Способ получения композитного волокна на основе гидролизного лигнина с полиакрилонитрилом

Изобретение относится к области получения композиционного волокна на основе гидролизного лигнина с полиакрилонитрилом и может быть использовано для формирования прекурсорных композитных волокон в качестве исходного материала для образования углеродных волокон повышенной прочности и термостойкости. Мелкодисперсный гидролизный лигнин растворяют в диметилсульфоксиде до полного набухания при комнатной температуре в течение 10-20 ч и смешивают с раствором полиакрилонитрила в диметилсульфоксиде до образования гомогенного и формовочного раствора, содержащего 70-80% мас. гидролизного лигнина. Раствор фильтруют, дегазируют, загружают в бункер фильеры и подают в осадительную ванну установки для приготовления композитных волокон. Использование изобретения обеспечивает повышение величины утилизируемого гидролизного лигнина, повышение прочности прекурсорного волокна до 50 МПа, повышение термостойкости до 30-40% при 800°С по сравнению с 20% для чистого гидролизного лигнина, улучшение экологии производства. 1 пр.

 

Изобретение относится к области получения композиционного волокна на основе гидролизного лигнина с полиакрилонитрилом и предназначено для формирования прекурсорных композитных волокон в качестве исходного материала для образования углеродных волокон повышенной прочности и термостойкости.

В настоящее время известны методы получения композитных материалов на основе лигнина, включающие сочетание с помощью механических, химических, термических, радиационных методов различных лигнинов с рядом синтетических полимеров, в качестве которых использованы фенолформальдегидные смеси, незамещенные полиолефины, полиэфиры, полиуретаны. [М.Г.Окунь, И.В.Скрытник, С.И.Сухановский, М.И.Чудаков // Гидрол и лесохим. пром. 1960. №3. С.14-16, Ю.И.Холькин. Химия и использование лигнина. Рига. Зинанте. 480 с, J.F.Kadla, S.Kubo. // Composit.P.A. 2004. Р.395-400, С.М.Крутов, М.Я.Зарубин, Ю.Н.Сазанов. Лигнины. 2011. СПб. 410 с.].

Существенным недостатком упомянутых способов является отсутствие работ по использованию полиакрилонитрила в качестве компонента для получения совместных композитов с лигнинами и, в частности, с гидролизным лигнином.

Наиболее близким по сущности и частично достигнутому результату является способ получения волокна на основе лигнина и полиакрилонитрила, включающий использование органического растворителя, формирование волокон мокрым способом [US №20120003471, класс 428367, 2012].

Существенными и очевидными недостатками указанного прототипа являются следующие. Способ основан на использовании чистого лигнина, получение которого является затратным, при этом используется только не более 45% лигнина с применением токсичных растворителей, которые резко ограничены в технологических процессах и недопустимы в производстве биогенной продукции, связанной с целевой очисткой воды и водных поверхностей. Кроме того, процесс по прототипу усложнен ввиду использования нагрева композиции, требующего дополнительной вытяжки и дезактивации парогазовых фаз.

Технической задачей и положительным результатом заявляемого способа является разработка технологии приготовления гидролизного лигнина для сочетания с полиакрилонитрилом при использовании механо-растворной деструкции для достижения максимальной активации реакционно-способных групп гидролизного лигнина. Получение формовочного раствора на основе гомогенизации гидролизного лигнина с полиакрилонитрилом при различных соотношениях исходных компонентов в среде диметилсульфоксида заданной вязкости для приготовления прекурсорных композитных волокон, повышенной прочности и термостойкости.

Указанная задача и технический результат достигаются в способе получения композиционных волокон на основе гидролизного лигнина с полиакрилонитрилом за счет использования органического растворителя, формования прекурсорных волокон мокрым процессом. Полиакрилонитрил в виде микродисперсного порошка помещают в реакционную камеру, добавляют в нее диметилсульфоксид, смесь перемешивают в течение не менее 5 часов при комнатной температуре, после этого смесь выдерживают в течение 15 часов при указанной температуре до завершения процесса набухания полиакрилонитрила, далее в эту смесь вводят гидролизный лигнин в виде порошка с размером частиц 5-20 µm, предварительного промытого водой и высушенного в вакууме порядка 10-1 мм рт.ст. при температуре 50°С, эту композицию непрерывно перемешивают в течение 25 часов при комнатной температуре, перед формованием волокна смесь фильтруют и дегазируют, подают через фильтр в фильеру, погруженную в осадительную ванну, заполненную водой.

Указанные исходные компоненты берут при следующем соотношении, мас.%: полиакрилонитрил - 15-20, диметилсульфоксид - 80-85, гидролизный лигнин - 70-80, при концентрации исходных компонентов в растворителе 15-30%.

