Анализатор пульсовой волны и способ анализа пульсовой волны

Изобретение относится к медицине. Способ анализа пульсовой волны осуществляют с помощью анализатора пульсовой волны. При этом получают форму сигнала пульсовой волны одного сердечного сокращения посредством датчика давления. Преобразуют полученный сигнал в цифровой сигнал посредством блока цифрового преобразования. Получают форму сигнала производной четвертого порядка от исходной формы сигнала на основе преобразованного цифрового сигнала посредством дифференцирующего фильтра четвертого порядка. Посредством вычислительного устройства вычисляют точку экстремума формы сигнала производной четвертого порядка, секционируют форму сигнала пульсовой волны на зону отраженной волны и зону отсутствия отраженной волны и выделяют характеристическую точку зоны отраженной волны. При этом выделяют начальную точку зоны отраженной волны на основе точки экстремума формы сигнала производной четвертого порядка, выделяют конечную точку зоны отраженной волны на основе амплитуды формы сигнала производной четвертого порядка и вычисляют время схождения отраженной волны в качестве индекса. Применение изобретения позволит повысить точность определения времени схождения отраженной волны. 3 н. и 3 з.п. ф-лы, 12 ил.

 

Область техники, к которой относится изобретение

Настоящее изобретение относится к анализаторам пульсовой волны и способам анализа пульсовой волны, и, в частности, к анализатору пульсовой волны и способу анализа пульсовой волны для вычисления характеристической точки пульсовой волны.

Уровень техники

Информацией, используемой для диагностики сердечно-сосудистых заболеваний, таких как артериосклероз, является, в том числе, время распространения отраженной волны или время, занимаемое отраженной волной в пульсовой волне. Для получения времени, когда в пульсовой волне существует отраженная волна, необходим анализ для разделения измеренной пульсовой волны на диапазон выбрасываемой волны и диапазон отраженной волны.

В находящейся на рассмотрении заявке на патент Японии № 2005-349116 (в дальнейшем упоминаемом как патентный документ 1), заявитель настоящей заявки предлагает анализатор пульса для выделения характеристической точки пульсовой волны и вычисления такого индекса, как AI (индекс приращения) или TR (время распространения до отраженной волны). Такой индекс, как AI и TR, является индексом, вычисленным посредством выделения точки нарастания комплексной волны или точки нарастания отраженной волны в качестве характеристической точки.

В документе «Increased Systolic Pressure in Chronic Uremia Role of Arterial Wave Reflections», авторов London et al., предложен способ анализа характеристик пульсовой волны, полученной только в одной точке на артерии и получения индекса, например, индекса TR посредством выделения волны, отраженной от разветвленной части подвздошной артерии.

Патентный документ 1: находящаяся на рассмотрении заявка на патент Японии № 2005-349166.

Непатентный документ 1: London et al.: «Increased Systolic Pressure in Chronic Uremia Role of Arterial Wave Reflections», Hypertension, том 20, № 1, 1992, стр.10-19.

Сущность изобретения

Задачи изобретения

Однако точное выделение точки нарастания отраженной волны из комплексной волны является сложной задачей, и, в частности, точка нарастания отраженной волны может с трудом обнаруживаться в комплексной волне, в зависимости от участка измерения. Если точка нарастания отраженной волны не выделяется, то индекс невозможно вычислить с использованием способа, описанного в документе 1. Непатентный документ 1 относится к методу сбора данных о другом признаке и вычисления индекса, но имеет недостаток, заключающийся в сложности применения к пульсовой волне, измеряемой на плече, которую можно измерять даже дома.

В свете вышеизложенного, одной целью настоящего изобретения является создание анализатора пульсовой волны и способа анализа пульсовой волны, способных выделять время схождения отраженной волны и вычислять индекс, используемый для диагностики сердечного заболевания.

Средства решения проблемы

Для достижения вышеупомянутой цели, в соответствии с одним аспектом настоящего изобретения, анализатор пульсовой волны содержит блок определения пульсовой волны для определения пульсовой волны; и вычислительное устройство для выполнения процедуры на основании пульсовой волны, определенной блоком определения пульсовой волны; при этом, процедура, выполняемая вычислительным устройством, содержит процедуру выделения характеристической точки для выделения зоны отраженной волны из формы сигнала пульсовой волны одного удара пульса, и процедуру вычисления времени схождения отраженной волны в качестве индекса.

В соответствии с другим аспектом настоящего изобретения, способ анализа пульсовой волны содержит этап выделения характеристической точки для выделения зоны отраженной волны из формы сигнала пульсовой волны одного удара пульса, полученной датчиком давления для определения пульсовой волны; и этап вычисления времени схождения отраженной волны в качестве индекса.

В соответствии с другим дополнительным аспектом настоящего изобретения, программа анализа пульсовой волны является программой для предписания компьютеру выполнять процедуру анализа пульсовой волны и вычисления индекса; при этом программа предписывает компьютеру выполнять этапы получения сигнала датчика от датчика давления для определения пульсовой волны; этап выделения характеристической точки для выделения зоны отраженной волны из формы сигнала пульсовой волны одного удара пульса на основании сигнала датчика; и этап вычисления времени схождения отраженной волны в качестве индекса.

Технический результат изобретения

В соответствии с настоящим изобретением можно выделять время схождения отраженной волны. Пульсовую волну можно анализировать автоматически даже в том случае, когда точка нарастания отраженной волны не выделена с использованием такого индекса.

Краткое описание чертежей

Фиг.1 - изображение конкретного примера конфигурации устройства анализатора пульсовой волны в соответствии с вариантом осуществления.

Фиг.2 - взаимосвязь времени распространения пульсовой волны (PTT: время прохождения пульса) и продолжительности (TRD: продолжительность распространения отраженной волны) отраженной волны в измеряемой пульсовой волне между предплечьем и лодыжкой.

Фиг.3 - взаимосвязь времени PTT и продолжительности TRD между шеей и областью бедра.

Фиг.4 - взаимосвязь скорости распространения (PWV: скорость распространения пульсовой волны) пульсовой волны и продолжительности TRD между предплечьем и лодыжкой.

Фиг.5 - взаимосвязь скорости распространения пульсовой волны (PWV) и продолжительности TRD между шеей и областью бедра.

Фиг.6 - блок-схема последовательности операций для процедуры анализа сигнала давления (сигнала датчика), полученного из чувствительного элемента полупроводникового датчика 19 давления, в анализаторе пульсовой волны в соответствии с вариантом осуществления.

Фиг.7 - вид, представляющий конкретный пример взаимосвязи между формой сигнала пульсовой волны, первой производной от формы сигнала и второй производной от формы сигнала.

Фиг.8A - вид, представляющий характеристики точки перехода через нуль.

Фиг.8B - вид, представляющий характеристики точки перехода через нуль.

Фиг.8C - вид, представляющий характеристики точки перехода через нуль.

Фиг.9 - вид, представляющий пример использования производной четвертого порядка.

Фиг.10 - вид, представляющий частотные характеристики дифференцирующего фильтра четвертого порядка.

