Способ разогрева и слива вязких и застывших продуктов из емкости

Изобретение относится к разгрузке высоковязких и высокозастывающих продуктов (нефтепродукты, патоки, жиры и т.д.) из емкостей для хранения и транспортирования. Задача изобретения заключается в том, чтобы достичь минимального времени разогрева в условиях реального технологического объекта и обеспечить надежность работы системы разогрева в холодное время года. Способ разогрева и слива высоковязких продуктов из емкости заключается в отборе холодного продукта из донной части емкости с помощью насоса, циркуляционном разогреве его во внешнем теплообменнике путем подвода в него теплоносителя и подаче нагретого продукта в несколько мест емкости, одно из которых находится на входе в канал отбора холодного продукта из емкости в систему нагрева; причем подачу нагретого продукта в это место осуществляют с расходом, обеспечивающим необходимую текучесть холодного продукта для перекачки по контуру циркуляции, а подачу оставшегося нагретого продукта осуществляют в места, удаленные от места отбора холодного продукта из емкости, и когда весь продукт в емкости разогрет, прекращают циркуляционный разогрев и сливают весь продукт из емкости; согласно изобретению увеличивают расход теплоносителя, подаваемого в теплообменник, при снижении температуры продукта на входе в теплообменник ниже расчетного значения для теплообменника, или при увеличении расхода циркуляции продукта через теплообменник сверх расчетного значения для теплообменника, или при увеличении активной мощности (фазного тока) электродвигателя насоса сверх максимально допустимого значения, или уменьшают расход теплоносителя при повышении температуры продукта на входе в теплообменник выше расчетного значения для теплообменника, или при снижении расхода циркуляции ниже расчетного значения для теплообменника. Техническим результатом заявленного изобретения является предотвращение остановок обработки, вызванных перегревом теплоносителя в линии возврата или отключением электродвигателя насоса при превышении тока потребления, а в зимнее время еще и предотвращение закупорки линии возврата теплоносителя и ее разрушение из-за замерзания. 1 ил.

 

Изобретение относится к разгрузке высоковязких и высокозастывающих продуктов (нефтепродукты, патоки, жиры и т.д.) из емкостей для хранения и транспортирования.

Наиболее близким по технической сущности к предлагаемому изобретению является способ разогрева и слива высоковязких продуктов из емкости, при котором холодный продукт отбирают из донной части цистерны, разогревают во внешнем теплообменнике и возвращают в определенном соотношении расходов нагретый продукт в два места цистерны, одно из которых находится на входе в канал отбора холодного продукта из цистерны в систему нагрева, в это место нагретый продукт подается с расходом, обеспечивающим необходимую текучесть холодного продукта для перекачки по контуру циркуляции, который устанавливается по величине давления на входе в насос или по величине температуры продукта перед теплообменником, оставшийся разогретый продукт подают на поверхность продукта в цистерне в момент, когда весь продукт в цистерне разогрет, останавливают циркуляционный разогрев и сливают продукт из цистерны (RU 2260552 С1, 09.01.2004).

Однако известный способ нагрева и слива высоковязких продуктов не позволяет решить в полной мере задачу обеспечения минимального времени разогрева продукта из-за возможных остановок системы разогрева, связанных с выходом рабочих параметров за допустимые пределы. В частности, внешние условия, в которых реализуются все способы разогрева с использованием теплоносителя, например, создаваемые котельной, предъявляют требования по температуре среды в линии возврата теплоносителя, а именно температура теплоносителя в линии возврата должна быть не ниже минимально допустимой и не выше максимально допустимой для данного технологического объекта. Нарушение этих требований вызывает прекращение подачи теплоносителя, что в летнее время приводит к увеличению времени разогрева, а в зимнее время будет приводить к переохлаждению среды в линии возврата теплоносителя вплоть до промерзания. Кроме того, превышение потребляемой активной мощности (фазного тока) электродвигателя циркуляционного насоса также может привести к его аварийному отключению и длительному перерыву в выполнении разогрева и слива.

Задача изобретения заключается в том, чтобы достичь минимального времени разогрева в условиях реального технологического объекта и обеспечить надежность работы системы разогрева в холодное время года.

Технический результат, достигаемый в летнее время, состоит в предотвращении остановок обработки, вызванных перегревом теплоносителя или отключением электродвигателя насоса при превышении тока потребления, а в зимнее время еще и в предотвращении закупорки линии возврата теплоносителя и ее разрушения из-за замерзания.

