Матричный сплав на основе сурьмы для пропитки углеграфита

Изобретение относится к металлургии, а именно к получению армированных композиционных материалов методом пропитки, и может быть использовано для изготовления вкладышей подшипников скольжения, торцевых уплотнений. Матричный сплав для получения композиционного материала на основе сурьмы для пропитки углеграфита содержит, мас.%: олово 9,0-18,0, алюминий 1,0-4,0, титан 1,0-2,0, сурьма - остальное. Повышаются механические свойства, проникающая способность матричного сплава на основе сурьмы при минимальном содержании легирующих компонентов. 1 табл., 5 пр.

 

Изобретение относится к металлургии, к получению армированных композиционных материалов методом пропитки. Используется для изготовления вкладышей подшипников скольжения, торцевых уплотнений и т.п. Материалы, полученные методом пропитки, хорошо работают в речной и морской воде, в кислороде, азоте, аргоне, керосине, бензине, углеводородах, масле, аммиаке, на воздухе.

Известен матричный сплав на основе сурьмы, применяемый для получения композиционных материалов (далее КМ) пропиткой и имеющий следующий химический состав (мас.%): Sb - 85, Zn - 10, Ti - 5 [Костиков В.И., Варенков А.Н. Взаимодействие металлических расплавов с углеродными материалами. - М.: Металлургия, 1981, 184 с.]. Указанный состав сплава обладает пониженной по сравнению с чистой сурьмой испаряемостью при вакуумировании перед пропиткой, высокой проникающей способностью, а также имеет невысокую прочность при минимальном содержании легирующих компонентов.

Известен также матричный сплав для получения КМ пропиткой углеграфитового каркаса, состоящий из 70 мас.% Sb и 30 мас.% Sn [патент GB №1234634, МПК F16C 33/02, 09.06.1971 г.]. Этот сплав обеспечивает весьма малую испаряемость при пропитке, хорошую коррозионную стойкость, но обладает невысокой проникающей способностью по отношению к углеграфитовому каркасу. Последнее обстоятельство, несмотря на сравнительно высокую прочность матричного сплава, не позволяет получать КМ высокого качества.

Наиболее близким является матричный сплав для получения КМ пропиткой углеграфитового каркаса, состоящий из (11,0-21,0) мас.% Sn, (0,5-8,5) мас.% Ni и Sb - остальное [Патент RU №2005802, МПК C22C 1/09, C22C 12/00, опубл. БИ №1, 1994 г.].

Этот сплав обеспечивает практическое отсутствие испарения и более высокую прочность КМ, чем известные сплавы, но для получения композитов высокого качества, степени взаимодействия между компонентами, при неизменных свойствах пропитывающего сплава и углеграфитового каркаса, все же недостаточно.

Задачей данного изобретения является увеличение модуля упругости и плотности матричного сплава, достижение требуемой усадки сплава, снижение испаряемости, увеличение краевого угла смачивания.

Техническим результатом данного изобретения является улучшение механических свойств, а также увеличение проникающей способности матричного сплава на основе сурьмы при минимальном содержании легирующих компонентов.

Технический результат достигается тем, что матричный сплав на основе сурьмы для пропитки углеграфита, содержащий олово и легирующие добавки, отличается тем, что в качестве легирующих добавок содержит алюминий и титан при следующем соотношении, мас.%: олово 9,0-18,0; алюминий 1,0-4; титан 1,0-2,0; сурьма - остальное.

Введение в состав сплава алюминия приводит к повышению прочности матричного сплава вследствие увеличения его пластичности, и к хорошей коррозионной стойкости, а также снижению испаряемости в интервале температур пропитки 600-750°C.

Введение в состав сплава менее 1,0 мас.% алюминия недостаточно для увеличения твердости пропитываемого материала, а также для снижения испаряемости.

Введение в состав сплава более 4 мас.% алюминия нецелесообразно ввиду отсутствия усиления влияния на проникающую способность сплава и, соответственно, на увеличение прочности КМ.

Введение в состав сплава олова в количестве менее 9,0 мас.% приводит к заметному повышению испарения сурьмы.