Фиг.11 - блок-схема конкретной последовательности операций для процедуры выделения характеристической точки в анализаторе пульсовой волны в соответствии с вариантом осуществления.

Фиг.12 - вид, представляющий конкретный пример полосового фильтра, применяемого в анализаторе пульсовой волны в соответствии с вариантом осуществления.

Наилучший вариант осуществления изобретения

Варианты осуществления настоящего изобретения описаны в дальнейшем со ссылками на чертежи. В последующем описании, одинаковые позиции обозначают одинаковые компоненты и элементы конфигурации. Их названия и функции также являются одинаковыми.

Как показано на фиг.1, анализатор пульсовой волны в соответствии с настоящим вариантом осуществления содержит чувствительный блок 1, дисплейный блок 3 и блок 7 фиксирующей стойки.

Дисплейный блок 3 содержит секцию 24 управления, выполненную с возможностью внешнего управления для управления вводом разнотипной информации, имеющей отношение к анализу пульсовой волны или чему-то подобному, и дисплейную секцию 25, содержащую LED (светоизлучающий диод) или LCD (жидкокристаллический дисплей) для выдачи из системы разнотипной информации, например, результата анализа пульсовой волны.

Блок 7 фиксирующей стойки содержит ROM (постоянное запоминающее устройство) 12 и RAM (оперативное запоминающее устройство) 13 для хранения данных и программ для управления анализатором пульсовой волны, CPU (центральный процессор) 11 для выполнения различных процедур, содержащих вычисление для точного управления анализатором пульсовой волны, нагнетательный насос 15, насос 16 отрицательного давления, переключающий клапан 17, схему 14 управления для приема сигнала от центрального процессора (CPU) 11 и передачи в нагнетательный насос 15, насос 16 отрицательного давления и переключающий клапан 17, фильтр 22 с перестраиваемой характеристикой, который может переключаться в, по меньшей мере, два значения, и A/D (аналого-цифровой) преобразователь 23.

Центральный процессор (CPU) 11 обращается к устройству ROM 12 и считывает программу, и открывает и исполняет программу на устройстве RAM 13 для управления анализатором пульсовой волны в целом. Центральный процессор (CPU) 11 принимает управляющий сигнал от пользователя посредством секции 24 управления, и управляет анализатором пульсовой волны в целом на основании управляющего сигнала. Другими словами, центральный процессор (CPU) 11 передает сигнал управления в схему 14 управления, мультиплексор 20, и фильтр 22 с перестраиваемой характеристикой на основании управляющего сигнала, введенного с секции 24 управления. Центральный процессор (CPU) 11 так же выполняет управление отображением результата анализа пульсовой волны или подобного результата на дисплейной секции 25.

Нагнетательный насос 15 является насосом для повышения внутреннего давления (в дальнейшем, называемого «манжетным давлением») нажимной манжеты (пневматической камеры) 18, описан в дальнейшем, и насос 16 отрицательного давления является насосом для снижения манжетного давления. Переключающий клапан 17 избирательно переключает и соединяет либо нагнетательный насос 15, либо насос 16 отрицательного давления с воздушной трубкой 5. Схема 14 управления управляет упомянутыми компонентами в соответствии с сигналом управления из центрального процессора (CPU) 11.

Чувствительный блок 1 содержит полупроводниковый датчик 19 давления, содержащий множество чувствительных элементов, мультиплексор 20 для избирательного вывода сигнала давления, выдаваемого каждым из множества чувствительных элементов, усилитель 21 для усиления сигнала давления, выдаваемого из мультиплексора 20, и нажимную манжету 18, содержащую пневматическую камеру, отрегулированную по давлению таким образом, чтобы прижимать полупроводниковый датчик 19 давления к месту измерения.

Полупроводниковый датчик 19 давления содержит множество чувствительных элементов, расположенных с предварительно заданным интервалом в одном направлении полупроводникового кристалла, изготовленного из монокристаллического кремния, и прижимается к месту измерения, на котором выполняется измерение, например, плечу, давлением нажимной манжеты 18. Полупроводниковый датчик 19 давления определяет пульсовую волну объекта измерения, распространяющуюся по лучевой артерии в данном состоянии. Полупроводниковый датчик 19 давления вводит сигнал давления, выдаваемый при определении пульсовой волны, в мультиплексор 20 для каждого канала каждого чувствительного элемента. Для примера, собрано сорок чувствительных элементов.

Мультиплексор 20 избирательно выводит сигнал давления, выдаваемый каждым чувствительным элементом. Сигнал давления, поданный из мультиплексора 20, усиливается усилителем 21 и избирательно выводится в A/D-преобразователь 23 через фильтр 22 с перестраиваемой характеристикой.

В настоящем варианте осуществления, мультиплексор 20 последовательно переключает множество сигналов давления, выводимых из множества чувствительных элементов, и выводит упомянутые сигналы в соответствии с сигналом управления из центрального процессора (CPU) 11 до тех пор, пока не будет выбран оптимальный чувствительный элемент для определения пульсовой волны. Канал фиксируется в соответствии с сигналом управления из центрального процессора (CPU) 11 после того, как выбран оптимальный чувствительный элемент для определения пульсовой волны. В данном случае, мультиплексор 20 выбирает и выводит сигнал давления, выдаваемый из выбранного чувствительного элемента.

Фильтр 22 с перестраиваемой характеристикой является фильтром нижних частот для отсечения составляющей сигнала, большей чем или равной предварительно заданному значению, и может переключаться в, по меньшей мере, два значения.

A/D-преобразователь 23 преобразует сигнал давления, который представляет собой аналоговый сигнал, полученный из полупроводникового датчика 19 давления, в цифровую информацию, и подает упомянутый сигнал в центральный процессор (CPU) 11. Сигнал давления, выданный каждым чувствительным элементом, содержащимся в полупроводниковом датчике 19 давления, одновременно отбирается мультиплексором 20 до тех пор, пока канал мультиплексора 20 не будет зафиксирован центральным процессором (CPU) 11. После того как канал мультиплексора 20 зафиксирован центральным процессором (CPU) 11, осуществляется получение сигнала давления, выдаваемого из соответствующего элемента датчика. Период, с которым осуществляется выборка сигнала давления (в дальнейшем, называемый «периодом дискретизации»), составляет, например, 2 мс.

Вышеописанный фильтр 22 с перестраиваемой характеристикой переключает значения частоты отсечки до тех пор, пока не будет зафиксирован канал мультиплексора 20, и после фиксации канала. Выборка выполняется при одновременном переключении множества сигналов давления до тех пор, пока не будет зафиксирован канал мультиплексора 20. Поэтому, в данном случае выбирается значение частоты отсечки, большее, чем частота выборки (например, 20 kHz). Тем самым может предотвращаться появление периодических изменений сигнала после аналого-цифрового (A/D) преобразования, и может быть подходящим образом выбран оптимальный чувствительный элемент. После того как канал зафиксирован, выбирается значение, которое становится частотой отсечки, меньшее чем или равное 1/2 от частоты выборки, (например, 500 Гц) в отношении одного определенного сигнала давления, в соответствии с сигналом управления из центрального процессора (CPU) 11. Тем самым, можно удалять шум от наложения спектров, и может точно выполняться анализ пульсовой волны. Шумом от наложения спектров называют шум, имеющий частотную составляющую, большую или равную чем 1/2 от частоты выборки, который появляется в частотной области, ниже чем или равной 1/2 от частоты выборки, под действием эффекта частоты преобразования, при преобразовании аналогового сигнала в цифровой сигнал, в соответствии с теоремой выборки.