Технический результат достигается тем, что в способе разогрева и слива высоковязких продуктов из емкости, заключающемся в отборе холодного продукта из донной части емкости с помощью насоса, циркуляционном разогреве его во внешнем теплообменнике путем подвода в него теплоносителя и подаче нагретого продукта в несколько мест емкости, одно из которых находится на входе в канал отбора холодного продукта из емкости в систему нагрева, причем подачу нагретого продукта в это место осуществляют с расходом, обеспечивающим необходимую текучесть холодного продукта для перекачки по контуру циркуляции, а подачу оставшегося нагретого продукта осуществляют в места, удаленные от места отбора холодного продукта из емкости, и когда весь продукт в емкости разогрет, прекращают циркуляционный разогрев и сливают весь продукт из емкости, согласно изобретению увеличивают расход теплоносителя, подаваемого в теплообменник, при снижении температуры продукта на входе в теплообменник ниже расчетного значения для теплообменника, или при увеличении расхода циркуляции продукта через теплообменник сверх расчетного значения для теплообменника, или при увеличении активной мощности (фазного тока) электродвигателя насоса сверх максимально допустимого значения, или уменьшают расход теплоносителя при повышении температуры продукта на входе в теплообменник выше расчетного значения для теплообменника, или при снижении расхода циркуляции ниже расчетного значения для теплообменника.

Сущность изобретения поясняется чертежом, на котором изображена схема устройства для реализации способа.

На схеме обозначены: всасывающий трубопровод 1; устройство слива - всасывающий патрубок 2 (показано условно, может быть как устройством нижнего слива через донный клапан емкости, так и верхнего слива, погружаемым через горловину верхнего люка емкости); емкость 3 с разогреваемым продуктом; стартовая емкость 4 с начальным запасом, трубопровод 5 начального заполнения высокотекучим продуктом из стартовой емкости 4; обходной трубопровод 8 мимо стартовой емкости 4; запорный клапан 9.1 коммутации схемы всасывания через стартовую емкость 4 (в открытом состоянии), или схемы всасывания с подключенной стартовой емкостью 4 (в закрытом состоянии); запорный клапан 9.2 коммутации схемы всасывания с подключенной стартовой емкостью 4 (в открытом состоянии) или схемы всасывания через стартовую емкость 4 (в закрытом состоянии); теплообменник 10; трубопровод 11 подачи теплоносителя от котельной; клапан 12.1 регулирования расхода теплоносителя через теплообменник 10, установленный на трубопроводе 11 подачи (один из вариантов органа регулирования подачи); клапан 12.2 регулирования расхода теплоносителя через теплообменник 10, установленный на трубопроводе обратного возврата теплоносителя в котельную трубопровода (один из вариантов органа регулирования подачи); насос 12.3 возврата теплоносителя в котельную с регулируемой подачей (один из вариантов органа регулирования подачи); датчик 13 температуры разогреваемого продукта после теплообменника 10; напорный трубопровод 14 горячего высокотекучего продукта после теплообменника 10; линия 15 подвода горячего высокотекучего продукта в область всасывания из емкости 3; линия 16 подвода горячего высокотекучего продукта в удаленную от всасывания область емкости 3; клапаны 17, 18, регулирующие подачу горячего высокотекучего продукта в разные части емкости 3; вариант участка 25.1 сливного трубопровода в безнапорный самотечный коллектор; вариант участка 25.2 сливного трубопровода в напорный коллектор с насосным сливом; клапан 26 запорно-регулирующий сливной; датчик 27 давления продукта на входе в насос 6; датчик 28 температуры продукта перед теплообменником 10.

Также на схеме показаны датчик 29 температуры теплоносителя после теплообменника 10 в линии его возврата в котельную; датчик 30.1 давления продукта на выходе насоса 6, в совокупности с показаниями датчика 27 давления на входе в насос 6 и известной степенью открытия регулирующих клапанов 17, 18 позволяющий выполнить косвенное измерение расхода циркуляции (по напорной характеристике насоса 6 и расходной характеристике нагруженной на него гидросистемы); датчик 30.2 расхода для альтернативного прямого способа измерения расхода; датчик 31 активной мощности электродвигателя насоса 6 (или датчик фазного тока).

