачей изобретения является создание конвертера вакуумного ультрафиолетового излучения в видимое излучение, обладающего повышенной интенсивностью красного излучения и обеспечивающего преимущественно красное свечение при сохранении конверсии вакуумного ультрафиолетового излучения.

Для решения поставленной задачи конвертер вакуумного ультрафиолетового излучения в излучение видимого диапазона в виде аморфной пленки оксида кремния SiOX на кремниевой подложке, отличается тем, что толщина аморфной пленки оксида кремния SiOX составляет 20÷70 нм, а ионы кислорода содержатся в количестве, при котором стехиометрический коэффициент «х» находится в пределах от 2,01 до 2,45.

Техническим результатом использования предложенного конвертора является повышение эффективности преобразования вакуумного ультрафиолетового излучения в видимое свечение, а именно, увеличение интенсивности красного излучения конвертера в 1,2÷2,7 раза и обеспечение красного свечения. Последнее достигается за счет того, что в излучении конвертера отношение интенсивности пика красного излучения (1,9 эВ) к интенсивности излучения середины остальной части видимого спектра (2,55 эВ) находится в диапазоне от 2,35 до 7,65 (таблица).

При толщине аморфной пленки оксида кремния в конверторе менее 20 нм происходит деградация структуры материала и ухудшение люминесцентных свойств конвертера вследствие увеличения количества структурных дефектов, являющихся центрами тушения люминесценции. При толщине пленки более 70 нм усложняется технология получения конвертера, требуется использование ионного источника повышенной мощности и увеличение времени имплантации, что нецелесообразно.

При стехиометрическом коэффициенте «х», равном или большем значения 2,01, обеспечивается наличие в получаемом конвертере дополнительных центров красного излучения и соответствующее увеличение интенсивности красного излучения. Однако при значениях стехиометрического коэффициента «х», больших значения 2,45, происходит ухудшение люминесцентных свойств конвертера вследствие влияния повышенного количества отрицательных ионов кислорода O2- на единицу объема аморфной пленки оксида кремния - возникает эффект концентрационного тушения люминесценции.

На фигурах 1, 2 и 3 изображены спектры излучения известного и предложенного конвертеров, а также спектр возбуждающего вакуумного излучения, при этом по вертикальным осям отложены интенсивности излучения в относительных единицах (отн. ед.), по горизонтальным - энергия фотонов излучения (эВ).

Фиг.1 - спектр излучения конвертера, представляющего собой известный люминесцентный материал в виде имплантированной ионами кислорода аморфной пленки оксида кремния SiO2:O+(или SiOX, где х=2) толщиной 500 нм на кремниевой подложке [Journal of Non-Crystalline Solids 357 (2011) 1977-1980, Figure 1 (O-related centers)].

Фиг.2 - спектр излучения предложенного конвертера в виде аморфной пленки оксида кремния SiOX, где х=2,23, толщина пленки 45 нм.

Фиг.3 - спектр возбуждения фотолюминесценции предложенного конвертера в области ультрафиолетового излучения.

Фиг.4 демонстрирует используемую при получении предложенного конвертора вакуумного ультрафиолетового излучения в излучение видимого диапазона зависимость энергии Е имплантируемых ионов O+(вертикальная ось, кэВ) от требуемой толщины d аморфной пленки оксида кремния SiOX (горизонтальная ось, нм).

Фиг.5 показывает используемые при получении предложенного конвертора вакуумного ультрафиолетового излучения в излучение видимого диапазона калибровочные зависимости флюенса F (вертикальная ось, ион/см2) от требуемой толщины d аморфной пленки оксида кремния SiOX (горизонтальная ось, нм) для нескольких постоянных значений стехиометрического коэффициента «х» (А при х=2,01, Б при х+2,23, В при х=2,45).

Фиг.6 демонстрирует используемые при получении предложенного конвертора вакуумного ультрафиолетового излучения в излучение видимого диапазона калибровочные зависимости флюенса F (вертикальная ось, ион/см2) от стехиометрического коэффициента «х» (горизонтальная ось, величина безразмерная) для нескольких постоянных значений толщины d аморфной пленки оксида кремния SiOX (Г при 20 нм, Д при 45 нм, Ж при 70 нм).