В настоящем варианте осуществления, дисплейный блок 3 может быть миниатюрным, так как центральный процессор (CPU) 11, устройство ROM 12 и устройство RAM 13 расположены в блоке 7 фиксирующей стойки.

Блок 7 фиксирующей стойки и дисплейный блок 3 расположены отдельно, но дисплейный блок 3 может содержаться в блоке 7 фиксирующей стойки. И наоборот, центральный процессор (CPU) 11, устройство ROM 12 и устройство RAM 13 могут располагаться в дисплейном блоке 3. Для выполнения операций управления различного типа возможно подсоединение персонального компьютера (PC).

В настоящем варианте осуществления, анализатор пульсовой волны вычисляет продолжительность отраженной волны в измеряемой пульсовой волне (в дальнейшем, называемую TRD: продолжительностью распространения отраженной волны) в качестве индекса, используемого для диагностики сердечных заболеваний, например, артериосклероза, на основании формы сигнала пульсовой волны. Так как скорость распространения пульсовой волны, выброшенной из сердца, становится быстрее по мере того, как развивается артериосклероз, то скорость распространения пульсовой волны (в дальнейшем называемая PWV: скоростью распространения пульсовой волны) принято считать эффективным индексом при диагностике сердечных заболеваний, например, артериосклероза. Авторы настоящего изобретения вычисляли время распространения пульсовой волны (в дальнейшем, называемое PTT: временем прохождения пульса) и продолжительность распространения отраженной волны (TRD) на основании большого числа выборок пульсовых волн и подтвердили, что между ними существует корреляция. На фиг.2 показана взаимосвязь времени распространения пульсовой волны (PTT) и продолжительности распространения отраженной волны (TRD) между предплечьем и лодыжкой, и на фиг.3 показана взаимосвязь времени распространения пульсовой волны (PTT) и продолжительности распространения отраженной волны (TRD) между шеей и областью бедра. Аналогично, авторы настоящего изобретения вычисляли скорость распространения пульсовой волны (PWV) и продолжительность распространения отраженной волны (TRD) на основании большого числа выборок пульсовых волн, и подтвердили, что между ними существует корреляция. На фиг.4 показана взаимосвязь скорости распространения пульсовой волны (PWV) и продолжительности распространения отраженной волны (TRD) между предплечьем и лодыжкой, и на фиг.5 показана взаимосвязь скорости распространения пульсовой волны (PWV) и продолжительности распространения отраженной волны (TRD) между шеей и областью бедра. В соответствии с данным подтверждением, продолжительность распространения отраженной волны (TRD) также может быть эффективным индексом при диагностике сердечных заболеваний, например, артериосклероза.

Измеренную пульсовую волну требуется разделять на зону присутствия отраженной волны и зону отсутствия отраженной волны, чтобы вычислить продолжительность распространения отраженной волны (TRD) по измеренной пульсовой волне. Упомянутая первая зона из двух зон является зоной, в которой выделяются колебания, так как в измеренной пульсовой волне одного удара пульса, которая является комплексной волной, присутствует высокочастотная составляющая, и упомянутая вторая зона является зоной, в которой колебания не выделяются, так как высокочастотная составляющая отсутствует. Другими словами, первую зону можно называть зоной колебаний, и вторую зону можно называть стабильной зоной. Анализатор пульсовой волны в соответствии с настоящим вариантом осуществления выделяет из измеренной пульсовой волны начальную точку и конечную точку, по меньшей мере, одной зоны из двух зон в качестве характеристических точек для выделения двух зон.

Процедура, представленная блок-схемой, показанной на фиг.6, реализуется, когда центральный процессор (CPU) 11 в блоке 7 фиксирующей стойки обращается к устройству ROM 12 для считывания программы и создает и исполняет упомянутую программу в устройстве RAM 13. По меньшей мере, часть процедуры может быть реализована в аппаратной конфигурации, показанной на фиг.1. Данная процедура будет описана в виде процедуры анализа после того, как фиксируется канал мультиплексора 20.

Как видно из фиг.6, при определении сигнала давления на этапе S101, полупроводниковый датчик 19 давления, содержащий множество чувствительных элементов, подает сигнал давления в мультиплексор 20. В данном случае, сигнал датчика выдается из чувствительного элемента, соответствующего фиксированному каналу, выбранному мультиплексором 20. Сигнал давления, выбранный мультиплексором 20, подается в усилитель 21.

Усилитель 21 усиливает сигнал давления до предварительно заданной амплитуды на этапе S103, и фильтр 22 с перестраиваемой характеристикой выполняет процедуру аналоговой фильтрации на этапе S105. В данном случае, фильтр 22 с перестраиваемой характеристикой отсекает составляющую сигнала с частотой, меньшей чем или равной 1/2 от частоты выборки. Если частота выборки составляет 500 Гц, то составляющая сигнала, имеющая частоту, превышающую 100 Гц, отсекается.

A/D-преобразователь 23 оцифровывает сигнал давления, прошедший фильтр 22 с перестраиваемой характеристикой, на этапе S107, и выполняет процедуру цифровой фильтрации для выделения частоты предварительно заданного диапазона с целью подавления шума или с подобной целью на этапе S109. A/D-преобразователь 23 передает оцифрованный сигнал давления в центральный процессор (CPU) 11.

На этапе S111, центральный процессор (CPU) 11 принимает сигнал давления из A/D-преобразователя 23 и получает разность каждых данных для выполнения дифференцирования от первого до пятого порядков. Центральный процессор (CPU) 11 выполняет дифференцирование N-го порядка формы сигнала пульсовой волны, полученной из сигнала давления, посредством выполнения программы, хранящейся в устройстве ROM 12. На этапе S113, центральный процессор (CPU) 11 секционирует форму сигнала пульсовой волны на основании результата дифференцирования и выделяет форму сигнала пульсовой волны для одного удара пульса. А именно, центральный процессор (CPU) 11 ожидает до тех пор, пока первая производная дифференцирования N-го порядка, полученная на этапе S111, становится положительной. Когда первая производная становится положительной, определяется точка ее перехода через нуль с нарастанием и устанавливается как «точка нарастания во времени». Затем, центральный процессор (CPU) 11 ожидает локального максимального значения первой производной. При определении локального максимума первой производной, центральная память (CPU) 11 определяет, распознан ли один удар пульса. В частности, как видно из фиг.7, когда центральный процессор (CPU) 11 ожидает локального максимального значения исходной формы сигнала и определяет локальное максимальное значение, центральный процессор (CPU) 11 осуществляет привязку формы сигнала к точке нарастания во времени (точке PA) непосредственно перед точкой нарастания (точкой PB). Подтверждается, что существует точка максимума (точка PP) исходной формы сигнала между точкой PA и точкой PB, и подтверждается, что точка PB является минимальным значением между точкой PP и точкой PB. Если подтверждается, что точка PB является минимальным значением, то точка PA устанавливается как «точка нарастания». Тогда форма сигнала пульсовой волны одного удара пульса укладывается от точки PA до точки PB. Точку PA можно также определить как «начальную точку пульсовой волны» одного удара пульса.