Предложенный способ осуществляется следующим образом. В способе обеспечивается поддержание текучести разогреваемого продукта в емкости 3 на уровне, достаточном для его циркуляции через внешний теплообменник 10. Поддержание текучести обеспечивается смешиванием в области всасывающего патрубка 2 циркуляционного контура горячего высокотекучего продукта, поступающего после теплообменника 10, с холодным малотекучим продуктом в емкости 3. При естественном межпартионном разбросе теплофизических свойств разогреваемого продукта и, особенно, в процессе разогрева продукта в емкости 3 требуется изменение соотношения горячего и холодного продукта в смеси на входе во всасывающий патрубок 2 циркуляционного контура, а именно: снижение доли горячего продукта и увеличение доли разогреваемого (повышающего свою текучесть по мере разогрева) продукта в емкости 3.

Для изменения соотношения горячего и холодного продуктов в смеси происходит разделение горячего продукта после теплообменника 10 на две линии: по первой линии 15 горячий продукт подводится непосредственно в зону всасывания патрубка 2 и значительная его часть, смешиваясь с холодным продуктом, возвращается на вход теплообменника 10, по второй линии 16 горячий продукт подается в удаленную от всасывающего патрубка 2 область емкости 3, из которой он не может без охлаждения достичь области всасывания.

Если весь горячий высокотекучий продукт после теплообменника 10 подается по линии 15, то достигается максимальная температура и текучесть возвращаемой на вход в теплообменник 10 смеси, что в условиях ограничения температуры продукта на выходе из теплообменника 10 ограничивает подвод тепла к разогреваемому продукту в емкости.

Если весь горячий высокотекучий продукт после теплообменника 10 подается по линии 16, то на вход в теплообменник 10 возвращается продукт, охлажденный до актуальной на данный момент температуры в емкости 3, с минимальной на этот момент текучестью и температурой, но способный воспринять и передать максимальное количество тепла продукту в емкости 3 при условии сохранения циркуляции (при прекращении циркуляции тепло в емкость 3 не переносится и разогрев не происходит). Прекращение циркуляции при низкой текучести продукта происходит, в первую очередь, из-за кавитационного срыва насоса 6, вызванного пониженным давлением на входе в насос 6. Очевидно существует оптимальное на текущий момент разогрева соотношение горячего и холодного продуктов в возвращаемой смеси, обеспечивающее максимальный подвод тепла в разогреваемую емкость 6.

Для изменения соотношения расходов по линиям 15 и 16 используют запорно-регулирующие клапаны 17 и 18 соответственно.

В качестве субоптимальных критериев изменения соотношения горячего и холодного продуктов в возвращаемой смеси в прототипе используются сигналы датчиков 27 и 28 давления РС1 и температуры ТС2, причем по сигналу от датчика 27 давления РС1 изменяется сопротивление линии 16 регулирующим клапаном 18, а по сигналу датчика 28 температуры ТС2 изменяется сопротивление линии 15 регулирующим клапаном 17. Температура на входе в теплообменник 10 поддерживается на минимальном уровне, обеспечивающем приемлемую текучесть продукта, давление (разрежение) на входе в насос 6 поддерживается на минимальном уровне, исключающем кавитацию в насосе 6.

Ограничение температуры продукта на выходе из теплообменника 10 максимальным уровнем, исключающим кипение и термическое разложение разогреваемого продукта, осуществляется изменением расхода теплоносителя через теплообменник 10 по сигналу от датчика 13 температуры ТСЗ. Расход теплоносителя может изменяться последством запорно-регулирующих клапанов 12.1 или 12.2, расположенных в трубопроводе подачи или возврата теплоносителя соответственно, либо циркуляционным насосом 12.3 с изменяемой производительностью.

Процесс разогрева начинается с заполнения полости насоса 6 и части циркуляционного контура горячим продуктом из стартовой емкости 4, затем включается циркуляция продукта через теплообменник 10 с одновременным подводом теплоносителя к нему. Процесс разогрева может сопровождаться или перемежаться частичным сливом, если температура продукта на входе в теплообменник 10 достигла допустимого для частичного слива уровня. Существенным фактором, обеспечивающим высокую полноту слива продукта из емкости 3, является разогрев пристенного слоя продукта емкости 3 до температур с текучестью, обеспечивающей отекание продукта со стенок емкости 3 одновременно с понижением уровня продукта при его сливе из емкости 3. Поэтому одним из признаков завершения процесса разогрева является повышение температуры стенок емкости 3 до уровня, близкого к температуре разогретого продукта.