Предложенный конвертер вакуумного ультрафиолетового излучения в излучение видимого диапазона в виде аморфной пленки оксида кремния SiOX на кремниевой подложке получают путем внедрения в указанную пленку ионов кислорода имплантацией с последующим отжигом при температуре 700÷900°С в течение 0.5÷1 часа в атмосфере сухого азота, при этом для имплантации используют конвертер в виде аморфной пленки оксида кремния толщиной 20÷70 нм, имплантацию ведут с энергией ионов, величина которой определяется по формуле

где

Е - энергия фотонов, кэВ;

d - толщина аморфной пленки диоксида кремния, выбирается в пределах от 20 до 70 нм;

и при флюенсе, определяемом по формуле

где

F - флюенс, ион/см2;

d - толщина аморфной пленки диоксида кремния, выбирается в пределах от 20 до 70 нм;

х - стехиометрический коэффициент, величина безразмерная, выбирается в пределах от 2,01 до 2,45.

Имплантацию ионов кислорода в аморфную пленку оксида кремния SiOX на кремниевой подложке осуществляют с помощью ионного источника, работающего в непрерывном режиме при рассчитанных по формулам (1) и (2) параметрах и вакууме (1,4÷2,5)·10-4 Торр. Перед облучением образцы материала промывают в спирте в ультразвуковой ванне. Отжиг производят в атмосфере сухого азота с использованием электропечи сопротивления (типа НТ 40/16).

Полученные образцы конвертера представляют собой плоскопараллельные пластины площадью 1 см2, толщиной 0,5 мм, с поверхностью оптического качества. Поверхностный слой каждого образца представляет собой аморфную пленку оксида кремния SiOX, включающую молекулы O2, ионы O2, а также точечные дефекты, созданные в процессе ионной имплантации. Нижележащая основа образца состоит из нелегированного диоксида кремния. Фотолюминесценция полученного конвертера возбуждалась вакуумным ультрафиолетовым излучением (фиг.3) с энергией фотонов в интервале 8,5÷10,5 эВ с помощью синхротрона DESY через монохроматор. Люминесцентные спектры регистрировались фотоумножителем R6358P Hamamatsu.

Люминесцентный спектр излучения образца 1 конвертера-прототипа приведен на фигуре 1. Спектры излучения образцов 2 и 4 по форме соответствуют спектру излучения образца 2 (фиг.2), отличаясь интенсивностями излучения, указанными в таблице.

В таблице приведены параметры образца 1 известного конвертера-прототипа и нескольких образцов 2, 3 и 4 предложенного конвертера.

Таблица
№образца Толщина d аморфной пленки оксида кремния SiOX Стехиометри-ческий коэффициент «x» Интенсивность пика красного излучения с энергией 1,9 эВ Отношение интенсивности излучения с энергией 1,9 эВ к интенсивности излучения с энергией 2,55 эВ (безразмерн.)
(нм) (безразмерн.) (отн.ед.)
1 500 2 1,0 1,87
2 20 2,01 1,2 2,35
3 45 2,23 2,7 7,83
4 70 2,45 2,1 7,65

Ниже описаны примеры образцов предложенного конвертера. Номера примеров соответствуют номерам образцов в таблице.

Пример 1 (прототип). Конвертер получен имплантацией ионов О+ в образец в виде аморфной пленки оксида кремния толщиной 500 нм на кремниевой подложке при энергии ионов 100 кэВ и флюенсе 5·1016 ион/см2. Отжиг произведен в атмосфере сухого азота при температуре 900°С в течение 1 часа. В полученном образце интенсивность пика красного излучения с энергией 1,9 эВ равна 1 отн. ед., а отношение интенсивности излучения с энергией 1,9 эВ к интенсивности излучения с энергией 2,55 эВ равняется 1,87. Видимое излучение такого конвертера носит смешанный характер.

Пример 2. Конвертер получен имплантацией ионов 0+ в образец в виде аморфной пленки оксида кремния толщиной 20 нм на кремниевой подложке при рассчитанных по формулам (1) и (2) энергии ионов 3,7 кэВ и флюенсе 4,4·1015 ион/см2. Отжиг произведен в атмосфере сухого азота при температуре 850°С в течение 50 минут. Интенсивность пика красного излучения с энергией 1,9 эВ равна 1,2 отн. ед., а отношение интенсивности излучения с энергией 1,9 эВ к интенсивности излучения с энергией 2,55 эВ равняется 2,35. Излучение полученного конвертера является красным.