На этапе S115, центральный процессор (CPU) 11 выделяет предварительно заданную характеристическую точку из формы сигнала пульсовой волны одного удара пульса, выделенной на этапе S113, и вычисляет продолжительность распространения отраженной волны (TRD) на этапе 117. После этого процедура анализа сигнала датчика завершается.

Как описано выше, характеристическая точка, необходимая для вычисления продолжительности распространения отраженной волны (TRD), содержит начальную точку и конечную точку, по меньшей мере, одной зоны из зоны колебаний и стабильной зоны, и, в частности, анализатор пульсовой волны в соответствии с настоящим вариантом осуществления выделяет начальную точку и конечную точку зоны колебаний на этапе S115, то есть, время схождения составляющей отраженной волны в форме сигнала пульсовой волны одного удара пульса.

Точку перехода через нуль формы сигнала производной четвертого порядка от исходной формы сигнала часто используют для выделения общей характеристической точки. Однако для точки перехода через нуль, четкую точку перехода через нуль выделить, как показано на фиг.8A, невозможно из-за влияния флюктуаций нулевой линии или чего-то подобного. Как показано на фиг.8B и 8C, точка перехода через нуль может оказаться неоднозначной. На фиг.8B представлен случай, когда существует несколько точек перехода через нуль, и точка перехода через нуль, выделенная как характеристическая точка формы сигнала пульсовой волны, является неоднозначной. На фиг.8C представлен случай, когда точка перехода через нуль неоднозначна, так как время нулевого значения имеет некоторую продолжительность. В случае неоднозначности точки перехода через нуль, как показано на фиг.8B и 8C, возможно, потребуется выбрать точку перехода через нуль для выделения характеристической точки пульсовой волны. Следовательно, стабильность оказывается недостаточной, если, для автоматического анализа пульсовой волны, характеристическая точка выделяется с использованием точки перехода через нуль. Для автоматического анализа пульсовой волны необходима стабильность. Анализ проблемы выполняется с использованием условия, что, для получения стабильности, не должно быть влияния флуктуации или чего-то подобного нулевой линии, например, точки экстремума. Точка экстремума содержит точку локального максимума и точку локального минимума.

Из условия отображения всех сигналов рядом Фурье, производная четвертого порядка конкретной формы сигнала позволяет эффективно выделять высокочастотную составляющую, содержащуюся в соответствующем сигнале.

[Уравнение 1]

f ( t ) = sin ( t ) + sin ( 2 t ) ( 1 )

d d t f ( t ) = cos ( t ) + 2 cos ( 2 t )

d 3 d t 3 f ( t ) = cos ( t ) 8 cos ( 2 t )

d 4 d t 4 f ( t ) = sin ( t ) + 16 sin ( 2 t ) ( 2 )

Когда получают производную четвертого порядка от «sin(2t)» в уравнении (1), данная производная имеет вид «16sin(2t)», как показано в уравнении (2). Следовательно, производная четвертого порядка от конкретной формы сигнала эффективно оказывается полезной при выделении высокочастотной составляющей, содержащейся в соответствующем сигнале.

Как видно из фиг.9, форма 41 сигнала является формой сигнала, представляющей уравнение (1), форма 42 сигнала является формой сигнала, представляющей «sin(2t)» в уравнении (1), и форма 43 сигнала является формой сигнала, представляющей уравнение (2). Форма 43 сигнала имеет, по существу, такую же фазу, как форма 42 сигнала. Следовательно, точка локального максимума высокочастотной составляющей, содержавшейся в сигнале, может быть получена как точка локального максимума производной четвертого порядка.

Распространяющаяся волна и отраженная волна имеют высокую частоту относительно периода пульсовой волны. Следовательно, предполагается, что точка максимума распространяющейся волны и отраженной волны выделяются вычислением точки локального максимума производной четвертого порядка от пульсовой волны. Первая точка локального максимума от нарастания формы сигнала производной четвертого порядка от формы сигнала пульсовой волны одного удара пульса выделяется как точка максимума распространяющейся волны, и следующая точка локального максимума может быть выделена, как точка максимума отраженной волны. Анализатор пульсовой волны в соответствии с настоящим вариантом осуществления выделяет первую точку локального максимума, как характеристическую точку, указывающую начальную точку зоны колебаний.

Конечную точку зоны колебаний получают как точку схождения колебаний. В частности, упомянутую точку определяют как точку, в которой амплитуда составляющей отраженной волны в исходной форме сигнала достигает заданного соотношения от амплитуды в первой точке локального максимума от нарастания формы сигнала производной четвертого порядка от формы сигнала пульсовой волны одного удара пульса, соответствующей пику составляющей распространяющейся волны в исходной форме сигнала. Заданное соотношение, приблизительно, составляет 10%. Анализатор пульсовой волны в соответствии с настоящим вариантом осуществления выделяет вышеупомянутую точку как характеристическую точку, указывающую конечную точку зоны колебаний.

Однако форма сигнала производной четвертого порядка быстро реагирует даже на высокочастотный шум. Следовательно, выделение точки максимума распространяющейся волны и отраженной волны, являющейся характеристической точкой при анализе пульсовой волны, может оказаться сложной задачей.

Уравнение (3) отражает дискретную формулу производной.

[Уравнение 3]

f ' ( k ) = f ( k + 1 ) f ( k 1 ) Δ h (3)

В формуле производной, показанной в уравнении (3), содержащуюся максимальную частоту можно отрегулировать изменением величины Δh (в дальнейшем называемой просто «Δh»), которая представляет собой интервал взятия разности данных.

На фиг.10 представлен пример, в котором величина Δh равна 8 мс, 12 мс, 16 мс, 24 мс и 32 мс по отношению к исходной форме сигнала. На фиг.10 форма сигнала, когда, в производной четвертого порядка от исходной формы 51 сигнала, величина Δh равна 8 мс, показана формой 52 сигнала; форма сигнала, когда величина Δh равна 12 мс, показана формой 53 сигнала; форма сигнала, когда величина Δh равна 16 мс, показана формой 54 сигнала; форма сигнала, когда величина Δh равна 24 мс, показана формой 55 сигнала; и форма сигнала, когда величина Δh равна 32 мс, показана формой 56 сигнала. Как видно из фиг.10, из сравнения формы 52 сигнала и формы 56 сигнала следует, что амплитуда формы 52 сигнала уже, и высокочастотная составляющая выделяется.