В процессе разогрева после повышения температуры продукта на выходе из теплообменника 10 до максимально допустимого уровня либо при достижении конечной температуры разогреваемого продукта в емкости 3 подача теплоносителя понижается вплоть до полного прекращения его подачи.

По окончании разогрева производится полный слив продукта из емкости 3 при открытом клапане 26 по сливному трубопроводу 25.1 самотеком (насос 6 отключен) в безнапорный коллектор (на схеме не показан) либо по сливному трубопроводу 25.2 с включенным насосом при сливе в напорный коллектор.

В известном способе в этот момент циркуляция продукта через теплообменник 10 и подача теплоносителя при сливе прекращается. Однако известный способ разогрева не обеспечивает в полной мере нахождение ряда параметров технологического процесса в допустимых пределах.

Например, при выборе значения температуры ТС2 (датчик 28) в области температур с ненормируемой вязкостью (текучестью) продукта и при возможном значении вязкости на входе в насос 6, близком к предельно допустимому для используемого насоса 6, возможны превышение потребляемой активной мощности насоса 6 с электроприводом сверх допустимых для электродвигателя значений и остановка электроприводного насоса 6 по срабатыванию токовых (тепловых) защит. Причем повторное включение электронасоса возможно по истечении промежутка времени, существенно превышающего время его работы до отключения.

Другой важный параметр, не контролируемый в известном способе разогрева и контролируемый в предложенном способе, - это температура теплоносителя ТС4 (датчик 29) в трубопроводе возврата.

Со стороны внешней котельной всегда накладываются требования по температуре ТС4 (датчик 29) обратно возвращаемого теплоносителя, которая должна находиться в расчетном диапазоне не ниже минимально допустимой и не выше максимально допустимой.

При использовании теплообменника 10 с противоточной схемой течения температура теплоносителя ТС4 в трубопроводе возврата с некоторым превышением отслеживает температуру ТС2 продукта на входе в теплообменник 10. В прямоточных схемах течения в теплообменнике 10 температура теплоносителя ТС4 в трубопроводе возврата с некоторым превышением отслеживает температуру ТС3 продукта на выходе из теплообменника 10.

Причины, вызывающие отклонения температуры теплоносителя ТС4, идентичны для обеих схем течения в теплообменнике 10.

К повышению температуры ТС4 приводит смещение интенсивности теплообмена (по сравнению с расчетной) в сторону подвода тепла от теплоносителя относительно теплосъема со стороны разогреваемого продукта, что, в свою очередь, может быть вызвано со стороны продукта повышенной его температурой на входе в теплообменник 10 или пониженным расходом циркуляции продукта, а со стороны теплоносителя завышенными энергетическими параметрами теплоносителя (повышенные температура, давление и расход на входе в теплообменник).

Причиной отклонения в сторону понижения температуры ТС4 является смещение интенсивности теплообмена в сторону съема тепла продуктом по отношению к подводу тепла от теплоносителя на расчетных режимах, что может быть вызвано разогревом переохлажденного продукта в емкости, но обладающего достаточной текучестью при пониженных температурах продукта на входе в теплообменник или повышенным расходом циркуляции, или недостаточными энергетическими параметрами теплоносителя (пониженные температура, давление и/или расход на входе в теплообменник).

Выход температуры возвращаемого обратно теплоносителя за верхний или нижний пределы допустимого диапазона приводит к отключению автоматикой котельной циркуляции теплоносителя через теплообменник 10 (таким образом, прекращению разогрева продукта в емкости), снижению ее тепловой мощности и переводу циркуляции на внутренний контур котельной. Повторное включение циркуляции через теплообменник 10 производится при восстановлении температурного режима, что, как и любой тепловой процесс, занимает заметное время и оценивается по приборам котельной, удаленным от места разогрева емкости. Вынужденные перерывы в работе схемы разогрева приводят к увеличению времени разогрева, а в зимнее время - к локальной заморозке линии теплоносителя с возможным ее разрушением.

Для предотвращения нежелательных последствий, вызванных недопустимым повышением температуры теплоносителя ТС4 в линии его возврата после теплообменника 10, предлагается управлять подачей теплоносителя в зависимости от регистрируемых значений температуры теплоносителя и продукта на входах и выходах теплообменника 10.