Введение в состав сплава олова в количестве, превышающем 18,0 мас.%, нерационально ввиду отсутствия влияния на снижение испарения сурьмы.

Введение в состав сплава олова в указанном диапазоне концентраций приводит к существенному снижению испаряемости, однако и введение в состав сплава алюминия в указанном диапазоне также снижает испаряемость сплава. В результате действия синергетического эффекта совместное влияние данных компонентов оказывает большое воздействие на снижение испаряемости, что приводит к существенной экономии средств, т.к. каждый из компонентов можно использовать в меньшем количестве.

Введение в состав сплава титана приводит к снижению краевого угла смачивания.

Введение в состав сплава менее 1,0 мас.% титана неэффективно для снижения краевого угла смачивания.

Введение в состав сплава более 2,0 мас.% титана нецелесообразно.

Совместное использование алюминия и титана дополнительно к известным эффектам воздействия на матричный сплав приводит к повышению удельной прочности сплава, сохраняет удовлетворительную пластичность, повышает жаропрочность и модуль упругости сплава.

Предлагаемое соотношение компонентов матричного сплава обеспечивает практически полное отсутствие испарения и более высокую прочность КМ по сравнению с ранее известными сплавами.

Результаты исследований приведены в таблице.

Примеры конкретного изготовления.

Пример 1. Сплав с содержанием ингредиентов (мас.%: Sn - 8,5; Al - 0,3; Ti - 0,08, Sb - остальное) (см. таблицу).

На этапе приготовления сплава расплав сурьмы перегревается до 950°C на зеркало расплава в тигле в течение 60-120 с подается аргон. Затем добавляется при непрерывном перемешивании требуемое количество титана и алюминия. Все тщательно перемешивается до выравнивания концентрации и мелкими порциями добавляется гранулированное олово.

Изготовление КМ производится пропиткой каркаса из углеграфита марки АГ-1500 матричным расплавом под давлением 5 МПа при температуре 750°C и выдержке под давлением 20 минут.

В качестве технологических характеристик сплава исследовались его прочность, коррозионная стойкость, проникающая способность по отношению к углеграфитовому каркасу, испаряемость.

В качестве технологических характеристик КМ определялись прочность и плотность.

Прочность сплава и КМ на сжатие определялась на цилиндрических образцах диаметром 20±0,2 мм и высотой 20 мм при настройке разрывной машины на максимальную нагрузку 10000 кгс.

Коррозионная стойкость сплава проверялась по изменению веса цилиндрического образца сплава диаметром 4 мм, высотой 12±0,3 мм после пребывания в агрессивной среде в течение 1200 часов. В качестве агрессивных сред применялись растворы кислот: соляной, серной, азотной, 0,4% едкого калия, 5% хлористого натрия.

Проникающая способность сплава по отношению к углеграфитовому каркасу определялась по глубине затекания сплава в отверстие диаметром 0,45 мм, выполненное в дне плоскодонного сверления в углеграфитовом каркасе. Время изотермической выдержки сплава в плоскодонном сверлении при температуре 750°C составляло 20 мин, постоянство металлостатического давления на дно плоскодонного сверления обеспечивалось заливкой сплава в указанное сверление заподлицо с поверхностью каркаса и постоянством размеров плоскодонного сверления во всех опытах: диаметр 10±0,1 мм, глубина 5±0,1 мм.

В дне каждого плоскодонного сверления выполнялись три отверстия диаметром 0,45 мм и проникающая способность определялась как среднее значение глубины затекания из трех опытов. Испытания проводились в атмосфере аргона.

Испаряемость определялась по потере веса навески сплава, равной 9 г, нагреваемой в трубчатой печи при температуре 800°C в течение 20 минут в токе аргона, удаляющего пары сплава при атмосферном давлении.

Плотность КМ определялась как процент заполнения открытых пор. При этом объем последних в пропитываемом образце определялся предварительно заполнением заранее взвешенного образца с водой с последующим определением веса и объема заполнившей образец воды.