Форма 56 сигнала имеет плавную амплитуду, и выделяется только низкочастотная составляющая. Следовательно, составляющую пульсовой волны можно селективно выделить посредством регулировки частотных характеристик дифференцирующего фильтра четвертого порядка. Авторы настоящего изобретения выполнили фактическое моделирование, и обнаружили, что характеристическую точку пульсовой волны можно точно выделить с использованием точки локального максимума производной четвертого порядка, полученной с использованием дифференцирующего фильтра четвертого порядка. Результат представлен в выложенной публикации японского патента № 2005-349116, ранее поданной авторами настоящего изобретения и опубликованной.

Анализатор пульсовой волны в соответствии с настоящим вариантом осуществления выделяет характеристическую точку пульсовой волны с использованием точки экстремума формы сигнала производной четвертого порядка, полученной дифференцирующим фильтром четвертого порядка. В анализаторе пульсовой волны в соответствии с настоящим вариантом осуществления, можно повысить стабильность, так как точку перехода через нуль применять не требуется. В настоящем варианте осуществления, величину Δh устанавливают продолжительнее, чем период дискретизации (2 мс) данных в дифференцирующем фильтре четвертого порядка. Следовательно, можно подавлять шум, содержащийся в высокочастотной составляющей. В настоящем варианте осуществления, величина Δh принята равной 32 мс.

На фиг.11 изображена блок-схема конкретной последовательности операций для процедуры выделения характеристической точки на этапе S115. Как видно из фиг.11, центральный процессор (CPU) 11 получает значение локального максимума второй производной, существующего между точкой PA и точкой PB, показанными на фиг.7, при распознавании пульсовой волны одного удара пульса на этапе S113. Значение локального максимума второй производной, полученное в данном случае, принимается как точка A (в дальнейшем, называемая «точкой APG-A»), точка C (в дальнейшем, называемая «точкой APG-С»), и точка E (в дальнейшем, называемая «точкой APG-E») по порядку. На этапе S301, центральный процессор (CPU) 11 получает точку локального максимума производной четвертого порядка, существующую от точки PA до точки APG-E. Полученная точка локального максимума производной четвертого порядка становится возможным вариантом точки максимума распространяющейся волны и отраженной волны.

На этапе S303, центральный процессор (CPU) 11 получает точку максимума точки локального максимума производной четвертого порядка, существующей в зоне нисходящей ветви от точки PP к точке APG-E, в качестве точки максимума (точки P2) отраженной волны, которая является одной из характеристических точек, и определяет такую точку, как начальную точку зоны колебаний. Точка PP может быть точкой максимума распространяющейся волны или может быть точкой максимума отраженной волны. Следовательно, «зона нисходящей ветви» является просто зоной от точки максимума пульсовой волны (точки PP) до точки выреза (точки APG-E). Точка APG-E является точкой, используемой при анализе в качестве точки, представляющей момент времени закрытия аорты. Данная точка на пульсовой волне, которая представляет момент времени закрытия аорты, определяется как «точка выреза». Центральный процессор (CPU) 11 также может вычислить точку максимума (точку P2) отраженной волны с использованием точки максимума формы сигнала производной четвертого порядка в зоне от точки APG-С до точки APG-E.

На этапе S305, центральный процессор (CPU) 11 вычисляет 10% от амплитуды точки PP, служащей пиком распространяющейся волны, соответствующим первой точке локального максимума от нарастания, служащего точкой PA, показанной на фиг.7, формы сигнала производной четвертого порядка, в качестве порогового значения, получает точку перехода через нуль формы сигнала производной четвертого порядка после точки, в которой амплитуда достигает порогового значения после точки PP, в качестве точки схождения колебаний, которая является одной из характеристических точек, и определяет данную точку, как конечную точку зоны колебаний.

После двух характеристических точек, начальной точки и конечной точки зоны колебаний, которые выделены посредством вышеописанной процедуры, центральный процессор (CPU) 11 вычисляет продолжительность распространения отраженной волны (TRD), которая становится индексом, посредством вычитания времени, указывающего начальную точку, из времени, указывающего конечную точку, на этапе S117.

Анализатор пульсовой волны в соответствии с настоящим вариантом осуществления выделяет начальную точку и конечную точку зоны колебаний, которые несложно выделить из измеренной формы сигнала пульсовой волны, в качестве характеристических точек, и вычисляет время распространения до отраженной волны (TR) в качестве индекса, основанного на упомянутых показателях. Как описано выше с использованием фиг.2-5, время распространения до отраженной волны (TR) коррелируется с индексом, который считается полезным для диагностики уже известного сердечного заболевания, и само время распространения до отраженной волны (TR) принято в качестве полезного индекса. Таким образом, в анализаторе пульсовой волны в соответствии с настоящим вариантом осуществления, из точно измеренной формы сигнала может быть выделена характеристическая точка, и может быть вычислен индекс, полезный при диагностике сердечного заболевания. Конкретных ограничений на место измерения не существует, пульсовую волну можно измерять даже на плече, и, следовательно, возможно несложное применение в обычных домашних условиях. Кроме того, так как при измерении пульсовой волны на плече, положение лежа не обязательно в качестве измерительного положения тела для измерения, то возможно ослабление нагрузки на человека, подлежащего измерению.

Фиг.12 представляет конкретный пример полосового фильтра, используемого в процедуре цифровой фильтрации на этапе S109. Если полосовой фильтр, представленный на фиг.12, применяется для процедуры цифровой фильтрации на этапе S109, то составляющая, имеющая частоту, меньшую чем или равную значению fc1, и составляющая, имеющая частоту большую чем или равную fch, в сигнале давления, оцифрованного на этапе S107, отсекаются. В процедуре цифровой фильтрации, полосовой фильтр обычно применяют для исключения влияния движений тела таким образом, что частота ниже, чем предварительно заданная частота, отсекается. Предварительно заданная частота, предназначенная для исключения влияния движений тела, приблизительно равна 0,5 Гц, и 0,5 Гц и т.д. устанавливается в качестве порогового значения fc1 на стороне нижней пропускаемой частоты. Из документа «Regional pulse-wave velocity in the arterial tree» (J Appl Physiol., 1968; Jan; 24(1): pp.73-78), McDonald DA, известно, что составляющая пульсовой волны, имеющая частоту ниже чем 3 Гц, может стать причиной ошибки, так как пульсовая волна, имеющая частоту ниже, чем 3 Гц, отличается от пульсовой волны, имеющей другие частоты, по скорости распространения пульсовой волны. Кроме того, из документа «Estimation of Central Aortic Pressure Waveform by Mathematical Transformation of Radial Tonometry Pressure: Validation of Generalized Transfer Function» (Circulation том 95, № 7, Апрель 1, 1997, стр.1827-1836), Chen-Huan Chen et al., известно, что составляющая пульсовой волны, имеющая частоту ниже чем 5 Гц, имеет амплитуду, усиливаемую на стадии распространения к плечу, когда местом измерения является плечо. Следовательно, в настоящем варианте осуществления, в качестве порогового значения fc1 на стороне нижней пропускаемой частоты целесообразно задавать значение 5 Гц, с учетом составляющих шумов, чтобы исключать движения тела, частотную зависимость скорости распространения и влияние на пульсовую волну каждого элемента усиления амплитуды на стадии распространения к плечу в процедуре цифровой фильтрации на этапе S109.