Подача теплоносителя должна снижаться как при непосредственном недопустимом повышении температуры теплоносителя ТС4 в линии его возврата после теплообменника 10, так и при росте температур теплоносителя на входе в теплообменник 10 и/или продукта на входе и выходе из теплообменника 10 сверх расчетных для теплообменника значений. Также подача теплоносителя должна снижаться при снижении расхода циркуляции ниже расчетного для теплообменника значения. Величина упреждающего снижения расхода теплоносителя по расходу циркуляции и перечисленным выше температурам, за исключением ТС4, складывается как сумма составляющих, каждая из которых пропорциональна величине превышения соответствующей температуры над своим расчетным значением и/или пропорциональна величине снижения расхода циркуляции от своего расчетного значения.

Снижение расхода теплоносителя, направленное на непосредственное понижение температуры теплоносителя ТС4 в линии его возврата, прекращается, как только эта температура понижается до допустимых значений.

Расход теплоносителя снижается следующими способами, применяемыми раздельно или совместно в произвольном сочетании: - увеличением гидравлического сопротивления линии теплоносителя за счет прикрытия регулирующих клапанов 12.1 и/или 12.2, расположенных в трубопроводе подачи или возврата теплоносителя соответственно; снижением производительности циркуляционного насоса 12.3 с изменяемой производительностью.

В случае недопустимого снижения температуры теплоносителя ТС4 в линии его возврата после теплообменника также предлагается управлять подачей теплоносителя в зависимости от регистрируемых значений температуры теплоносителя и продукта на входах и выходах теплообменника 10.

Подача теплоносителя должна повышаться как при непосредственном недопустимом снижении температуры теплоносителя ТС4 в линии его возврата после теплообменника 10, так и при снижении температур теплоносителя на входе в теплообменник 10 и/или продукта на входе и выходе из теплообменника 10 сверх расчетных для теплообменника значений, а также превышении расхода циркуляции над своим расчетным значением. Величина упреждающего повышения расхода теплоносителя при расходе циркуляции и перечисленным выше температурам, за исключением ТС4, складывается как сумма составляющих, каждая из которых пропорциональна величине понижения соответствующей температуры от своего расчетного значения и/или пропорциональна величине превышения расхода циркуляции над своим расчетным значением.

Повышение расхода теплоносителя, направленное на непосредственное повышение температуры теплоносителя ТС4 в линии его возврата, прекращается, как только эта температура повышается до допустимых значений.

Для предотвращения нежелательных последствий из-за аварийного отключения электродвигателя насоса 6 при увеличении его активной мощности (фазного тока) сверх максимально допустимого значения подача теплоносителя повышается пропорционально превышению величины активной мощности (фазного тока) сверх своего номинального значения. Увеличение подачи теплоносителя при отклонении этого режимного параметра должно иметь высший приоритет относительно упреждающего снижения подачи теплоносителя при снижении температуры продукта на входе в теплообменник 10 или снижении расхода циркуляции ниже расчетных для теплообменника значений.

Повышение расхода теплоносителя, направленное на снижение активной мощности (фазного тока), прекращается, как только этот параметр снижается до допустимых значений.

Расход теплоносителя повышается следующими способами, применяемыми раздельно или совместно в произвольном сочетании: - снижением гидравлического сопротивления линии теплоносителя за счет открытия регулирующих клапанов 12.1 и/или 12.2, расположенных в трубопроводе подачи или возврата теплоносителя соответственно; повышением производительности циркуляционного насоса 12.3 с изменяемой производительностью.

Способ разогрева и слива высоковязких продуктов из емкости, заключающийся в отборе холодного продукта из донной части емкости с помощью насоса, циркуляционном разогреве его во внешнем теплообменнике путем подвода в него теплоносителя и подаче нагретого продукта в несколько мест емкости, одно из которых находится на входе в канал отбора холодного продукта из емкости в систему нагрева, причем подачу нагретого продукта в это место осуществляют с расходом, обеспечивающим необходимую текучесть холодного продукта для перекачки по контуру циркуляции, а подачу оставшегося нагретого продукта осуществляют в места, удаленные от места отбора холодного продукта из емкости, и когда весь продукт в емкости разогрет, прекращают циркуляционный разогрев и сливают весь продукт из емкости, отличающийся тем, что увеличивают расход теплоносителя, подаваемого в теплообменник, при снижении температуры продукта на входе в теплообменник ниже расчетного значения для теплообменника, или при увеличении расхода циркуляции продукта через теплообменник сверх расчетного значения для теплообменника, или при увеличении активной мощности (фазного тока) электродвигателя насоса сверх максимально допустимого значения, или уменьшают расход теплоносителя при повышении температуры продукта на входе в теплообменник выше расчетного значения для теплообменника, или при снижении расхода циркуляции ниже расчетного значения для теплообменника.