Указанный сплав и КМ на его основе в условиях испытаний показали: потеря веса от испарения - 1,27%, глубина затекания в капилляр - 0,18 мм, изменение веса в кислотах: соляной - 0,91%, серной - 0,176%, азотной - 0,197%, едком калии - 0,041%, хлористом натрии - 0,036%. Прочность матричного сплава составила 144 МПа. Плотность КМ составила 44,6%, его прочность - 140,9 МПа.

Пример 2. Сплав с содержанием ингредиентов (мас.%: Sn - 9,0; Al - 0,5; Ti - 0,1; Sb - остальное) (см. таблицу).

Приготовление сплава и условия его испытаний аналогичны примеру 1.

Потеря веса от испарения - 1,26%, глубина затекания - 0,24 мм, изменение веса в серной кислоте - 0,164%, в соляной - 0,083%, в азотной - 0,187%, в едком калии - 0,039%, в хлористом натрии - 0,031%, прочность сплава составила 202 МПа. Плотность КМ составила 48,8%, его прочность - 149,8 МПа.

Пример 3. Сплав с содержанием ингредиентов (мас.%: Sn - 10,0; Al - 1,0; Ti - 1,0; Sb - остальное) (см. таблицу).

Приготовление сплава и условия его испытаний аналогичны примеру 1.

Потеря веса от испарения - 0,21%, глубина затекания - 1,98 мм, изменение веса в соляной кислоте - 0,003%, в серной - 0,030%, в азотной - 0,007%, в едком калии - 0,021%, в хлористом натрии - 0,016%, прочность сплава составила 225 МПа. Плотность КМ составила 65,4%, его прочность - 169,8 МПа.

Пример 4. Сплав с содержанием ингредиентов (мас.%: Sn - 18,0; Al - 4; Ti - 2,0; Sb - остальное) (см. таблицу).

Приготовление сплава и условия его испытаний аналогичны примеру 1.

Потеря веса от испарения - 0,19%, глубина затекания - 1,83 мм, изменение веса в соляной кислоте - 0,003%, в серной - 0,031%, в азотной - 0,007%, в едком калии - 0,022%, в хлористом натрии - 0,010%, прочность сплава составила 239 МПа. Плотность КМ составила 60,6%, его прочность - 165,5 МПа.

Пример 5. Сплав с содержанием ингредиентов (мас.%: Sn - 18,5, Al - 4,5, Ti - 2,5; Sb - остальное) (см. таблицу).

Приготовление сплава и условия его испытаний аналогичны примеру 1.

Потеря веса от испарения - 0,18%, глубина затекания - 1,42 мм, изменение веса в соляной кислоте - 0,006%, в серной - 0,037%, в азотной - 0,008%, в едком калии - 0,024%, в хлористом натрии - 0,023%, прочность сплава составила 245 МПа. Плотность КМ составила 56,3%, его прочность - 159,8 МПа.

Примеры на варьирование составом сплава, обосновывающие влияние содержания олова на технологические характеристики сплава и КМ, приведены в таблице.

Предлагаемый матричный сплав на основе сурьмы обеспечивает большую прочность и плотность КМ при небольшом увеличении коррозионной стойкости и отсутствии испаряемости в интервале температур до 750°C включительно.

Матричный сплав для получения композиционного материала на основе сурьмы для пропитки углеграфита, содержащий олово, отличающийся тем, что он дополнительно содержит алюминий и титан при следующем соотношении компонентов, мас.%:

Олово 9,0-18,0
Алюминий 1,0-4,0
Титан 1,0-2,0
Сурьма остальное



 

Похожие патенты:

Изобретение относится к области металлургии и может быть использовано для получения пропиткой композиционных материалов с армирующим углеграфитовым каркасом, которые работают в условиях трения в качестве электротехнических изделий, таких как токосъемники, вставки пантографов, электротехнические щетки и т.д.

Изобретение относится к области металлургии, в частности к матричным сплавам для получения композиционных материалов пропиткой армирующего углеграфитового каркаса, которые работают в агрессивных средах в качестве торцовых уплотнителей, подшипников скольжения, направляющих и т.п.
Изобретение относится к металлургии, а именно к металломатричным композитам, которые могут быть использованы в машиностроении, в частности в автомобилестроении, электронике и электротехнике.