Более полно способ излагается на следующем примере. Композиционный материал в виде волокна получали при взаимодействии гидролизного лигнина с полиакрилонитрилом по следующей технологии: полиакрилонитрил в виде мелкодисперсного белого порошка помещали в колбу на 50 мл в количестве 4,7826 г, содержащую 55г-55 мл диметилсульфоксида, химически чистого (ХЧ). И при перемешивании выдерживали при комнатной температуре в течение 5 часов. После перемешивания смесь выдерживали при той же температуре в течение 15 часов до полного набухания полиакрилонитрила. Далее в содержимое колбы вводили при перемешивании 19,1304 г гидролизного лигнина в виде порошка, измельченного до размеров частиц 5-20µm, промытого водой и высушенного в вакууме 10-1 мм рт.ст. при температуре 50°С. Полученную смесь перемешивали при комнатной температуре в течение 25 ч. Полученную гомогенную смесь (формовочный раствор) использовали для формования прекурсорных композитных нитей по мокрому способу на опытной установке для получения синтетических волокон ИВС РАН. Перед формованием раствор фильтруют от посторонних примесей и дегазируют, после чего подают через фильтр в фильеру, погруженную в осадительную ванну. В качестве осадительной ванны используют воду. Полученное данным способом волокно обладает прочностью 50 МПа, термостойкостью по данным термического анализа при температуре 800°С, равной 40% коксового остатка. Таким образом, разработанный способ позволяет существенно увеличить объем утилизируемого гидролизного лигнина, являющегося неочищенным отходом производства, содержащим вредные примеси. При этом используются только экологически допустимые растворители: вода и диметилсульфоксид (используемые также для медицинских и фармакологических целей); эти положительные данные обеспечивают специализированную направленность процесса карбонизации получаемых прекурсорных волокон на экономически обоснованной технологии.

1. Способ получения композитного волокна на основе лигнина и полиакрилонитрила, включающий использование органического растворителя, формование волокон мокрым процессом, отличающийся тем, что полиакрилонитрил в виде микродисперсного порошка помещают в реакционную камеру, добавляют в нее диметилсульфоксид, смесь перемешивают в течение не менее 5 часов при комнатной температуре, после этого смесь выдерживают в течение 15 часов при указанной температуре до завершения процесса набухания полиакрилонитрила, далее в эту смесь вводят гидролизный лигнин в виде порошка с размером частиц 5-20 µm, предварительно промытого водой и высушенного в вакууме порядка 10-1 мм рт.ст. при температуре 50°С, эту композицию непрерывно перемешивают в течение 25 часов при комнатной температуре, перед формованием волокна смесь фильтруют и дегазируют, подают через фильтр в фильеру, погруженную в осадительную ванну, заполненную водой, при этом указанные компоненты берут при следующем соотношении, % мас.:
полиакрилонитрил 15-20
диметилсульфоксид 80-85
гидролизный лигнин 70-80,
при концентрации компонентов в растворителе 15-30 % мас.



 

Похожие патенты:
Изобретение относится к технологии производства хитозансодержащих нитей со структурой «ядро-оболочка», в частности нитей, ядром которых является вискозная или капроновая нить, а оболочкой - покрытие из хитозана.

Изобретение относится к бумажному производству, а именно к тканевым полотнищам, используемым при производстве бумаги. .

Изобретение относится к технологии получения формованных изделий из биологически распадающихся полимеров и может быть использовано при производстве упаковочного материала или волокнистых материалов - пряжи, нетканых или текстильных изделий.

Изобретение относится к технологии получения термоогнестойких текстильных материалов, в частности, полученных из смеси термостойкого синтетического волокна и окисленного полиакрилонитрильного волокна, которые могут быть использованы для изготовления защитной одежды спасателей, военнослужащих, пожарных, нефтяников и газовиков, фильтровальных тканей для очистки горячих газов от токсичной пыли в металлургической, цементной и др.
Изобретение относится к деревообрабатывающей промышленности и может быть использовано при производстве древесностружечных плит. В составе композиции для внутреннего слоя используется 10-40% стружки из отходов гниющих заготовок и 20% стружки из отходов оцилиндровки круглых лесоматериалов, а также 40-70 мас.% стружки, полученной из технологической щепы марки ПС, с применением связующего на основе низкомольной карбамидоформальдегидной смолы и эмульсии.

Изобретение относится к получению лигнина из лигноцеллюлозной биомассы, а также к снижению засорения лигнином технологического оборудования при переработке лигноцеллюлозной биомассы.

Изобретение относится к смеси привитых сополимеров для использования в качестве добавки в химических материалах, а также при освоении, эксплуатации, комплектации подземных месторождений нефти и природного газа и в случае глубоких скважин.
Изобретение относится к ацетилированнию производных торфа и может быть использовано в производстве пластических масс. .
Изобретение относится к нефтяной и газовой промышленности и может быть использовано в производстве буровых реагентов. .

Изобретение относится к древесно-пластиковой композиции для получения огнестойких продуктов. .

Изобретение относится к способу получения целлюлозосодержащегополимерного суперконцентрата и композиционным материалам на его основе. .
Изобретение относится к способу переработки лигноцеллюлозного растительного сырья в композитные материалы, такие как плитные строительные материалы для использования в строительной и мебельной промышленности.
Наверх