 

Похожие патенты:
Данное изобретение относится к способу перемешивания и подогрева композиционного суспензионного топлива на основе тонкоизмельченного угля и воды за счет перемешивания струями разогретого во внешнем теплообменнике композиционного суспензионного топлива, подаваемого через форсунки, выходное сопло которых выполняется вертикально скошенным для предотвращения забивания его частицами угля и направлено на стенку резервуара. .

Изобретение относится к области погрузочно-разгрузочных работ, в частности к способам и устройствам для разгрузки высоковязких и высокозастывающих продуктов из емкостей.

Изобретение относится к устройствам нагрева/разгрузки для резервуаров, содержащих высоковязкие продукты, например патоку и другое, из хранилищ, расположенных ниже уровня земли, а также с мест аварий и чрезвычайных ситуаций.

Изобретение относится к разгрузке высоковязких и высокозастывающих продуктов (нефтепродукты, патоки, жиры и т.д.) из емкостей для хранения и транспортирования. Способ заключается в отборе холодного продукта из донной части емкости, циркуляционном разогреве его во внешнем теплообменнике и подаче нагретого продукта в несколько мест емкости, одно из которых находится на входе в канал отбора холодного продукта из емкости в систему нагрева.

Изобретение относится к устройствам для размыва донных отложений, образовавшихся на дне вертикальных резервуаров с нефтью и нефтепродуктами, а также для предотвращения образования отложений.

Изобретение относится к разгрузке высоковязких и высокозастывающих продуктов из емкостей для хранения и транспортирования. .

Изобретение относится к разгрузочным и зачистным работам в емкостях, содержащих затвердевшие материалы, например парафин, мазут, пищевые жиры, поташ и тому подобное.

Изобретение относится к области погрузочно-разгрузочных работ, а именно к системам обогрева для размораживания смерзшегося груза в вагоне. .

Изобретение относится к системам водоснабжения и может быть использовано для хранения воды в средствах транспорта. .

Изобретение относится к способу полимеризации олефинов с использованием мультимодальных каталитических систем, к способу контроля старения мультимодальной каталитической системы и к контейнеру или резервуару.

Изобретение относится к транспорту вязких продуктов и может быть использовано на объектах нефтехимии, нефтепереработки и нефтехранения при разгрузке застывающих высоковязких продуктов. Устройство для разогрева и слива высоковязких нефтепродуктов из цистерны содержит монитор (5) с сопловой головкой, циркуляционный насос (3), выходной конец трубопровода которого соединен с теплообменником (12), фильтр (9), датчики температуры и давления, связанные с блоком управления (19) и емкостью-накопителем (8). В сливном устройстве установлены насос перекачки и струйный насос. Циркуляционный насос сообщается посредством управляемого блоком управления крана либо со струйным насосом, либо с монитором. Насос перекачки нефтепродукта из емкости-накопителя сообщается либо с коллектором слива, либо через теплообменник с емкостью-накопителем. Изобретение сокращает время опорожнения цистерн с вязкими продуктами и увеличивает эффективность процесса разогрева и откачки продукта из цистерны. 4 з.п. ф-лы, 3 ил.

Изобретение относится к элементам системы питания дизельных двигателей транспортных средств и может быть использовано для облегчения запуска и работы двигателей на дизельном и биодизельном топливе зимой и в условиях низких температур. Предложен топливный бак, содержащий камеру нагрева 6, выполненную в виде усеченной пирамиды, открытой снизу и имеющей пластину 12 в форме многоугольника на верхнем основании. Боковые грани 8, 9, 10 и 11 пирамиды 6 выполнены в форме трапеций, выполненных из мелкоячеистых теплопроводящих сеток и закрепленных на каркасе 7 и пластине 12. В пластине 12 выполнено отверстие 13 для размещения приемного фильтра 3 внутри пирамиды 6. Под дном топливного бака 1 напротив пирамиды 6 установлен электрический нагреватель 5 для камеры нагрева. Технический результат заключается в повышении эффективности подогрева топлива в топливном баке, упрощении конструкции топливного бака и обеспечении условий его безопасной эксплуатации. 1 з.п. ф-лы, 3 ил.