В вышеприведенном примере, форму сигнала производной четвертого порядка используют для выделения характеристической точки из пульсовой волны в анализаторе пульсовой волны, но полосовой фильтр можно использовать с учетом вышеописанных рассуждений. Ограничения на применение формы сигнала производной только четвертого порядка не существует, пока форма сигнала является многопорядковой производной третьего или более высоких порядков, но применение формы сигнала производной четвертого порядка предпочтительно потому, что точность экспериментального получения характеристической точки в форме сигнала производной четвертого порядка является высокой.

[Модификация]

Процедура выделения начальной точки и конечной точки зоны колебаний в качестве характеристической точки на этапе S115 не ограничена вышеописанным способом. В качестве модификации, будут описаны другие способы. Другими словами, другой способ данной процедуры содержит способ, содержащий этап вычисления скользящего среднего значения формы сигнала производной четвертого порядка от пульсовой волны одного удара пульса, этап выделения точки, в которой достигается максимальное значение, в качестве начальной точки зоны колебаний, и этап выделения точки, в которой скользящее среднее значение не превышает значения, меньшего на заданное соотношение от максимального значения, после достижения максимального значения, в качестве конечной точки зоны колебаний.

В вышеприведенном описании, принята конфигурация определения пульсовой волны посредством сбора данных изменения давления с использованием датчика давления, но способ определения пульсовой волны не ограничен данной конфигурацией. Например, допустим способ определения пульсовой волны посредством сбора данных изменения объема.

Вышеописанный способ анализа формы сигнала пульсовой волны не ограничен анализом формы сигнала пульсовой волны, и может применяться для анализа других биологических волн, получаемых объединением первой формы сигнала и второй формы сигнала, порождаемых сжатием и расширением сердца, например, формы сигнала сердечных сокращений. Кроме того, анализ пульсовой волны в анализаторе пульсовой волны, то есть, способ выделения характеристической точки и способ вычисления индекса, может быть обеспечен в виде программы. Данная программа может быть записана на машиночитаемом носителе данных для записи, например, дискете, CD-ROM (компакт-диске, предназначенном только для чтения), ROM (постоянном запоминающем устройстве), RAM (оперативном запоминающем устройстве), карте памяти или чем-то подобном, являющемся дополнением к компьютеру, и обеспечиваемом в форме программного продукта. В качестве альтернативы, программу можно обеспечивать в форме записи на такой среде для записи, как жесткий диск, установленный в компьютере. Программу можно также обеспечивать посредством загрузки по сети.

Программа в соответствии с настоящим изобретением может быть предназначена для вызова необходимого модуля в предварительно заданное время в предварительно заданной упорядоченной последовательности и исполнения процедуры программных модулей, обеспеченной в качестве одной составной части операционной системы (OS) компьютера. В данном случае, соответствующий модуль не содержится в самой программе и управляется совместно с OS для исполнения процедуры. Программа в соответствии с настоящим вариантом осуществления также содержит программу, которая не содержит упомянутого модуля.

Программу в соответствии с настоящим вариантом осуществления можно обеспечивать посредством объединения в одну часть с другой программой. В данном случае, модуль, содержащийся в другой программе, также не содержится в самой программе и управляется совместно с другой программой для исполнения процедуры. Программа в соответствии с настоящим вариантом осуществления содержит также программу, встроенную в другую программу.

Программный продукт, подлежащий обеспечению, устанавливается в блок накопления программ, например, на жесткий диск, и выполняется. Программный продукт содержит саму программу и носитель данных, на котором записана программа.

Вышеописанные варианты осуществления являются пояснительными во всех аспектах и не подлежат истолкованию в ограничивающем смысле. Объем настоящего изобретения определяется формулой изобретения, а не вышеприведенным описанием, и все модификации, эквивалентные по смыслу формуле изобретения и не выходящие за пределы объема формулы изобретения, предполагаются охваченными настоящей заявкой.

Описание символов

1 чувствительный блок

3 дисплейный блок

5 воздушная трубка

7 фиксирующая стойка

11 центральный процессор (CPU)

12 постоянное запоминающее устройство (ROM)

13 оперативное запоминающее устройство (RAM)

14 схема управления

15 нагнетательный насос

16 насос отрицательного давления

17 переключающий клапан

18 нажимная манжета

19 полупроводниковый датчик давления

20 мультиплексор

21 усилитель

22 фильтр с перестраиваемой характеристикой

23 аналого-цифровой (A/D) преобразователь

24 секция управления

25 дисплейная секция.

1. Анализатор пульсовой волны, содержащий:
блок (1) определения пульсовой волны для определения пульсовой волны; и
вычислительное устройство (11) для выполнения процедуры на основании пульсовой волны, определенной блоком определения пульсовой волны;
блок (23) цифрового преобразования для преобразования сигнала пульсовой волны из блока определения пульсовой волны в цифровой сигнал; и
дифференцирующий фильтр (22) четвертого порядка, обеспечивающий регулировку частотных характеристик, для получения формы сигнала производной четвертого порядка от исходной формы сигнала на основе цифрового сигнала, преобразованного блоком цифрового преобразования; причем
процедура, выполняемая вычислительным устройством, содержит:
процедуру (S115) выделения характеристической точки для выделения зоны отраженной волны из формы сигнала пульсовой волны одного сердечного сокращения,
процедуру вычисления точки экстремума формы сигнала производной четвертого порядка в зоне пульсовой волны одного сердечного сокращения; и
процедура выделения характеристической точки содержит:
процедуру выделения начальной точки зоны отраженной волны на основе точки экстремума формы сигнала производной четвертого порядка, и
процедуру выделения конечной точки зоны отраженной волны на основе амплитуды формы сигнала производной четвертого порядка,
а вычислительное устройство выполняет также
процедуру (S117) вычисления времени схождения отраженной волны в качестве индекса.

2. Анализатор пульсовой волны по п.1, в котором
в процедуре выделения начальной точки зоны отраженной волны, точка локального максимума первой формы сигнала производной четвертого порядка с точки нарастания пульсовой волны первого сердечного сокращения выделяется как характеристическая точка, которая является начальной точкой зоны отраженной волны; и
в процедуре выделения конечной точки зоны отраженной волны, точка, в которой амплитуда пульсовой волны достигает заданного соотношения после точки, соответствующей точке экстремума, выделяется из амплитуды пульсовой волны в точке, соответствующей точке экстремума первой формы сигнала производной четвертого порядка с точки нарастания пульсовой волны одного сердечного сокращения, в качестве характеристической точки или конечной точки зоны отраженной волны.