Пример 3. Конвертер получен имплантацией ионов O+ в образец в виде аморфной пленки оксида кремния толщиной 45 нм на кремниевой подложке при рассчитанных по формулам (1) и (2) энергии ионов 8,4 кэВ и флюенсе 2,4·1016 ион/см2. Отжиг произведен в атмосфере сухого азота при температуре 800°С в течение 40 минут. Интенсивность пика красного излучения с энергией 1,9 эВ равна 2,7 отн. ед., а отношение интенсивности излучения с энергией 1,9 эВ к интенсивности излучения с энергией 2,55 эВ равняется 7,83. Излучение полученного конвертера (фиг.2) является красным.

Пример 4. Конвертер получен имплантацией ионов O+ в образец в виде аморфной пленки оксида кремния толщиной 70 нм на кремниевой подложке при рассчитанных по формулам (1) и (2) энергии ионов 13,2 кэВ и флюенсе 7·1016 ион/см2. Отжиг произведен в атмосфере сухого азота при температуре 750°С в течение 30 минут. Интенсивность пика красного излучения с энергией 1,9 эВ равна 2,1 отн. ед., а отношение интенсивности излучения с энергией 1,9 эВ к интенсивности излучения с энергией 2,55 эВ равняется 7,65. Излучение полученного конвертера является красным.

Конвертер вакуумного ультрафиолетового излучения в излучение видимого диапазона, выполненный в виде аморфной пленки оксида кремния SiOX на кремниевой подложке, отличающийся тем, что толщина аморфной пленки оксида кремния SiOX составляет 20÷70 нм, а содержание ионов кислорода в упомянутой пленке соответствует количеству, при котором стехиометрический коэффициент Х находится в пределах от 2,01 до 2,45.



 

Похожие патенты:

Изобретение относится к области светотехники. Техническим результатом является достижение однородности излучаемого света и повышение эффективности освещения.

Группа изобретений относится к светоизлучающему устройству (2), содержащему источник (10) первичного света, светопреобразующую среду (14) и оптическую структуру (16). Источник первичного света располагается на подложке (11).

Группа изобретений может быть использована в индикаторах, осветительных приборах, дисплеях, источниках света для подсветки жидкокристаллических дисплеев. Светоизлучающее устройство согласно изобретению содержит основание и электропроводящие компоненты, размещенные на основании, светоизлучающий элемент, имеющий полупроводниковый слой и прозрачную подложку; отражающий компонент, не покрывающий по меньшей мере часть боковых поверхностей и верхнюю поверхность прозрачной подложки и покрывающий боковые поверхности полупроводникового слоя; и светопропускающий компонент, покрывающий часть прозрачной подложки, не покрытую отражающим компонентом при этом светоизлучающий элемент закреплен на электропроводящих компонентах, причем на поверхности этих электропроводящих компонентов, по меньшей мере часть поверхности электропроводящих компонентов, на которой не закреплен светоизлучающий элемент, покрыта изолирующим заполнителем толщиной в 5 мкм или больше, который является отражающим компонентом, а светопропускающий компонент покрывает светоизлучающий элемент.

Изобретение относится к области светотехники и касается устройства для управления цветностью светового потока белого светодиода. Устройство включает в себя светодиод белого свечения, прозрачную подложку, воздушную среду между белым светодиодом и подложкой, а также светорассеиватель.

Изобретение относится к осветительному устройству на белых светодиодах. Устройство включает синие, фиолетовые или ультрафиолетовые светодиодные чипы и люминесцентное покрытие, использующее люминесцентный материал.

Светоизлучающее устройство включает в себя светоизлучающий диод и люминесцентные вещества, расположенные вокруг светоизлучающего диода, чтобы поглощать по меньшей мере часть света, излучаемого светоизлучающим диодом, и излучать свет с отличной от поглощенного света длиной волны.

Изобретение относится к полупроводниковым источникам света. Согласно изобретению предложен способ производства структур светоизлучающих диодов (СИД) на одной пластине, включающий в себя: формирование пластины устройства с матрицами СИД; разъединение матриц СИД на пластине устройства; разделение матриц СИД с целью создания промежутков между матрицами СИД; нанесение по существу непрерывного отражающего покрытия на поверхность матриц СИД и в промежутках между матрицами СИД; удаление первых частей отражающего покрытия с поверхности матриц СИД; и разлом или отделение отражающего покрытия в промежутках между матрицами СИД, при этом вторые части отражающего покрытия остаются на боковых сторонах матриц СИД, чтобы регулировать краевое излучение.