Изобретение относится к железнодорожному подвижному составу и касается цистерн для транспортировки застывающих и кристаллизующихся продуктов, в частности для перевозки карбамидоформальдегидной смолы, карбамидоформальдегидного концентрата, а также для перевозки легковоспламеняющихся, токсичных и едких жидкостей. Технически достижимый результат - повышение взрывобезопасности железнодорожной цистерны при перевозках легковоспламеняющихся, взрывоопасных жидкостей. Это достигается тем, что в железнодорожной взрывобезопасной цистерне, содержащей котел, выполненный из цилиндрической обечайки и двух торцевых днищ, люк, предохранительно-впускной клапан, сливное устройство, расположенное в нижней части цилиндрической обечайки, подогревательный кожух, расположенный в нижней части котла, при этом цилиндрическая обечайка котла снабжена теневой защитой, которая расположена и жестко закреплена по обе стороны от люка, угол охвата теневой защитой цилиндрической обечайки котла составляет 150-160°, а зазор между ними выполнен равным 50-60 мм, причем теневая защита выполнена съемной, согласно изобретению дополнительно снабжено взрывозащитным устройством с индикатором безопасности на разрывном элементе, монтируемым в люке-лазе и содержащим корпус клапана, теплоизолирующий и разрывной элементы, футерованный грузовой затвор, перекрывающий отверстие в корпусе защищаемого объекта, а в верхней цилиндрической части корпуса клапана размещен теплоизоляционный элемент и герметизирующая мембрана, прижимаемая к корпусу клапана посредством крышки, шарнирно соединенной с рычагом, взаимодействующим с отбойником, а узел крепления разрывного элемента крепится своей верхней частью на рычаге, а нижней - к верхней цилиндрической части корпуса клапана а разрывной элемент состоит из проволоки, стопорного болта, вилки, рычага крышки клапана гайки, двух барабанов, расположенных соответственно в вилке рычага крышки клапана, и в вилке верхней цилиндрической части корпуса клапана, при этом концы проволоки вставляются в отверстия барабанов и затем наматываются на них, а зазор h между вилками составляет порядка (1,5÷3) от диаметра проволоки, а параметры клапана находятся в следующих оптимальных интервалах величин: c=H/Dy=2,5÷3,0, где Dy - диаметр верхней цилиндрической части корпуса клапана, равный максимальному размеру отверстия корпуса защищаемого объекта; H - высота клапана в сборе, при этом на проволоке разрывного элемента закреплен индикатор безопасности в виде датчика, реагирующего на деформацию, например тензорезистора, выход которого соединен с усилителем сигнала, например тензоусилителем, а выход тензоусилителя соединен с входом устройства оповещения об аварийной ситуации, а проволока разрывного элемента, на которой закреплен датчик индикатора безопасности, выполнена упругой и имеет несколько витков в части, соединенной с датчиком индикатора безопасности. 3 ил.

Изобретение относится к железнодорожному транспорту. Вагон-цистерна для затвердевающих продуктов содержит платформу (2) с соединенным с ней котлом (1), включающим обогревающее устройство в виде оболочки, охватывающей корпус котла или его часть и образующей совместно со стенками котла полость с циркулирующим теплоносителем, сливно-наливные устройства с камерой обогрева штуцеров для установки наливной и сливной арматуры, соединенной каналами с обогревающим устройством. Труба для слива оборудована камерой обогрева, выполненной в виде рубашки, охватывающей ее с зазором. Нижняя часть рубашки соединена каналом с обогревающим устройством котла, а верхняя часть соединена каналом с камерой обогрева штуцеров. Изобретение снижает время разогрева перевозимого продукта и, следовательно, общего простоя вагона под разгрузкой. 3 з.п. ф-лы, 3 ил.