3. Анализатор пульсовой волны по п.1, в котором
в процедуре выделения начальной точки зоны отраженной волны, точка, в которой скользящее среднее значение формы сигнала производной четвертого порядка одного сердечного сокращения является максимальным, выделяется как характеристическая точка или начальная точка зоны отраженной волны; и
в процедуре выделения конечной точки зоны отраженной волны, точка, в которой скользящее среднее значение не превышает значения, меньшего на заданное соотношение от максимального значения, после достижения точки, в которой скользящее среднее значение формы сигнала производной четвертого порядка одного удара пульса является максимальным, выделяется как характеристическая точка, которая является конечной точкой зоны отраженной волны.

4. Анализатор пульсовой волны по п.1, в котором процедура, выполняемая вычислительным устройством, дополнительно содержит процедуру фильтрации для коррекции и исключения шумовой составляющей посредством скользящего среднего значения формы сигнала производной четвертого порядка в зоне пульсовой волны одного сердечного сокращения.

5. Способ анализа пульсовой волны, содержащий этапы, на которых:
получают форму сигнала пульсовой волны одного сердечного сокращения посредством датчика давления для определения пульсовой волны;
преобразуют сигнал формы пульсовой волны в цифровой сигнал,
получают форму сигнала производной четвертого порядка от исходной формы сигнала на основе преобразованного цифрового сигнала;
вычисляют точку экстремума формы сигнала производной четвертого порядка в зоне пульсовой волны одного сердечного сокращения;
секционируют форму сигнала пульсовой волны одного сердечного сокращения на зону отраженной волны и зону отсутствия отраженной волны,
выделяют характеристическую точку зоны отраженной волны; при этом на шаге выделения характеристической точки:
выделяют начальную точку зоны отраженной волны на основе точки экстремума формы сигнала производной четвертого порядка, и
выделяют конечную точку зоны отраженной волны на основе амплитуды формы сигнала производной четвертого порядка,
вычисляют время схождения отраженной волны в качестве индекса (S117).

6. Машиночитаемый носитель, на котором хранятся программные инструкции для предписания компьютеру выполнять процедуру анализа пульсовой волны и вычисления индекса; при этом программа предписывает компьютеру выполнять этапы:
получения сигнала датчика из датчика давления для определения пульсовой волны (S101);
преобразования сигнала датчика из датчика давления в цифровой сигнал;
получения формы сигнала производной четвертого порядка от исходной формы сигнала на основе преобразованного цифрового сигнала;
вычисления точки экстремума формы сигнала производной четвертого порядка в зоне пульсовой волны одного сердечного сокращения,
выделения характеристической точки для выделения зоны отраженной волны из формы сигнала пульсовой волны одного сердечного сокращения на основании сигнала датчика (S115);
при этом выделение характеристической точки содержит:
выделение начальной точки зоны отраженной волны на основе точки экстремума формы сигнала производной четвертого порядка, и
выделение конечной точки зоны отраженной волны на основе амплитуды формы сигнала производной четвертого порядка,
вычисления времени схождения отраженной волны в качестве индекса (S117).



 

Похожие патенты:

Изобретение относится к медицинской технике. Устройство для измерения информации артериального давления содержит первую пневматическую камеру в первой манжете для наложения на плечо, вторую пневматическую камеру во второй манжете для наложения на нижнюю конечность, измерительный блок для синхронного измерения изменения внутреннего давления в первой и второй пневматической камере, блок определения для получения первой и второй информации артериального давления из изменения внутреннего давления в первой и второй пневматической камере соответственно и вычислительный блок.

Группа изобретений относится к медицине. При осуществлении способа одновременно регистрируют две дифференциальные пульсограммы с двух пульсирующих участков поверхности тела над обследуемыми артериями.

Группа изобретений относится к медицине. Варианты устройства для измерения информации о кровяном давлении содержат две оболочки с текучей средой и два датчика для измерения внутренних давлений оболочек с текучей средой, блок регулирования внутреннего давления второй оболочки с текучей средой и блок управления для управления вычислением для вычисления показателя для определения степени артериосклероза и регулирования первого блока регулирования.

Изобретение относится к медицинской технике и предназначено для измерения артериального давления и частоты пульса. .

Изобретение относится к области медицины, кардиологии. .

Изобретение относится к медицине, а именно к электрофизиологии и экспериментальной медицине, и может быть использовано для изучения нейрофизиологических механизмов регуляции позы, моделирования методов восстановления постурального контроля при его нарушении.

Изобретение относится к медицине, кардиологии и может быть использовано при диагностике состояния сердечно-сосудистой системы человека. .

Изобретение относится к системе контроля биологической информации для определения такой информации, как температура тела, пульс и артериальное давление для определения наличия или отсутствия биологического нарушения.

Изобретение относится к тренировочным и лечебным устройствам и предназначено для активного развития двигательной системы человека. .

Группа изобретений относится к медицине. Система измерения артериального давления с использованием косвенного способа содержит устройство приложения внешнего контактного усилия к измеряемой артерии, датчик артериальных выраженных признаков и устройство измерения и регистрации для определения систолического и диастолического периодов артериального цикла на основании значений, записанных датчиком. Устройство измерения и регистрации измеряет диастолическое давление во время диастолического периода, до того как артерию полностью окклюдируют, и измеряет систолическое давление во время систолического периода, когда артерия окклюдирована. Датчик записывает выраженные признаки до, во время и после получения внешнего усилия. При измерении артериального давления посредством облитерации получают артериальный цикл посредством различения систолического и диастолического периодов без воздействия на кровоток и артериальную стенку внешними усилиями. Прилагают внешнее усилие к артерии и записывают артериальный выраженный признак из каждого периода. Увеличивают внешнее усилие до его уравнивания с артериальным давлением в подлежащий измерению период. Измеряют заданное кровяное давление в заданном артериальном цикле, когда пропадает артериальный выраженный признак в любом из систолического или диастолического периодов. При измерении диастолического артериального давления посредством освобождения прилагают внешнее усилие к артерии до ее окклюзии. Ослабляют внешнее усилие до его уравнивания с артериальным давлением в диастолическом периоде. Измеряют диастолическое давление при регистрации артериального выраженного признака в момент времени, когда появляется артериальный выраженный признак из диастолического периода артериального цикла. Применение группы изобретений позволит повысить точность измерения артериального давления косвенным способом. 3 н. и 29 з.п. ф-лы, 13 ил.

Группа изобретений относится к медицине. Способ для измерения частоты сердцебиений и/или вариабельности частоты сердцебиений субъекта реализуют устройством и используют для мониторинга и/или для определения случаев сердечной недостаточности. При установлении сердечной недостаточности устройство генерирует тревожный сигнал. Устройство содержит держатель для размещения участка части тела субъекта и функционально связанный с держателем датчик движения. Держатель выполнен с возможностью перемещения в горизонтальном направлении относительно основания. Датчик движения выполнен с возможностью измерения сигнала движения субъекта в горизонтальном направлении. Датчик движения соответствует электрическому датчику движения и содержит конденсатор с электроемкостью, сформированной между первым и вторым электродами. Первый электрод зафиксирован относительно основания, а второй электрод - относительно держателя. При этом измеряют сигнал движения субъекта в горизонтальном направлении относительно основания. При этом участок части тела субъекта лежит на держателе или опирается на него. Сигнал измеряют с помощью емкости конденсатора. Применение группы изобретений позволит измерять частоту сердцебиений и/или вариабельность частоты сердцебиений надежным и ненавязчивым образом без использования датчиков, прикрепленных к телу субъекта или расположенных рядом с телом субъекта. 3 н. и 9 з.п. ф-лы, 2 ил.