Изобретение относится к области металлургии и получения армированных композиционных материалов и отливок и может быть использовано для получения пропиткой композиционных материалов, имеющих армирующий углеграфитовый каркас, которые работают в агрессивных средах в качестве торцевых уплотнителей, подшипников скольжения, направляющих и т.п.
Изобретение относится к области пайки с использованием бессвинцовых припоев и может быть использовано в микроэлектронике, в частности, для пайки и лужения деталей в блоках радиоэлектронной аппаратуры.
Изобретение относится к гидрометаллургии цветных металлов, в частности к способу получения порошкообразного висмута, модифицированного металлом в качестве катализаторов, термоэлектрических материалов, легкоплавких сплавов, лекарственных препаратов.
Изобретение относится к металлообработке и может быть использовано при изготовлении лопаток ГТД. .

Изобретение относится к металлургии, в частности к получению армированных композиционных материалов. .

Изобретение относится к области металлургии, в частности к матричным сплавам для получения композиционных материалов пропиткой армирующего углеграфитового каркаса, которые работают в агрессивных средах в качестве торцовых уплотнителей, подшипников скольжения, направляющих и т.п.

Изобретение относится к области металлургии и получения армированных композиционных материалов и отливок и может быть использовано для получения пропиткой композиционных материалов, имеющих армирующий углеграфитовый каркас, которые работают в агрессивных средах в качестве торцевых уплотнителей, подшипников скольжения, направляющих и т.п.

Изобретение относится к металлургии и получению композиционных материалов скелетного типа, когда армирующий каркас из углеграфита пропитывают матричным сплавом. .

Изобретение относится к области металлургии и может быть использовано при разработке низкотемпературного безусадочного сплава на основе висмута, предназначенного для изготовления вытяжных и формовочных штампов и штамповой оснастки.

Изобретение относится к сплавам на основе висмута, предназначенным для изготовления микроэлектронных приборов различного назначения. .

Изобретение относится к сплавам на основе висмута, предназначенным для применения в приборостроении. .

Изобретение относится к области полупроводниковых материалов с модифицированными электрическими свойствами. Способ получения низкотемпературного термоэлетрика на основе сплава Bi88Sb12 с добавками гадолиния включает помещение навески сплава Bi88Sb12 и металлического гадолиния в количестве 0,01-0,1 ат.% в стеклянную ампулу, из которой откачивают воздух до 10-3 мм рт. ст. и запаивают, размещение ампулы в печи, ее нагрев до температуры плавления сплава до полного растворения гадолиния, зонное выравнивание со скоростью 2 см/ч и выращивание монокристалла на затравку заданной ориентации методом зонной перекристаллизации при четном проходе со скоростью 0,5 мм/ч. Полученный термоэлектрик состоит из монокристалла Bi88Sb11 с распределенными в межслоевом пространстве наночастицами гадолиния, приводящими к увеличению соотношения подвижностей электронов и дырок без изменения концентрации носителей заряда, что в конечном итоге приводит к увеличению модуля дифференциальной термоэдс и соответственно термоэлектрической эффективности до 70% при 110 К для добавок гадолиния 0,1 ат.%. 2 н.п. ф-лы, 3 ил.

Изобретение относится к области металлургии, в частности к получению армированных композиционных материалов, и может быть использовано для получения композиционных материалов, работающих в условиях трения в качестве электротехнических изделий, таких как токосъемники, вставки пантографов, электротехнические щетки и т.п. Композиционный материал содержит углеграфитовый каркас, пропитанный матричным сплавом на основе меди, содержащим, мас.%: смесь порошков тетрабората лития и лигатуры медь-бор с содержанием в смеси 6% лития и 29% бора 0,5-3,0, фосфор 4,0-8,0, медь - остальное. Техническим результатом изобретения является повышение электропроводности композиционного материала при сохранении прочностных характеристик. 7 пр., 1 табл.
Наверх