Изобретение относится к вагонам-цистернам для перевозки затвердевающих продуктов и может быть использовано в контейнерах-цистернах и стационарных емкостях. Вагон-цистерна для затвердевающих продуктов содержит соединенный с рамой (6) котел (1), оборудованный подогревательной системой в виде рубашки (2), охватывающей минимум часть нижней поверхности котла, с устройствами налива и слива продукта. В зонах разрыва сплошности подогревательной рубашки с внутренней стороны оболочки котла установлены каналы (10) с возможностью движения по ним теплоносителя. Изобретение повышает эффективность подогревательной рубашки. 5 ил.

Изобретение относится к железнодорожному подвижному составу и касается цистерн для транспортировки застывающих и кристаллизующихся продуктов, в частности для перевозки карбамидоформальдегидной смолы, карбамидоформальдегидного концентрата, а также для перевозки легко воспламеняющихся, токсичных и едких жидкостей. Технически достижимый результат - повышение взрывобезопасности железнодорожной цистерны при перевозках легковоспламеняющихся, взрывоопасных жидкостей. Это достигается тем, что железнодорожная взрывобезопасная цистерна содержит котел, выполненный из цилиндрической обечайки и двух торцевых днищ, люк, предохранительно-впускной клапан, сливное устройство, расположенное в нижней части цилиндрической обечайки, подогревательный кожух, расположенный в нижней части котла, отличается тем, что цилиндрическая обечайка котла снабжена теневой защитой, которая расположена и жестко закреплена по обе стороны от люка, угол охвата теневой защитой цилиндрической обечайки котла составляет 150-160°, а зазор между ними выполнен равным 50-60 мм, при этом теневая защита выполнена съемной, цистерна дополнительно снабжена взрывозащитным устройством, выполненным в виде взрывозащитного клапана, содержащего корпус клапана, теплоизолирующий и разрывной элементы, футерованный грузовой затвор, подвижно соединенный с корпусом клапана, при этом корпус клапана выполнен в виде нижней цилиндрической, средней конической и верхней цилиндрической частей, причем в нижней цилиндрической части размещен футерованный грузовой затвор, перекрывающий отверстие в корпусе защищаемого объекта, а в верхней цилиндрической части корпуса клапана размещен теплоизоляционный элемент и герметизирующая мембрана, прижимаемая к корпусу клапана посредством крышки, шарнирно соединенной с рычагом, взаимодействующим с отбойником, а узел крепления разрывного элемента крепится своей верхней частью на рычаге, а нижней - к верхней цилиндрической части корпуса клапана, при этом узел крепления разрывного элемента состоит из проволоки, стопорного болта, вилки, рычага крышки клапана, гайки, двух барабанов, расположенных соответственно в вилке рычага крышки клапана, и в вилке верхней цилиндрической части корпуса клапана, при этом концы проволоки вставляются в отверстия барабанов и затем наматываются на них, а зазор h между вилками составляет порядка (1,5÷3) от диаметра проволоки, а параметры клапана находятся в следующих оптимальных интервалах величин: а=D/Dy=1,5÷2,0; b=H/L=1,3÷1,8; с=H/Dy=2,5÷3,0, где Dy - диаметр верхней цилиндрической части корпуса 3 клапана, равный максимальному размеру отверстия корпуса 1 защищаемого объекта; D - диаметр нижней цилиндрической части корпуса 3 клапана; Н - высота клапана в сборе; L - максимальный габаритный размер клапана в плане, а подвижное соединение футерованного грузового затвора с основанием корпуса клапана выполнено в виде трех вертикально установленных стержней в отверстиях, выполненных в периферийной части корпуса футерованного грузового затвора, при этом нижней частью стержни закреплены в основании корпуса клапана, а в верхней части имеют демпфирующее устройство, закрепленное на горизонтальных перемычках стержней и обращенное в сторону грузового затвора. 1 з.п. ф-лы, 5 ил.

Изобретение относится к внутренней облицовке транспортных средств, предназначенных для перевозки термозависимых грузов. Термоизолированный контейнер включает корпус, на внутренней поверхности которого по стенкам и потолку установлены панели (2) термоизоляции. Пол (7) выполнен в виде единой многослойной конструкции. В местах примыкания многослойной конструкции пола (7) к панелям (2) термоизоляции, установленным на стенках корпуса, закреплены вставки в виде желобов (12) с возможностью обеспечения компенсации деформаций между панелями (2) термоизоляции и полом (7) и сбора конденсата, образующегося внутри контейнера. Изобретение повышает прочность и устойчивость контейнера. 7 з.п. ф-лы, 4 ил.
Наверх