Изобретение относится к медицинской технике, в частности к приборам для контроля и оценки состояния системы «мать-плод» в заключительной фазе родов. Устройство контроля и прогнозирования состояния системы «мать-плод» в процессе родовспоможения состоит из электрокардиографического канала (1) плода, электрогистерографического канала (9) матери, эхокардиографического канала (15) плода, электрокардиографического канала (22) матери, электроэнцефалографического канала (28) матери, канала контроля системы дыхания (30) матери, интегрального блока тревожной сигнализации (32) и устройства обработки информации (33). Первый вход устройства обработки информации (33) подсоединен к первому выходу электрокардиографического канала (1) плода, второй вход - к первому выходу эхокардиографического канала (15) плода, третий вход - к третьему выходу электрогистерографического канала (9) матери, четвертый вход - к выходу электроэнцефалографического канала (28) матери, пятый вход - к выходу электрокардиографического канала (22) матери, шестой и седьмой входы - к первому и второму выходам канала контроля системы дыхания (30) матери соответственно, а его выход посредством шины подсоединен к блоку цифровой индикации и записи (24). Применение изобретения позволит повысить эффективность контроля и коррекции процесса родов за счет повышения надежности и достоверности оценки состояния как системы «мать-плод» в целом, так и отдельных физиологических систем роженицы. 5 з.п. ф-лы, 1 ил.

Изобретение относится к медицине. Способ анализа пульсовой волны выполняют при помощи устройства обработки информации, содержащего запоминающее устройство, блок управления и блок вывода. При этом сохраняют посредством запоминающего устройства пульсовой сигнал для множества сердечных сокращений. Анализируют посредством блока управления пульсовой сигнал для множества сердечных сокращений, чтобы вычислить показатель для анализа пульсовой волны. Показатель для анализа пульсовой волны представляет собой количественную характеристику пульсовых волн объекта измерения. На этапе анализа интегрируют формы пульсовых сигналов от каждого сердечного сокращения, которые составляют пульсовый сигнал для множества сердечных сокращений, чтобы получить интегрированную форму пульсового сигнала, и вычисляют показатель для анализа пульсовой волны после исключения в качестве объекта вычисления сердечного сокращения, для которого степень приближения между интегрированной формой пульсового сигнала и формой пульсового сигнала данного сердечного сокращения меньше порогового значения. Выводят посредством блока вывода вычисленный показатель для анализа пульсовой волны в качестве результата анализа. Применение изобретения позволит повысить точность определения показателя для анализа пульсовой волны путем обеспечения возможности вычисления показателя с использованием только стабильных сердечных сокращений. 7 з.п. ф-лы, 30 ил.

Изобретение относится к приспособлениям, используемым для оценки состояния человека с помощью снятия биологических сигналов с верхней части тела человека. Приспособление включает в себя элемент подушки для поддержания спины и элемент базовой подушки объединенные в одно целое при помощи мешкообразного элемента; элемент сенсорного приспособления, снимающего биологические сигналы со спины сидящего человека; элемент для поддержания таза/поясничной области, который амортизирует движения таза и уменьшает нагрузку на элемент подушки для поддержания спины. Приспособление позволяет получить точную информацию о состоянии человека, за счет расположения сенсорного приспособления позади элемента подушки для поддержания спины и исключения влияния дыхания и движений тела на снимаемые биологические сигналы. 9 з.п. ф-лы, 25 ил., 7 пр.

Изобретения относятся к медицине. Способ определения частоты сердечных сокращений человека реализуют с помощью переносного устройства, входящего в состав системы для определения частоты сердечных сокращений. Переносное устройство для определения частоты сердечных сокращений человека содержит блок измерения частоты сердечных сокращений для генерирования сигнала частоты сердечных сокращений, блок измерения движений для измерения движений части тела человека для генерирования сигнала движения и обрабатывающий блок для измерения качества сигнала частоты сердечных сокращений, вычисления частоты сердечных сокращений на основе сигнала частоты сердечных сокращений, если качество сигнала выше предопределенного порога, и оценки частоты сердечных сокращений на основе сигнала движения, если качество сигнала ниже упомянутого порога. Обрабатывающий блок оценивает частоту сердечных сокращений на основе сигнала движения путем оценки постоянной частоты сердечных сокращений HRconstant и определения экспоненциального изменения частоты сердечных сокращений во времени. Экспоненциальное изменение частоты сердечных сокращений начинается с последней достоверно измеренной частоты сердечных сокращений и заканчивается на оцененной частоте HRconstant, которая зависит от частоты сигнала движения. Последняя достоверно измеренная частота сердечных сокращений представляет собой последнюю частоту сердечных сокращений, измеренную блоком измерения частоты сердечных сокращений в момент времени перед достижением упомянутого порога. Достигается повышение точности определения частоты сердечных сокращений. 3 н. и 10 з.п. ф-лы, 12 ил.

Изобретения относятся к медицине. Устройство для кардиореспираторного анализа содержит корпус с закрепленными на нем блоком управления и инфракрасным пульсоксиметрическим датчиком для измерения частоты пульса и оксигенации крови. Корпус выполнен в виде снабженной рукоятью телескопической трости. Колена трости в местах соединения укреплены пластиковыми муфтами для препятствования произвольному складыванию. На конце трости установлен колесный блок в виде пары колес и взаимодействующего с ними датчика подсчета оборотов колеса. Колеса колесного блока установлены на общей оси. Датчик подсчета оборотов колеса представляет собой цифровой тахометр, включающий закрепленные на колесном блоке геркон и магнит. Блок управления закреплен на одном из колен трости и снабжен выведенными на корпус блока управления жидкокристаллическим дисплеем, тумблером включения/отключения и кнопкой обнуления показаний. Инфракрасный пульсоксиметрический датчик установлен на рукояти трости. Микроконтроллер выполнен с возможностью анализа измеренных показаний, формирования предупреждающего сообщения на экране дисплея и выдачи сигнала на отключение датчиков. Способ оценки кардиореспираторного состояния включает проведение тестирования с использованием для кардиореспираторного анализа. При этом удерживают устройство за рукоять. Располагают большой палец на инфракрасном пульсоксиметрическом датчике. Осуществляют выбор программы тестирования, название которой появляется на жидкокристаллическом дисплее. Выполняют шаги. Данные о пройденном расстоянии и пульсоксиметрии передаются посредством подключения микроконтроллера по USB кабелю на внешний ПК, где происходит их визуализация в виде графиков и сохранение в базе данных. Достигается повышение точности измерений в процессе проведения исследования и оценки динамики изменений параметров сердечно-сосудистой и дыхательной систем при выполнении пробы с функциональной нагрузкой. 2 н. и 7 з.п. ф-лы, 3 ил.
Наверх