Кристаллы светоизлучающего диода (СИД) производят путем формирования слоев СИД, включая слой первого типа проводимости, светоизлучающий слой и слой второго типа проводимости.

Изобретение относится к области полупроводниковых светоизлучающих приборов. Структура включает III-нитридную полупроводниковую структуру, содержащую светоизлучающую область, расположенную между областью n-типа и областью p-типа, при этом по меньшей мере одним слоем в светоизлучающей области является светоизлучающий слой Bx(InyGa1-y)1-xN, 0,06≤x≤0,08 и 0,1≤y≤0,14, который обладает запрещенной энергетической зоной и объемной постоянной решетки, соответствующей постоянной решетки релаксированного слоя с таким же составом, что и светоизлучающий слой Bx(InyGa1-y)1-xN, слой InGaN, обладающий такой же запрещенной энергетической зоной, что и слой Bx(InyGa1-y)1-xN, обладает объемной постоянной решетки, соответствующей постоянной решетки релаксированного слоя с таким же составом, что и слой InGaN, и объемная постоянная решетки слоя Bx(InyGa1-y)1-xN меньше, чем объемная постоянная решетки слоя InGaN.
Изобретение относится к полупроводниковой технике. Способ включает измерение значения спектральной плотности низкочастотного шума каждого светодиода при подаче напряжения в прямом направлении и плотности тока из диапазона 0.1<J<10 А/см2 до и после проведения процесса старения светодиода, осуществляемого в течение времени не менее 50 часов.

Изобретение относится к способу изготовления термического барьера, содержащего, по меньшей мере, подслой и керамический слой, покрывающие металлическую подложку из жаропрочного сплава.

Изобретение к способу получения люминофора в виде аморфной пленки диоксида кремния с ионами селена, расположенной на кремниевой подложке. Способ включает имплантацию ионов селена с энергией ионов 300±30 кэВ при флюенсе 4÷6·1016 ион/см2 в указанную пленку и первый отжиг при температуре 900÷1000°C в течение 1÷1,5 часов в атмосфере сухого азота.

Изобретение относится к области получения сверхпроводящих соединений и изготовления нанопроводников и приборов на их основе, что может быть использовано в электротехнической, радиотехнической, медицинской и других отраслях промышленности, в частности для оптического тестирования интегральных микросхем, исследования излучения квантовых точек и в системах квантовой криптографии.

Изобретение относится к области медицины, а именно к ортопедической стоматологии, и может быть использовано при изготовлении внутрикостных имплантатов путем нанесения на их металлическую основу многослойных плазменных покрытий с последующей ионно-лучевой модификацией.
Изобретение относится к области машиностроения, а именно к способам вакуумного ионно-плазменного нанесения покрытий, и может быть использовано при нанесении покрытий на детали сложной конфигурации.

Изобретение относится к технологии получения нанокристаллических пленок рутила и может быть использовано при создании полупроводниковых приборов, а также при получении защитных и других функциональных покрытий.

Изобретение относится к установке для комбинированной ионно-плазменной обработки и может быть применено в машиностроении, преимущественно для ответственных деталей, например рабочих и направляющих лопаток турбомашин.
Изобретение относится к области микроэлектроники, в частности к микроэлектронике интегральных пьезоэлектрических устройств на поверхностных акустических волнах (фильтры, линии задержки и резонаторы), которые находят широкое применение в авионике и бортовых системах.
Изобретение относится к области машиностроения и металлургии и может быть использовано в авиационном и энергетическом турбостроении при изготовлении рабочих лопаток турбин с монокристаллической структурой из жаропрочных литейных никелевых сплавов.

Изобретение относится к области химико-термической обработки металлов. Устройство для химико-термической обработки деталей в несамостоятельном тлеющем разряде содержит вакуумную камеру с подложкой для размещения деталей, источник питания, соединенный отрицательным полюсом с подложкой, а положительным - с корпусом камеры, термоэмиссионный электрод и второй источник питания, соединенный отрицательным полюсом с термоэмиссионным электродом, а положительным - с корпусом камеры.
Наверх